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Abstract:

Tat regulates transcription from the human immunodeficiency virus 
(HIV) provirus. It plays a crucial role in disease progression, supporting 
efficient replication of the viral genome. Tat also modulates many 
functions in the host genome via its interaction with chromatin and 
proteins. Many of the functions of Tat are associated with its basic 
domain rich in arginine and lysine residues. It is still unknown why the 
basic domain exhibits so many diverse functions. However, the highly 
charged basic domain, coupled with the overall structural flexibility of Tat 
protein itself, makes the basic domain a key player in binding to or 
associating with cellular and viral components. In addition, the basic 
domain undergoes diverse post-translational modifications which further 
expand and modulate its functions. Here we review the current 
knowledge of Tat basic domain and its versatile role in the interaction 
between the virus and the host cell.

 

Reviews in Medical Virology



For Review Only

1

Tat basic domain: a ‘Swiss army knife’ of HIV-1 Tat?

Margarita A. Kurnaeva1,2, Eugene V. Sheval2,3,4, Yana R. Musinova2,4,5, Yegor S. 

Vassetzky4,5,6

1Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State 

University, Moscow, Russia
2Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State 

University, Moscow, Russia
3Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
4LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 

France
5Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 

Moscow, Russia
6UMR8126, CNRS, Université Paris-Sud, Institut Gustave Roussy, Villejuif, 

France

Correspondence

Dr. Yegor Vassetzky, Nuclear Organization and Pathologies CNRS, UMR-8126, 

Institut Gustave Roussy, 39 rue Camille-Desmoulins, 94805 Villejuif, France

Email: yegor.vassetzky@cnrs.fr

Running head: HIV-1 Tat basic domain

Page 1 of 72 Reviews in Medical Virology



For Review Only

2

Funding information

Russian Science Foundation, Grant/Award Number: 17-75-20199; Russian 

Foundation for Basic Research, Grant/Award Number: 18-54-16002; the Plan 

Cancer; ANRS; la Ligue Contre le Cancer

Page 2 of 72Reviews in Medical Virology



For Review Only

3

List of abbreviations: CPP, cell penetrating peptide; HAT, histone 

acetyltransferase; HIV, human immunodeficiency virus; LANA, latency-

associated nuclear antigen; LTR, long terminal repeats; NES, nuclear export 

signal; NLS, nuclear localization signal; NoLS, nucleolar localization signal; 

P-TEFb, positive transcription elongation factor, PTD, protein transduction 

domain; TAR, transactivation response element; Tat, transactivator of 

transcription

Page 3 of 72 Reviews in Medical Virology



For Review Only

4

Summary

Tat regulates transcription from the human immunodeficiency virus (HIV) 

provirus. It plays a crucial role in disease progression, supporting efficient 

replication of the viral genome. Tat also modulates many functions in the host 

genome via its interaction with chromatin and proteins. Many of the functions of 

Tat are associated with its basic domain rich in arginine and lysine residues. It is 

still unknown why the basic domain exhibits so many diverse functions. However, 

the highly charged basic domain, coupled with the overall structural flexibility of 

Tat protein itself, makes the basic domain a key player in binding to or 

associating with cellular and viral components. In addition, the basic domain 

undergoes diverse post-translational modifications which further expand and 

modulate its functions. Here we review the current knowledge of Tat basic 

domain and its versatile role in the interaction between the virus and the host 

cell.

KEYWORDS

HIV-1, Tat protein, basic domain, transactivation, nuclear localization signal, 

nucleolar localization signal, protein transduction domain
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1 | INTRODUCTION

The HIV-1 genome is composed of nine genes including tat (transactivator of 

transcription) coding for a Tat regulatory protein which plays a pivotal role in 

regulation of viral transcription.1-3 Depending on the HIV-1 strain, the length of 

Tat varies between 86-104 aa. The tat gene is composed of two exons: the first 

exon codes for 72 amino acids, the remaining part of the protein is encoded by 

the second exon (Fig. 1).4 Tat protein can be divided into several domains: (i) N-

terminal acidic domain (1-21 aa) essential for structural stability and transcription 

elongation; (ii) Cysteine-rich domain (22-37 aa) required for transcription 

elongation, Zn-dependent function, and binding to cellular components; (iii) 

Hydrophobic core domain (38-47 aa) participates in structural stability and 

transcription elongation; (iv) Basic domain (48-59 aa) essential in binding to 

trans-activation response (TAR) element  and to cellular components; (v) 

Glutamine-rich region (60-72) required for structural stability; (vi) Domain 

encoded by the second exon.5,6 The domain encoded by the second exon is less 

conserved and less well studied, but it has been implicated in cell adhesion, HIV-

1 replication, interactions with integrins and regulation of host cell gene 

expression.7-10 Domains encoded by the first exon are believed to be sufficient 

for the transactivation activity and modulation of numerous cellular components 

by Tat protein.4,5,11

Tat is an intrinsically disordered protein,12 and therefore, only nuclear magnetic 

resonance structures are available for Tat alone. Intrinsically disordered proteins 
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are believed to gain a more ordered state upon interaction with their target 

partners via conformational selection and induced folding.13,14 Indeed, Tat 

undergoes induced but limited folding upon binding to specific fragments of 

antibodies.15 Conformational changes likely appear in the basic region of Tat 

protein as it was shown for Tat protein from the equine infectious anemia virus,16 

which shares similarities with the basic domain of HIV Tat.15 Additionally, the 

basic domain provides structural stability for Tat protein through electrostatic 

interactions with its N-terminal part.17 Other Tat domains can undergo 

conformational changes as well: the prime example is Tat-positive transcription 

elongation factor (P-TEFb) complex. X-ray crystallography showed that the first 

three N-terminal Tat domains (1-49 residues) sustain extended conformation 

mostly through interactions with cyclin T1 whereas 50-86 residues are not 

defined.11 Nuclear magnetic resonance opened the veil on the structural 

propensity of Tat protein suggesting that the cysteine-rich region tends to fold 

into α-helixes in contrast to the basic domain with extended or β-sheet 

conformation.18 Comparison analysis of X-ray and nuclear magnetic resonance 

studies suggests that different fragments of Tat protein can employ different 

folding mechanisms.18 This flexibility enables Tat to adopt diverse conformations 

upon interaction with its physiological partners, thus greatly extending its 

multifunctionality.

One of the most important and well-studied domains of Tat protein is the basic 

domain. While Tat can tolerate up to 40% of sequence mutations without 
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significant changes in its activity, its basic domain is highly conserved among Tat 

variants.6 It is enriched with positively-charged arginine and lysine residues 

comprising 49RKKRRQRRR57 motif. Basic domain confers many properties to Tat 

such at regulation of viral transcription and manipulation of cellular processes in 

favor of HIV. In this review, we discuss different aspects of Tat basic domain and 

its versatile role in the interaction between the host cell and the virus.

2 | BASIC DOMAIN FUNCTIONS AS AN RNA BINDING MOTIF

Absence of Tat causes predominantly short transcript production from the HIV-1 

long terminal repeat (LTR).19 Tat interacts with an RNA enhancer element (TAR) 

positioned at the 5’ end of the viral transcript via its basic domain leading to 

facilitation of viral transcription.20-24 Tat interacts with P-TEFb comprised of cyclin 

T1 and CDK9 and mediates ternary Tat-P-TEFb complex to TAR RNA.11,25-28 Tat 

binds the nascent RNA via its basic domain, causing conformational changes of 

the P-TEFb complex, thus enabling CDK9 to phosphorylate RNA polymerase II 

resulting in the full-length HIV-1 transcript production.25-27 Nullbasic Tat mutant, in 

which the entire basic domain was replaced with glycine/alanine residues, was 

shown to interact with P-TEFb complex but failed to recruit the ternary complex 

to the nascent viral RNA confirming that the basic domain plays a pivotal role in 

the transactivation function of Tat.29

Numerous attempts had been made to identify the key residues responsible for 

TAR RNA binding, though with some discrepancies. An early study by the 
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Calnan group showed that peptides derived from basic domain of Tat protein 

could directly bind TAR RNA while their amino acid sequence could be 

completely rearranged and still retained its high affinity to TAR.22 Mutations of 

arginines to alanines significantly reduced the binding capacity while substitution 

to lysines restored the capacity to nearly wild-type levels, proposing that the 

overall charge of the basic domain is likely the key factor of Tat-TAR RNA 

binding.22 Substitution of arginine residues for glutamine at 52 and 53 positions 

led to abrogation of transactivation activity.24 In another experiment, K50 

interacted with G34 of TAR RNA loop, indicating that the protein-RNA cross-link 

occurred at K50 position whereas mutation at G34 to U34  significantly reduced 

Tat-Cyclin T1 binding capacity.30,31 Mutations of the first two lysines at 50 and 51 

positions to serine and glycine (K50S and K51G), respectively, showed a 

decrease in Tat activity by 50% in vivo.32 Interesting results assessing 

transactivation of HIV LTR came from molecular dynamics simulations combined 

with in vitro experiments by the Carloni group. While K50A and K51A mutants 

were functionally defective for HIV LTR transactivation, K50R and K51R had a 

functional transactivation capacity although it was lower than that of the wild-type 

Tat. Still, the K50A and K51A mutants localized to the nucleus, suggesting that 

these mutations most likely affected Tat interactions with RNAs or nuclear protein 

complexes.33

In addition to viral RNA, Tat is believed to interact with cellular RNAs. The ability 

of Tat basic domain to associate with human RNAs was examined via 
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immunoprecipitation analysis of the wild-type Tat and its mutated form, K50S-

K51G.32 The mutant form showed a significant decrease in interaction with RNA, 

in particular Tat-bound FADD and TNFRSF8 RNAs, leading to speculations that, 

in addition to TAR RNA, Tat was able to associate with the specific set of human 

RNAs for which an intact basic domain was required.32 Moreover, Tat basic 

domain was proposed to specifically target Dicer-dependent RNAi,34 the innate 

immune response against the viral infection.35-37 Besides mammalian RNAs, Tat 

was shown to impair pre-rRNA processing in Drosophila melanogaster cells via 

association with U3 snoRNA and fibrillarin (nucleolar components necessary for 

pre-rRNA processing), although it was not explicitly stated that the basic domain 

was specifically involved in such interactions.38

3 | INTERACTION WITH CELLULAR COMPONENTS

Besides its capacity to bind viral and cellular RNAs, the basic domain of Tat also 

associates with cellular and viral proteins. Tat peptide comprising 48-60 amino 

acids was shown to block protein kinase C activity by binding to the kinase active 

site.39 NPM1 (B23 or nucleophosmin), a ubiquitous protein involved in diverse 

cellular processes, has been proposed to directly interact with Tat via its basic 

domain.40 Tat basic domain has been also implemented in recruitment of CIS 

protein (cytokine-inducible SH2 containing protein) to CD127 surface receptor of 

CD8 T cells for internalization and subsequent degradation of CD127 which led 

to reduction in T cells.41,42 The basic domain along with a conserved tryptophan 

residue W11 are responsible for unconventional secretion of Tat from cells.12 The 
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basic domain binds phosphatidylinositol-4,5-biphosphate (a phospholipid of the 

inner leaflet of the plasma membrane) causing conformational changes which 

enable insertion of W11 into the membrane with the subsequent secretion of 

Tat.12,43 Arginine residues from Tat basic domain target Tat to cell membrane 

lipid rafts and enhance fibroblast growth factor-2 (FGF-2) signaling in human 

podocytes isolated from children with HIV-associated nephropathy (HIVAN), 

whereas alanine substitutions abrogated Tat nuclear localization, association 

with lipid rafts, and enhancement of FGF-2 signaling.44 Tat, via its basic domain, 

binds Tip60, a cellular histone acetyltransferase (HAT) which controls expression 

of cellular genes capable to interfere with the efficient viral replication and 

propagation.45 Additionally, histone chaperone hNAP-1 binds Tat basic domain, 

stimulating regulation of Tat-mediated viral transcription.46 Tat basic domain has 

been recently observed to interfere with the host cell proliferation and induction of 

apoptosis of HIV-1-infected lymphocytes. In Jurkat cells, Tat disrupts localization 

of PRS3, which in association with α-tubulin plays a critical role in mitosis, 

leading to faulty mitotic spindle and chromosome formation.47 The basic domain 

of Tat associates with IkB-α (an inhibitor of nuclear factor NF-kB), leading to 

liberation of p65 from IkB-α/p65 complex and the subsequent transcriptional 

activation of pro-inflammatory genes.48 These are just several examples of the 

interaction of Tat basic domain with cellular proteins. Many other cellular partners 

of Tat have been recently discovered.49 Yet, whether the Tat basic domain was 

involved in these interactions remains to be elucidated.
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4 | BASIC DOMAIN FUNCTIONS AS A NUCLEAR LOCALIZATION SIGNAL

The primary role of Tat lies in activation of viral transcription, hence Tat must be 

able to pass the large nuclear pore complexes of the nuclear envelope. Globular 

proteins with a Mr less than 40,000 to 60,000 or 5-10 nm in diameter can freely 

diffuse between the cytoplasm and the nucleus whereas larger macromolecules 

require an energy-driven mechanism to traverse the nuclear pore complexes.50-52 

In most cases, proteins targeted to the nucleus contain specific trafficking motifs 

such as the nuclear localization (NLS) and nuclear export signals (NES). Since 

the discovery of the first NLS signal in the SV40 large T-antigen protein 

containing a short stretch of basic amino acids, similar target sequences have 

been identified and characterized in a broad range of viral and cellular proteins. 

While the classical (or canonical) NLS pathway employs an adaptor molecule 

importin-α for binding to importin-β, a non-classical NLS pathway involves direct 

binding of the cargo protein to the importin-β. In both pathways, importin-β acts 

as a carrier by docking cargo-importin(s) complex to the nuclear pore complexed 

and releasing the cargo into the nucleus upon binding to Ran-GTP.53-56

Passive diffusion has been suggested to be a major mechanism of Tat nuclear 

entry.57 However, despite its small size (Mr 14,000-16,000) favoring passive 

diffusion, Tat contains a functional NLS (49RKKRRQRRR57) within its basic 

domain and was shown to localize preferentially in the nucleoplasm and 

nucleolus.4,58,59 Classical and non-classical mechanisms of nuclear entry along 

with association with nuclear components had been previously proposed for Tat 
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protein. In vitro assays suggested that Tat nuclear import was mediated by the 

direct binding of its basic domain to importin-β, thus competing with importin-α for 

the same binding site of importin-β.60 In contrast, a novel mechanism 

independent of the importin pathway was proposed by another group, indicating 

the ability of Tat basic domain to interact with nuclear components.61 Deletion of 

the basic domain led to cytoplasmic localization62 and a dramatic decrease in Tat 

activity.4 Mutation analysis of amino acids 50, 55 and 56 replaced by uncharged 

residues revealed a loss in nuclear localization, suggesting the presence of two 

partially overlapping or juxtaposed NLSs. In other words, mutations in the 

RKKRR motif or RRR alone had little effect on nuclear localization while 

mutations in both parts led to the cytoplasmic accumulation.63 Additionally, the 

first set of basic domain amino acids was shown to function as NLS while the 

remaining RRR motif tended to bind to intracellular components.57,64 Using 

oriented peptide binding approach, it was proposed that KKKRR, KKKRK, and 

KKRKK motifs are sufficient for binding importin-α.65 Structure of importin-α with 

48GRKKRRQRRRAPQN61 peptide has been recently determined sing X-ray 

crystallography. It was shown that 48GRKKRRQR55 residues mediate a strong 

association with importin-α.66 Taken together, these results suggest that Tat may 

utilize different pathways to enter the nucleus. Ability to combine both classical 

and non-classical NLSs has been previously demonstrated for the latency-

associated nuclear antigen (LANA) of KSHV.67 Another example is Rev protein, 

whose basic domain is enriched with positively-charged arginine residues similar 

to Tat. Depending on the cell type, Rev has been shown to utilize different 
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mutually-exclusive pathways of nuclear entry, either through importin-β or 

transportin.68 

5 | BASIC DOMAIN FUNCTIONS AS A NUCLEOLAR LOCALIZATION SIGNAL

Besides its predominant accumulation in the nucleus of different cell lines, Tat is 

observed to localize to the nucleoli as well. Tat was proposed to possess a 

nucleolar localization signal (NoLS) 48GRKKRRQRRRAP57 which drives Tat 

accumulation into nucleoli and encompasses Tat basic domain which serves as 

NLS.69 However, experimental data showed that only positively-charged amino 

acids are involved in Tat nucleolar localization while flanking non-charged 

residues hardly exhibit any effect on its localization; this implies that charge-

dependent mechanism is a major force of dynamic accumulation of Tat in the 

nucleolus.70 Indeed, the nucleolus is a highly dynamic structure and 

accumulation of proteins can be achieved through interactions with nucleolar 

building blocks, such as rDNA or its transcripts.71 In vitro experiments revealed 

binding of GST-Tat to NPM1, a major nucleolar protein, emphasizing that such 

interactions occur within Tat basic domain.40 Additionally, NPM1 has been 

suggested to be vital for the nuclear entry of Tat and the subsequent nucleolar 

localization. In this case, NPM1 behaves as a shuttling protein driving Tat 

through the nuclear pore complexes to the nucleoli.40 Such shuttling mechanism 

by NPM1 has been previously observed for NCL (C23 or nucleolin), another 

major nucleolar protein lacking defined NoLS.72 Apart from these two studies, 

there is no other experimental data exist confirming NPM1/Tat interactions in 
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vivo. Alternatively, based on nucleolar interactome analysis, Tat itself can 

physically modulate protein nucleolar accumulation involved in HIV-1 

pathogenesis; but whether Tat basic domain is directly involved in targeting of 

these proteins to nucleolus remains to be elucidated.73 NoLS was also suggested 

to be a key player in targeting Tat to the nucleoli in Drosophila melanogaster 

cells, thus following localization pattern of mammalian cells38.

It might be possible that Tat basic domain serves as a NoLS in the first place 

rather than NLS due to its main function in the regulation of viral transcription and 

the small size enabling passive diffusion. Nucleoli are one of the main targets of 

some viral proteins including Tat. Presence of independent sites for nuclear entry 

and nucleolar accumulation might be evolutionarily unfavorable for Tat. Indeed, 

HIV-1 genome itself is just under 10 kb with 16 proteins successfully serving its 

biology.74 Both nuclear and nucleolar accumulation could be achieved by Tat 

binding to/associating with other nuclear/nucleolar proteins or RNAs through its 

highly charged basic domain. It is thus its overall structural plasticity coupled with 

highly charged basic domain make it the prime example of “minimum complexity 

- maximum efficiency”. 

 6 | BASIC DOMAIN FUNCTIONS AS A PROTEIN TRANSDUCTION DOMAIN

Tat is actively secreted by infected cells and can traverse plasma membranes of 

various eukaryotic cells,75-77 affecting their gene expression and cellular 

functions. Concentration of extracellular Tat can reach up to 40 ng/ml in blood of 
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acutely infected patients.78 Tat has been detected in sera of patients undergoing 

antiretroviral therapy, showing that modern anti-HIV drugs are not able to block 

the cellular release of Tat protein.79 The ability to penetrate cell plasma 

membranes has been attributed to Tat basic domain thus termed as protein 

transduction domain (PTD) or cell penetrating peptide (CPP) if used as a peptide. 

Its potency to mediate cellular uptake has been widely exploited by a large 

number of laboratories for transcellular protein transduction not only in 

mammalian cells,80 but in plants as well,81 thus making Tat basic domain a 

promising tool for transcellular drug delivery to a wide variety of cells.

Various experiments with short peptides spanning the Tat basic domain fused to 

different cargoes showed the ability of these peptides to enter cells,82-84 while 

peptides with a truncated or mutated basic domain failed to translocate through 

cell membranes.83,85 One of the first mechanisms of cell penetration proposed 

that ionic interactions between the highly dense positively-charged basic domain 

of Tat and negatively-charged phospholipids of the plasma membrane prompted 

an invagination of the membrane.83 In contrast, two other studies suggested an 

adsorptive-mediated endocytosis as a way for internalization.76,86 Further work 

performed by several research groups demonstrated that Tat basic domain fused 

to different cargoes could bind heparin,87-89 a structural homolog of heparan 

sulfate glycosaminoglycan, abundantly present on the cell surface. Heparan 

sulfate proteoglycans (HSPGs) have been proposed to be highly versatile 

receptors responsible for the mechanism of cellular entry.90 It has been shown 
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that Tat internalization can be achieved via HSPG binding following subsequent 

active caveolar endocytosis through cell membrane lipid rafts.90,92 Full-length Tat 

protein can utilize HSPG receptors whereas unconjugated Tat peptides can be 

internalized by cells that lack these receptors. Alternatively, the study performed 

on T cells demonstrated that a full-length Tat can use a clathrin/AP-2-dependent 

endocytosis; however, whether the basic domain plays any roles in this pathway 

remains unclear.93 These results demonstrate that different internalization 

pathways can be employed, depending on the cell type and specificity of the 

cargo.94

7 | POST-TRANSLATIONAL MODIFICATIONS OF THE BASIC DOMAIN 

REGULATE TAT ACTIVITY 

Post-translational modifications play a key role in the heterogeneity of protein 

functions. Disordered protein domains have been suggested to be a subject for 

many post-translational modifications.13 The disordered state is advantageous in 

that in can provide greater accessibility to the sites for post-translational 

modifications.13 Post-translational modifications include acetylation, methylation, 

phosphorylation, to name but a few. Each modification involves specific enzymes 

that recognize distinct amino acids within the polypeptide chain. Tat undergoes 

post-translational modifications which greatly expands its functions. The basic 

domain of Tat undergoes acetylation and methylation, affecting its capacity to 

facilitate viral transcription and modulate a broad range of cellular processes.
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7.1 | ACETYLATION

Acetylation is mediated by HATs catalyzing the transfer of acetyl groups from 

acetyl coenzyme A to the ϵ-amino group of lysine. It has been speculated that 

HIV-1 transcription involves at least two phases. Defined as early TAR-

dependent and late TAR-independent, these phases are equally important for the 

functions of Tat whereas Tat acetylation has been proposed to act as a 

regulatory switch between them.95,96 Tat transactivation activity has been shown 

to depend upon lysine acetylation at K50 and K51.98,99-102 The critical role in K50 

acetylation has been attributed to p300,98,100 a HAT responsible for regulation of 

gene expressions via chromatin remodeling. K50 acetylation leads to liberation of 

Tat from TAR RNA and cyclin T1 and activation of Tat-mediated transcriptional 

elongation of HIV-1 through binding to RNA polymerase II.98,100,101 Further direct 

binding of acetylated K50 to the bromodomain of PCAF, a p300/CBP-associated 

factor, has been proposed to be essential for Tat transactivation since the site-

directed mutation of K50A led to termination of Tat transactivation activity 

whereas substitution to arginine K50R did not affect the interaction with TAR, 

cyclin T1 or PCAF (Fig. 2).102-105

 

Acetylation of K50 has been further shown to facilitate Tat interaction with 

SWI/SNF chromatin remodeling complex containing BRG-1 and its subsequent 

recruitment to the viral LTR.106-108 This interaction is achieved via direct binding 

of acetylated Tat to the bromodomain of BRG-1, permitting SWI/SNF to alter the 

structure of downstream nucleosomes and enabling further viral transcription.108 
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In addition to p300, the hGCN5 HAT acetylates both K50 and K51 residues in 

vitro and significantly enhances Tat-mediated transcription of HIV LTR.109 

Indeed, mutational analysis aiming to neutralize the electrical charge of lysine 

and block acetylation by substitution with the alanine residue demonstrated that 

acetylation of K50 exclusively regulates Tat transactivation activity (Fig. 2).110

Proteomic analysis and in vivo experiments showed that Tat acetylated at K50 

and K51 residues preferentially binds p32, an inhibitor of splicing factor ASF/SF-

2, and mediates its transport to the viral promoter, thus regulating the splicing 

pattern of HIV-1.111 Acetylation also decreases cellular uptake of Tat-derived 

peptides acetylated at either K50 or K51 positions.112 Dysregulation of 

expression of C5, APBA1, BDNF, and CRLF2 genes associated with 

inflammation and damage by the K50A mutant has been recently identified in 

human macrophages.113

Acetylation of Tat can be reversed by sirtuin 1 (SIRT1) class III deacetylase. 

Acetylation and deacetylation cycles are believed to be necessary for the pursuit 

of complete HIV transcription (Fig. 2).101 In particular, acetylation results in the 

release of Tat from TAR leading to translocation of Tat and chromatin-modifying 

transcriptional coactivators to elongating RNA polymerase and recruitment of 

chromatin-remodeling complexes while deacetylation by SIRT1 restores Tat 

basic domain to its initial form so that Tat can interact with P-TEFb and bind TAR 

RNA, leading to the new transcriptional cycle.101,114
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7.2 | METHYLATION

In addition to acetylation, Tat basic domain undergoes methylation, a process in 

which methyl groups from S-adenosylmethionine are transferred to proteins 

regulating many protein functions. Unlike acetylation, methylation does not result 

in neutralization of residual electrical charge. Because methylation primarily 

affects arginines and lysines, Tat basic domain serves a prime substrate for post-

translational modifications by different methyltransferases.

Methylation of position 50 and 51 lysines of the Tat basic domain can be 

generally accomplished by the action of SETDB1 and Set7/9-KMT7 

methyltransferases (Fig. 3). Both are the members of a broad SET protein family 

that have been originally shown to specifically methylate lysines of histone H3 

tail.115,116 Depending on the position of histone H3 lysine, methylation can prompt 

either transcriptionally active or transcriptionally repressed state of chromatin.117-

119 Later, nonhistone proteins methylated by SETDB1 and Set7/9-KMT7 were 

discovered,115,120-129 one of them is Tat protein.130,131

In vitro experiments, using SETDB1, wild-type Tat, and variation of Tat-derived 

mutant peptides have determined that both K50 and K51 can be methylated by 

SETDB1, whereas K51 showed an increased amount of methyl groups.131 

SETDB1 knockdown resulted in the increase of viral transcription, implying that 

methylation of K50 and/or K51 can attenuate HIV-1 transcription131 similarly to 
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the general assumption that methylation of histone H3 lysine 9 corresponds to 

the assembly of transcriptionally-silent heterochromatin. Set7/9-KMT7 has been 

also found to monomethylate K51 residue both in vitro and in vivo.130 However, 

contrary to SETDB1, this monomethylation increased Tat affinity to TAR and Tat 

transcriptional activity.130 Interestingly, Set7/9 has been identified as one of the 

methyltransferases that drives monomethylation of histone H3 lysine 4, initiating 

formation of transcriptionally-active euchromatin.132-134 Such strikingly different 

outcomes in methylation of Tat lysines could favor the notion that methylation 

can influence HIV-1 biology135 similar to histone methylation that is linked to both 

transcriptional activation and repression (Fig. 3).136

Lysines can be demethylated by LSD1 demethylase137 which in complexes with 

different cofactors demethylates histone H3K4/9 136,138 and nonhistone proteins 

such as p53,139 E2F1,140 and Tat.141 In vitro experiments demonstrated that Tat 

K51 residue was specifically targeted by LSD1, resulting in HIV-1 

transactivation.141

Besides lysine, Tat arginine residues can be methylated by arginine 

methyltransferase PRMT6. Early experiments by Boulanger and colleagues 

demonstrated that HA-tagged Tat expressed in HEK293T cell line was subjected 

to methylation by endogenous PRMT6; cotransfection with PRMT6 increased the 

level of Tat methylation.142 Knockdown of PRMT6 led to an increase in HIV-1 

production, demonstrating that methylation of the basic domain exerted a 
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negative effect on Tat transactivation function.142 Further experiments 

determined position 52 and 53 arginine residues (R52 and R53) to be specifically 

methylated by PRMT6. 143 Consistent with the previous observation, in vitro 

methylation of R52 and R53 triggered a decrease in Tat interaction with TAR 

RNA and complex formation with cyclinT1, thus affecting Tat function, whereas in 

vivo experiments augmented the role of Tat in transactivation by downregulating 

PRMT6.143 PRMT6 has been proposed to be a restriction factor of HIV-1142-144 as 

an innate cellular response to the viral replication.143 Yet, this restrictive effect is 

counterbalanced by recently observed downregulation of PRMT6 expression in 

CD4+ T cell of HIV-infected patients, suggesting that the virus can indeed control 

expression of cellular genes to benefit its replication (Fig. 3).145

While methylation of Tat is generally linked to the attenuation of Tat 

transactivation activity, the fate of the methylated Tat remains largely obscure. 

Compelling results came from the study where instead of downregulating Tat 

transactivation function, overexpression of PRMT6 led to increased Tat stability 

by protection from proteasome-dependent degradation.146 This strikingly different 

outcome has been explained as a way to fulfill multifunctional role of Tat apart 

from its transactivation function, while methylation serves as a molecular switch 

between Tat functions.146 Further investigation by the same group demonstrated 

that methylation of R52 and R53 residues of Tat basic domain resulted in the 

exclusion of Tat-GFP fusion protein from the nucleolus of COS cells; thus it could 

also modulate Tat localization.147
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Methylation is a complex post-translational modification with pleiotropic effects on 

protein functions. Arginine contains three nitrogen atoms (one ε and two η) in its 

side chain each of which can be monomethylated, symmetrically dimethylated or 

asymmetrically dimethylated. Depending on the state of methylation, 

thermodynamics of Tat-derived peptides binding capacity to TAR RNA has been 

recently assayed. Monomethylation of arginine R52 or R53 at ε-nitrogen atom 

enhanced binding affinity whereas monomethylation or asymmetric dimethylation 

at η-nitrogen resulted in reduced binding capacity.148 Methylation was further 

suggested to influence Tat-TAR RNA interaction in a position- and state-

dependent manner. Asymmetric dimethylation of R52 or R53 severely affected 

Tat-TAR RNA binding while dimethylation of flanking arginines, such as R49 or 

R57, slightly increased Tat-TAR RNA affinity.149

8 | CONCLUSIONS

Tat is a regulatory protein encoded by the HIV-1 viral genome; it plays a crucial 

role in regulation of viral and host gene expression. Tat can exhibit multiple 

functions which are required for viral pathogenesis. It can also enter uninfected 

cells and modulate cellular gene expression according to the viral needs, thus 

leading to oncogenesis or cellular death through apoptosis. Many functions of Tat 

are attributed to its basic domain (also designated as arginine-rich motif RNA-

binding domain, nuclear localization signal, nucleolar localization signal, and 

protein transduction domain), which is highly conserved among different Tat 
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variants though Tat itself is prone to mutations. This multifunctionality of the Tat 

basic domain is linked to its high charge and flexible structure. These can lead to 

interactions with many physiological partners including glycoproteins, proteins or 

protein/RNA complexes, chromatin of both viral and cellular origin, thus allowing 

Tat to accomplish various tasks. Tat basic domain is also subjected to post-

translational modifications which may expand and modify its functionality. All 

these features make the basic domain the key component of Tat protein. In this 

review, we have summarized the current knowledge on Tat basic domain and its 

role in Tat functions, but most probably new functions of this viral “Swiss army 

knife” will be discovered in the near future.
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Figure legends

FIGURE 1 Structure of the Tat protein. Tat contains the following domains: N-

terminal acidic domain (1-21 aa), cysteine-rich domain (22-37 aa), hydrophobic 

core domain (38-47 aa), basic domain (48-59 aa), glutamine-rich domain (60-72), 

and domain encoded by the second exon.

FIGURE 2 Post-translational modifications of the Tat basic domain by different 

acetyltransferases. Acetylation of K50 by P300 and pGCN5 leads to association 

with RNA polymerase II, bromodomain of PCAF, and with SWI/SNF chromatin 

remodelling complex resulting in liberation of Tat protein from TAR and its 

subsequent translocation along with the chromatin-remodelling complexes to 

elongating RNA polymerase II. Deacetylation by SIRTI enables Tat to return to its 

non-acetylated form and begin a new transactivation cycle.

FIGURE 3 Methylation of Tat basic domain. SETDBI methyltransferase 

methylates K50 and K51 residues leading to a decrease in transactivation of 

transcription. Contrary to SETDBI, methylation of the same residues by SET7/9 

methyltransferase prompts an increased affinity to TAR RNA resulting in 

upregulation of transactivation of transcription. PRMT6 (an important host factor) 

methylates R52 and R53 residues liberating Tat basic domain from the TAR RNA 

and leading to attenuation of Tat transcriptional activity. PRMT6 modification also 

allows Tat protein to escape from proteasome-dependent degradation and 

increases Tat stability.
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Figure 1. Structure of the Tat protein. Tat contains the following domains: N-terminus, cysteine-rich, 
hydrophobic core, basic, glutamine-rich, RGD motifs. 
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Figure 2. Post-translational modifications of the Tat basic domain by different acetyltransferases. 
Acetylation of K50 by P300 and pGCN5 leads to association with RNA polymerase II (RNAPII), bromodomain 
of PCAF, and with SWI/SNF chromatin remodelling complex resulting in liberation of Tat protein from TAR 

and its subsequent translocation along with the chromatin-remodelling complexes to elongating RNA 
polymerase II. Deacetylation by SIRTI enables Tat to return to its non-acetylated form and begin a new 

transactivation cycle. 
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Figure 3. Methylation of Tat basic domain. SETDBI methyltransferase methylates K50 and K51 residues 
leading to a decrease in transactivation of transcription. Contrary to SETDBI, methylation of the same 

residues by SET7/9 methyltransferase prompts an increased affinity to TAR RNA resulting in upregulation of 
transactivation of transcription. PRMT6 (an important host factor) methylates R52 and R53 residues 

liberating Tat basic domain from the TAR RNA and leading to attenuation of Tat transcriptional activity. 
PRMT6 modification also allows Tat protein to escape from proteasome-dependent degradation and 

increases Tat stability. 
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Summary 

Tat regulates transcription offrom the human immunodeficiency virus (HIV).) 

provirus. It plays a crucial role in disease progression, supporting efficient 

replication of the viral genome. Tat also modulates many functions in the host 

genome via its interaction with chromatin and proteins. Many of Tat’sthe 

functions of Tat are associated with its basic domain rich in arginine and lysine 

residues. It is still unknown why the basic domain exhibits so many diverse 

functions. However, the highly charged basic domain, coupled with the overall 

structural flexibility of Tat protein itself, makes the basic domain a key player in 

binding to or associationassociating with cellular and viral components. In 

addition, the basic domain has been shown to undergoundergoes diverse post-

translational modifications which further expand and modulate its functions. Here 

we review the current knowledge of Tat basic domain and its versatile role in the 

interaction between the virus and the host cell.
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1 | INTRODUCTION 

 

The HIV-1 genome is composed of nine genes including tat (transactivator of 

transcription) coding for a Tat regulatory protein (Tat) which plays a pivotal role in 

regulation of viral transcription.1-3 Depending on the HIV-1 strain, Tat’sthe length 

of Tat varies between 86-104 aa. The tat gene is composed of two exons: the 

first exon codes for 72 amino acids, the remaining part of the protein is encoded 

by the second exon (Fig. 1).4 Tat protein can be divided into several domains: (i) 

N-terminusterminal acidic domain (1-21 aa) is essential for structural stability and 

transcription elongation; (ii) Cysteine-rich domain (22-37 aa) is required for 

transcription elongation, Zn-dependent function, and binding to cellular 

components; (iii) Hydrophobic core domain (38-47 aa) participates in structural 

stability and transcription elongation; (iv) Basic domain (48-59 aa) is essential in 

TAR binding, NLS, PTD, and binding to trans-activation response (TAR) element  

and to cellular components; (v) Glutamine-rich region (60-72) is required for 

structural stability.5,6 Domains; (vi) Domain encoded by the second exon are .5,6 

The domain encoded by the second exon is less conserved and less well 

studied, but they haveit has been implicated in cell adhesion, better HIV-1 

replication, interactions with integrins, and regulation of host cell gene 

expression.7-10 Domains encoded by the first exon are believed to be sufficient 

for the transactivation activity and modulation of numerous cellular components 

by Tat protein. 4,5,114,5,11
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Tat is an intrinsically disordered protein.,12 and therefore, only nuclear magnetic 

resonance structures are available for Tat alone. Intrinsically disordered proteins are 

believed to gain a more ordered state upon interaction with their target partners via two 

previously proposed extreme mechanism: conformational selection and induced 

folding.13,14 In UV and X-Ray structural studiesIndeed, Tat has been shown to be 

subjected toundergoes induced but limited folding upon binding to specific fragments 

of antibodies, Fab’.15 It was also noted that conformationalConformational changes 

likely appear in the basic region of Tat protein as it was proven shown for EIAV Tat
16, 

protein from the equine infectious anemia virus,16
 which shares similarities with the 

basic domain of HIV Tat.15.15 Additionally, the basic domain provides structural 

stability for Tat protein through electrostatic interactions with its N-terminal part.17
 

Other Tat domains can undergo conformational changes as well -: the prime example is 

Tat-positive transcription elongation factor (P-TEFb) complex. X-Rayray 

crystallography showed that the first three N-terminusterminal Tat domains (1-49 

residues) sustain extended conformation mostly through interactions with cyclin T1 

whereas 50-86 residues are not defined.11 Nuclear magnetic resonance (NMR) 

experiments opened the veil on the structural propensity of Tat protein suggesting that 

the cysteine-rich region tends to fold into α-helixes whilein contrast to the basic and 

RGB domains - to domain with extended or β-sheet 

conformations.17conformation.18
 Comparison analysis of X-Rayray and NMRnuclear 

magnetic resonance studies suggests that different fragments of Tat protein can 

employ different folding mechanisms.
1718

 This flexibility enables Tat to adopt diverse 
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conformations upon interaction with its physiological partners, thus greatly extending its 

multifunctionality. 

 

One of the most important and well-studied domains of Tat protein is the basic domain. 

While Tat can tolerate up to 40% of sequence mutations without significant changes in 

its activity, its basic domain is highly conserved among Tat variants.6 It is enriched with 

positively-charged arginine and lysine residues comprising 49RKKRRQRRR57 motif. 

Basic domain confers many properties to Tat such at regulation of viral transcription and 

manipulation of cellular processes in favor of HIV. Therefore in different studies it is 

referred to as the RNA-binding domain (ARM), the nuclear localization signal 

(NLS), and the protein transduction domain (PTD). In this review, we discuss 

different aspects of Tat basic domain and its versatile role in the interaction between the 

host cell and the virus. 

 

2 | BASIC DOMAIN FUNCTIONS AS AN RNA BINDING MOTIF 

 

Absence of Tat causes predominantly short transcriptstranscript production from the 

HIV-1 long terminal repeat (LTR).
1819

 Tat interacts with an RNA enhancer element (TAR) 

positioned at the 5’ end of the viral transcriptviatranscript via its basic domain and is 

termed the arginine-rich RNA-binding motif (ARM) dueleading to its binding 

capacity to the bulgefacilitation of the stem-loop of TAR RNA, thus facilitating the 

viral transcription.
19-21,22,2320-24

 Tat interacts with the positive transcription elongation 

factor (P-TEFb) comprised of CycT1cyclin T1 and CDK9 and mediates ternary Tat-P-

TEFb complex to TAR RNA.11,
24-27 Via its basic domain,25-28

 Tat binds the nascent 
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RNA via its basic domain, causing conformational changes of the P-TEFb complex, 

thus enabling CDK9 to phosphorylate RNA polymerase II resulting in the full-length HIV-

1 transcript production.
24-2625-27

 Nullbasic Tat mutant, in which the entire basic domain 

was replaced with glycine/alanine residues, was shown to interact with P-TEFb complex 

but failed to recruit the ternary complex to the nascent viral RNA confirming that the 

basic domain plays a pivotal role in Tat’sthe transactivation function.28 of Tat.29
 

 

Numerous attempts had been made to identify the key residues responsible for TAR 

RNA binding, though with some discrepancies. EarlyAn early study by the Calnan 

group showed that peptides derived from basic domain of Tat ARMprotein could 

directly bind TAR RNA while their amino acid sequence could be completely rearranged 

and still retained its high affinity to TAR.
2122

 Mutations of arginines to alanines 

significantly reduced the binding capacity while substitution to lysines restored the 

capacity to nearly wild-type levels, proposing that the overall charge of the basic domain 

is likely the key factor of Tat-TAR RNA binding.
2122

 Substitution of arginine residues for 

glutamine at 52 and 53 positions led to abrogation of transactivation activity.
2324

 In 

another experiment, K50 interacted with G34 of TAR RNA loop, indicating that the 

protein-RNA cross-link occurred at K50 position whereas mutation ofat G34 to 

alanineU34  significantly reduced Tat-CycT1Cyclin T1 binding capacity.
29,

30
,31

 

Mutations of the first two lysines at 50 and 51 positions to serine and glycine (K50S and 

K51G), respectively, showed a decrease in Tat activity by 50% in vivo.
3132

 Interesting 

results assessing transactivation of HIV LTR came from molecular dynamics simulations 

combined with in vitro experiments by Pantanothe Carloni group. While K50A and 

K51A mutants were functionally defective for HIV LTR transactivation, K50R and K51R 

had a functional transactivation capacity although it was lower than that of the wild-type 
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Tat. Still, the K50A and K51A mutants localized to the nucleus, suggesting that these 

mutations most likely affected Tat interactions with RNAs or nuclear protein 

complexes.
3233

 

 

In addition to viral RNA, Tat is believed to interact with cellular RNAs. AbilityThe ability 

of Tat basic domain to associate with human RNAs was examined via 

immunoprecipitation analysis of the wild-type Tat and its mutated form, K50S-K51G.
31 

Mutant32 The mutant form showed a significant decrease in interaction with RNA, in 

particular Tat-bound RNAs FADD and TNFRSF8 RNAs, leading to speculations that, in 

addition to TAR RNA, Tat was able to associate with the specific set of human RNAs for 

which an intact RNA-binding motifbasic domain was required.
3132

 Moreover, Tat basic 

domain was proposed to specifically target Dicer-dependent RNAi [33],,34
 the innate 

immune response against the viral infection.
34-3635-37 Besides mammalian RNAs, Tat 

was shown to impair pre-rRNA processing in Drosophila melanogaster cells via 

association with U3 snoRNA and fibrillarin (nucleolar components necessary for 

pre-rRNA processing), although it was not explicitly stated that the basic domain 

was specifically involved in such interactions.38
 

 

3 | INTERACTION WITH CELLULAR COMPONENTS 

 

Besides its capacity to bind viral and cellular RNAs, Tat’sthe basic domain of Tat also 

associates with cellular and viral proteins. Tat peptide comprising 48-60 amino acids 

was shown to block protein kinase C (PKC) activity by binding to the kinase active 

site.37 Nucleophosmin39 NPM1 (B23 or NPM1nucleophosmin), a ubiquitous protein 
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involved in diverse cellular processes, has been proposed to directly interact with Tat via 

its basic domain.3840 Tat basic domain has been also implemented in recruitment of CIS 

protein (cytokine-inducible SH2 containing protein) to CD127 surface receptor of CD8 T 

cells for internalization and subsequent degradation of CD127 which led to reduction in T 

cells.39,4041,42 The basic domain along with a conserved tryptophan residue W11 

are responsible for unconventional secretion of Tat from cells.12 The basic 

domain binds phosphatidylinositol-4,5-biphosphate (a phospholipid of the inner 

leaflet of the plasma membrane) causing conformational changes which enable 

insertion of W11 into the membrane with the subsequent secretion of Tat.12,43 

Arginine residues from Tat basic domain were found to be responsible for 

targetingtarget Tat to cell membrane lipid rafts (LRs) and Tat-mediated 

enhancement ofenhance fibroblast growth factor-2 (FGF-2) signaling in human 

podocytes isolated from children with HIV-associated nephropathy (HIVAN), whereas 

alanine substitutions abrogated Tat nuclear localization, association with LRslipid rafts, 

and enhancement of FGF-2 signaling.4144 
Tat, via its basic domain, binds Tip60, a 

cellular histone- acetyltransferase (HAT) which controls expression of cellular genes 

capable to interfere with the efficient viral replication and propagation.4245 
Additionally, 

histone- chaperone hNAP-1 has been shown to bindbinds Tat basic domain, 

stimulating regulation of Tat-mediated viral transcription.
4346

 Tat basic domain has been 

recently observed to interfere with the host cell proliferation and induction of apoptosis of 

HIV-1-infected lymphocytes. In Jurkat cells, Tat inhibits α-tubulindisrupts localization 

of PRS3, which in Jurkat cellsassociation with α-tubulin plays a critical role in 

mitosis, leading to faulty mitotic spindle and chromosomeschromosome formation.47 

The basic domain of Tat associates with IkB-α (an inhibitor of nuclear factor NF-
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kB), leading to liberation of p65 from IkB-α/p65 complex and reduction through 

binding to ribosomal protein PRS3, which plays a critical role in mitosis via 

association with α-tubulin.44the subsequent transcriptional activation of pro-

inflammatory genes.48 These are just someseveral examples of the interaction of Tat 

basic domain with cellular proteins. Many other cellular partners of Tat have been 

recently discovered.4549 Yet, whether the Tat basic domain was involved in these 

interactioninteractions remains to be elucidated. 

 

4 | BASIC DOMAIN FUNCTIONS AS A NUCLEAR LOCALIZATION SIGNAL 

 

The primary role of Tat lies in activation of viral transcription, hence Tat must be able to 

pass the large nuclear- pore complex (NPC)complexes of the nuclear envelope. 

Globular proteins smallerwith a Mr less than 40-,000 to 60 kDa,000 or 5-10 nm in 

diameter can freely diffuse between the cytoplasm and the nucleus whereas larger 

macromolecules exceeding the NPC size limit require an energy-driven mechanism to 

traverse the NPC.46-48nuclear pore complexes.50-52 In most cases, proteins targeted 

to the nucleus contain specific trafficking motifs such as the nuclear localization (NLS) 

and nuclear export signals (NES). Since the discovery of the first NLS signal in the 

SV40 large T-antigen protein containing a short stretch of basic amino acids, similar 

target sequences have been identified and characterized in a broad range of viral and 

cellular proteins. While the classical (or canonical) NLS pathway employs an adaptor 

molecule importin-α for binding to importin-,-β, a non-classical NLS pathway involves 

direct binding of the cargo protein to the importin-.-β. In both pathways, importin--β 
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acts as a carrier by docking cargo-importin(s) complex to the NPCnuclear pore 

complexed and releasing the cargo into the nucleus upon binding to Ran-GTP.49-5253-56
 

 

Passive diffusion has been suggested to be a major mechanism of Tat nuclear entry.5357 

However, despite the its small size (Mr 14,000-16 kDa) for,000) favoring passive 

diffusion, Tat contains a functional NLS (49RKKRRQRRR57) within its basic domain and 

has beenwas shown to localize preferentially in the nucleoplasm and 

nucleolus.4,54,5558,59 Classical and non-classical mechanisms of nuclear entry along with 

association with cellularnuclear components had been previously proposed for Tat 

protein. In vitro assays suggested that Tat nuclear import iswas mediated by the direct 

binding of its basic domain to importin-,-β, thus competing with importin-α for the same 

binding site of importin-.56-β.60
 In contrast, a novel mechanism independent of 

importinsthe importin pathway was proposed by another group, indicating the ability of 

Tat basic domain to interact with nuclear components.5761 Deletion of the basic domain 

led to cytoplasmic localization58localization62
 and a dramatic decrease in Tat activity.4 

MutationalMutation analysis of amino acids 50, 55 and 56 replaced by uncharged 

residues, revealed a loss in nuclear localization, suggesting the presence of two partially 

overlapping or juxtaposed NLSs. In other words, mutations in the RKKRR motif or RRR 

alone had little effect on nuclear localization while mutations in both parts led to the 

cytoplasmic accumulation.5963 Additionally, the first set of basic domain amino acids 

was shown to function as NLS while the remaining RRR motif tended to bind to 

intracellular components.53,6057,64 Using oriented peptide binding approach, it was 

proposed that KKKRR, KKKRK, and KKRKK motifs are sufficient for binding importin-

α.
61 Crystal structure65 Structure of Tat:NLS/CPPimportin-α with 
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48GRKKRRQRRRAPQN61 peptide has been recently determined. sing X-ray 

crystallography. It was shown that 
48GRKKRR5348GRKKRRQR55

 residues mediate a 

strong association with importin-α.61,6266 Taken together, these results suggest that Tat 

may utilize different pathways to enter the nucleus. Ability to combine both classical and 

non-classical NLSs has been previously demonstrated for the latency-associated 

nuclear antigen (LANA) of KSHV.6367 Another example is Rev protein, whose basic 

domain is enriched with positively-charged arginine residues similar to Tat. Depending 

on the cell type, Rev has been shown to utilize different mutually-exclusive pathways of 

nuclear entry, either through importin--β or transportin.
6468

  

 

5 | BASIC DOMAIN FUNCTIONS AS A NUCLEOLAR LOCALIZATION SIGNAL 

  

Besides its predominant accumulation in the nucleus of different cell lines, Tat is 

observed to localize to the nucleoli as well. Tat was proposed to possess a nucleolar 

localization signal (NoLS),) 48GRKKRRQRRRAP57 which drives Tat accumulation into 

nucleoli and encompasses Tat basic domain which serves as NLS.6569 However, 

experimental data showed that only positively-charged amino acids are involved in Tat 

nucleolar localization while flanking non-charged residues hardly exhibit any effect on its 

localization; thus implyingthis implies that charge-dependent mechanism is a major 

force of dynamic accumulation of Tat in the nucleolus.6670 Indeed, the nucleolus is a 

highly- dynamic structure and accumulation of proteins can be achieved through 

interactions with nucleolar building blocks, such as rDNA or its transcripts.
6771

 In vitro 

experiments revealed binding of GST-Tat to NPM1 (B23),, a major nucleolar protein, 

emphasizing that such interactions occur within Tat basic domain.
3840

 Additionally, 
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NPM1 has been suggested to be vital for Tat’sthe nuclear entry of Tat and the 

subsequent nucleolar localization - in. In this case, NPM1 behaves as a shuttling protein 

driving Tat through the nuclear pore complexcomplexes to the nucleoli.3840 Such 

shuttling mechanism by NPM1 has been previously observed for NCL (C23 or nucleolin 

(C23), another major nucleolar protein lacking defined NoLS.6872 Apart from these two 

studies, there is no other experimental data exist confirming NPM1/Tat interactions in 

vivo. Alternatively, based on nucleolar interactome analysis, Tat itself can physically 

modulate proteinsprotein nucleolar accumulation involved in HIV-1 pathogenesis; but 

whether Tat basic domain is directly involved in targeting of these proteins to nucleolus 

remains to be elucidated.
69  73 NoLS was also suggested to be a key player in 

targeting Tat to the nucleoli in Drosophila melanogaster cells, thus following 

localization pattern of mammalian cells38. 

 

It might be possible that Tat basic domain serves as a NoLS in the first place rather than 

NLS due to its main function in the regulation of viral transcription and the small size 

enabling passive diffusion. Nucleoli are one of the main targets of some viral proteins 

including Tat. Presence of independent sites for nuclear entry and nucleolar 

accumulation might be evolutionarily unfavorable for Tat. Indeed, HIV-1 genome itself is 

just under 10 kb with 16 proteins successfully serving its biology.
70 In addition, Tat 

lacks a74 Both nuclear export signal even though over the course of HIV biology 

around 2/3 of produced Tat is released into the extracellular milieu.71 Such 

processesand nucleolar accumulation could be achieved via Tat’s by Tat binding 

to/associationsassociating with other nuclear/nucleolar proteins or RNAs through its 

highly charged basic domain. It is thus its overall structural plasticity coupled with highly 
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charged basic domain make it the prime example of “minimum complexity - maximum 

efficiency”.  

 

 6 | BASIC DOMAIN FUNCTIONS AS A PROTEIN TRANSDUCTION DOMAIN 

  

Tat is actively secreted by infected cells and can traverse plasma membranes of various 

eukaryotic cells, 72-7475-77 
affecting their gene expression and cellular functions. 

Concentration of extracellular Tat can reach up to 40 ng/ml in blood of acutely infected 

patients.7578 Tat has been detected in sera of patients undergoing antiretroviral therapy, 

showing that modern anti-HIV drugs are not able to block the cellular release of Tat 

protein.7679 The ability to penetrate cell plasma membranes has been attributed to Tat 

basic domain thus termed as protein transduction domain (PTD).) or cell penetrating 

peptide (CPP) if used as a peptide. Its potency to mediate cellular uptake has been 

widely exploited by a large number of laboratories for transcellular protein transduction 

not only in mammalian cells,7780 but in plants as well,76,7881 thus making Tat basic 

domain a promising tool for transcellular drug delivery to a wide variety of cells. 

 

Various experiments with short peptides spanning the Tat basic domain fused to 

different cargoes showed the ability of these peptides to enter the cells,79-8182-84 while 

peptides with a truncated or mutated basic domain failed to translocate through cell 

membranes.80,8283,85 One of the first mechanisms of cell penetration proposed that ionic 

interactions between Tat’sthe highly dense positively-charged basic domain of Tat and 

negatively-charged phospholipids of the plasma membrane prompted an invagination of 

the membrane.
8083

 In contrast, two other studies suggested an adsorptive-mediated 
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endocytosis as a way for internalization.73,8376,86 Further workswork performed by 

several research groups demonstrated that Tat basic domain fused to different cargoes 

could bind heparin,84-8687-89 a structural homolog of heparan sulfate glycosaminoglycan 

(GAG), abundantly present on the cell surface. Heparan sulfate proteoglycans 

(HSPGHSPGs) have been proposed to be highly versatile receptors responsible for the 

mechanism of the cellular entry.8790 It has been shown that Tat internalization can be 

achieved via HSPG binding [87-90] following subsequent active caveolar 

endocytosis through cell membrane lipid rafts (LRs).87,88,90.90,92 Full-length Tat 

protein can utilize HSPG receptors whereas unconjugated Tat peptides can be 

internalized by cells that lack these receptors. This observation demonstrated 

that theAlternatively, the study performed on T cells demonstrated that a full-

length Tat can use a clathrin/AP-2-dependent endocytosis; however, whether the 

basic domain plays any roles in this pathway remains unclear.93 These results 

demonstrate that different internalization pathways can be employed, depending 

on the cell type and specificity of the cargo.9194
 

 

7 | POST-TRANSLATIONAL MODIFICATIONS OF THE BASIC DOMAIN REGULATE 

TAT ACTIVITY  

 

Post-translational modifications play a key role in the heterogeneity of protein functions. Disordered 

protein domains have been suggested to be a subject for much ofmany post-translational 

modifications.13 DisorderedThe disordered state is advantageous in that in can provide greater 

accessibility to the sites for post-translational modifications.13 Indeed, being an intrinsically 
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disordered, Tat with its basic domain is able to bind or associate with a wide array of 

physiological partners and to regulate their functional activities.  

 

Post-translational modifications include acetylation, methylation, phosphorylation, to 

name but a few. Each modification involves specific enzymes that recognize distinct 

amino acids within the polypeptide chain. Tat basic domain undergoes post-

translational modifications which greatly expands its functions. The basic domain of 

Tat undergoes acetylation and methylation, affecting its capacity to facilitate viral 

transcription and modulate a broad range of cellular processes. The most common 

and increasingly studied post-translational modifications favoring diversification 

of Tat’s basic domain functions are acetylation and methylation. 

 

7.1 | ACETYLATION 

Acetylation is mediated by histone acetyltransferases (HATs) catalyzing the transfer of 

acetyl groups from acetyl coenzyme A to the ϵ-amino group of lysine. It has been 

speculated that HIV-1 transcription involves at least two phases. Defined as early TAR-

dependent and late TAR-independent, these phases are equally important for Tat’sthe 

functions of Tat whereas Tat acetylation has been proposed to act as a regulatory 

switch between them.92,9395,96 Tat transactivation activity has been shown to depend 

upon lysine acetylation at K50 and K51.92,94-9698,99-102 The critical role in K50 acetylation 

has been attributed to p300,95,9798,100 a HAT responsible for regulation of gene 

expressions via chromatin remodeling. K50 acetylation leads to liberation of Tat from 

TAR RNA and CycT1cyclin T1 and activation of Tat-mediated transcriptional elongation 

of HIV-1 through binding to RNAPRNA polymerase II.95,97,98,100,101 Further direct 
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binding of acetylated K50 to the bromodomain of PCAF, a p300/CBP-associated factor, 

has been proposed to be essential for Tat transactivation since the site-directed 

mutation of K50A led to termination of Tat transactivation activity whereas substitution to 

arginine K50R did not affect the interaction with TAR, CycT1cyclin T1 or PCAF (Fig. 

2).99-102-105
 

  

Acetylation of K50 has been further shown to facilitate Tat interaction with SWI/SNF 

chromatin remodeling complex, containing BRG-1, and its subsequent recruitment to the 

viral LTR.103-105106-108 This interaction is achieved via direct binding of acetylated Tat to 

the bromodomain of BRG-1, permitting SWI/SNF to alter the structure of downstream 

nucleosomes and enabling further viral transcription.105108 In addition to p300, the 

hGCN5 HAT has been demonstrated to acetylateacetylates both K50 and K51 

residues in vitro and significantly enhanceenhances Tat-mediated transcription of HIV 

LTR.106 109 Indeed, mutational analysis aiming to neutralize the electrical charge of 

lysine and block acetylation by substitution with the alanine residue demonstrated that 

acetylation of K50 exclusively regulates Tat transactivation activity (Fig. 2).
107110

 

 

Proteomic analysis and in vivo experiments showed that Tat acetylated at K50 and K51 

residues preferentially binds p32, an inhibitor of splicing factor ASF/SF-2, and mediates 

its transport to the viral promoter, thus regulating the splicing pattern of HIV-1.108 111 

Acetylation also decreases cellular uptake of Tat-derived peptides acetylated at either 

K50 or K51 positions.119112 Dysregulation of expression of C5, APBA1, BDNF, and 

CRLF2 genes associated with inflammation and damage by the K50A mutant has been 

recently identified in human macrophages.110113
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Acetylation of Tat can be reversed by sirtuin 1 (SIRT1) class III deacetylase. Acetylation 

and deacetylation cycles are believed to be necessary for the pursuit of the complete 

HIV transcription (Fig. 2).
98101

 In particular, acetylation results in the release of Tat from 

TAR leading to translocation of Tat and chromatin-modifying transcriptional coactivators 

to elongating RNA polymerase and recruitment of chromatin-remodeling complexes 

while deacetylation by SIRT1 restores Tat basic domain to its initial form so that Tat can 

interact with P-TEFb and bind TAR RNA, leading to the new transcriptional 

cycle.98,111101,114
 

 

7.2 | METHYLATION 

In addition to acetylation, Tat basic domain has been shown to undergoundergoes 

methylation, a process in which methyl groups from S-adenosylmethionine are 

transferred to proteins regulating many protein functions. Unlike acetylation, methylation 

does not result in neutralization of residual electrical charge. Because methylation 

primarily affects arginines and lysines, Tat basic domain serves a prime substrate for 

post-translational modifications by different methyltransferases. 

 

Methylation of position 50 and 51 lysines of the Tat basic domain can be generally 

accomplished by the action of SETDB1 and Set7/9-KMT7 methyltransferases 

(Fig. 3). Both are the members of a broad SET protein family that have been 

originally shown to specifically methylate lysines of histone H3 tail.112,113115,116 

Depending on the position of histone H3 lysine, methylation can prompt either 

transcriptionally active or transcriptionally repressed state of chromatin.114-116117-
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119 Later, nonhistone proteins methylated by SETDB1 and Set7/9-KMT7 were 

discovered,112,117-126115,120-129 one of them is Tat protein.127,128130,131
 

 

In vitro experiments, using SETDB1, wild-type Tat, and variation of Tat-derived mutant 

peptides have determined that both K50 and K51 can be methylated by SETDB1, 

whereas K51 showed an increased amount of methyl groups [128]..131 SETDB1 

knockdown resulted in the increase of viral transcription, implying that methylation of 

K50 and/or K51 can attenuate the HIV-1 transcription128transcription131 similarly to the 

general assumption that methylation of histone H3 lysine 9 corresponds to the assembly 

of transcriptionally-silent heterochromatin. The Set7/9-KMT7 lysine methyltransferase, 

has been also found to monomethylate K51 residue both in vitro and in vivo.127130 

However, contrary to SETDB1, this monomethylation increased Tat affinity to TAR and 

Tat transcriptional activity.127130 Interestingly, Set7/9 has been identified as one of the 

methyltransferases that drives monomethylation of histone H3 lysine 4, initiating 

formation of transcriptionally-active euchromatin.129-131132-134 Such strikingly different 

outcomes in methylation of Tat lysines could favor the notion that methylation can 

influence HIV-1 biology132biology135 similar to histone methylation that is linked to both 

transcriptional activation and repression (Fig. 3).133136
 

 

Lysines can be demethylated by LSD1 demethylase134demethylase137 which in 

complexes with different cofactors demethylatedemethylates histone H3K4/9 

133,135 136,138 and nonhistone proteins such as p53,136139 E2F1,137140 and Tat.138141 

In vitro experiments demonstrated that Tat K51 residue has beenwas specifically 

targeted by LSD1 demethyltransferase, resulting in HIV-1 transactivation.138141 
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Besides lysine, Tat arginine residues can be methylated by arginine methyltransferase 

PRMT6. Early experiments by Boulanger and colleagues demonstrated that HA-tagged 

Tat expressed in HEK293T cell line was subjected to methylation by endogenous 

PRMT6; cotransfection with PRMT6 increased the level of Tat methylation.
142

 

Knockdown of PRMT6 led to an increased level ofincrease in HIV-1 production, 

demonstrating that methylation of the basic domain exertsexerted a negative 

effect on Tat transactivation function.139142 Further experiments by determined 

position 52 and 53 arginine residues (R52 and R53) to be specifically methylated 

by PRMT6. 140143 Consistent with the previous observation, in vitro methylation of 

R52 and R53 triggered a decrease in Tat interaction with TAR RNA and complex 

formation with CycT1cyclinT1, thus affecting Tat function, whereas in vivo 

experiments augmented Tat’sthe role of Tat in transactivation by downregulating 

PRMT6.140143 PRMT6 has been proposed to be a restriction factor of HIV-1139-

1411142-144 as an innate cellular response to the viral replication.140143 Yet, this 

restrictive effect is counterbalanced by recently observed downregulation of 

PRMT6 expression in CD4+ T cell of HIV-infected patients, suggesting that 

indeedthe virus can indeed control expression of cellular genes to benefit its 

replication (Fig. 3).142. 145
 

 

While methylation of Tat is generally linked to the attenuation of Tat transactivation 

activity, the fate of the methylated Tat remains largely obscure. Compelling 

results came from the study where instead of downregulation ofdownregulating 

Tat transactivation function the, overexpression of PRMT6 led to increased Tat 
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stability by protection from proteasome-dependent degradation.143146 This 

strikingly different outcome has been explained as a way to fulfill multifunctional 

role of Tat apart from theits transactivation function, while methylation serves as 

a molecular switch between Tat functions.143146 Further investigation by the same 

group demonstrated that methylation of R52 and R53 residues of Tat basic 

domain resultsresulted in the exclusion of Tat-GFP fusion protein from the 

nucleolus of COS cells; thus canit could also modulate Tat localization.144147 

 

Methylation is a complex post-translational modification with pleiotropic effects on 

protein functions. Arginine contains three nitrogen atoms (one ε and two η) in its 

side chain each of which can be monomethylated (MMA),, symmetrically 

dimethylated (SDMA) or asymmetrically dimethylated (ADMA).. Depending on 

the state of methylation, thermodynamics of Tat-derived peptides binding capacity to 

TAR RNA has been recently assayed. Monomethylation of arginine R52 or R53 at ε-

nitrogen atom enhanced binding affinity whereas monomethylation or asymmetric 

dimethylation at η-nitrogen resulted in reduced binding capacity.145148 Methylation 

has beenwas further suggested to influence Tat-TAR RNA interaction in a 

position- and state-dependent manner. Asymmetric dimethylation of R52 or R53 

severely affected Tat-TAR RNA binding while dimethylation of flanking arginines, 

such as R49 or R57, slightly increased Tat-TAR RNA affinity.146149
 

 

 

8 | CONCLUSIONS 
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Tat is a regulatory protein encoded by the HIV-1 viral genome; it plays a crucial role in 

regulation of viral and host gene expression. Tat can exhibit multiple functions which are 

required for viral pathogenesis. It can also enter uninfected cellcells and modulate 

cellular gene expression according to the viral needs, thus leading to oncogenesis or 

cellular death through apoptosis. Many functions of Tat are attributed to its basic domain 

(also designated as arginine-rich motif, RNA-binding domain, nuclear/ localization 

signal, nucleolar localization signal, and protein transduction domain), which is highly 

conserved among different Tat variants though Tat itself is prone to mutations. This 

multifunctionality of the Tat basic domain is linked to its high charge and flexible 

structure. These can lead to interactions with many physiological partners including 

glycoproteins, proteins or protein/RNA complexes, chromatin of both viral and cellular 

origin, thus allowing Tat to accomplish various tasks. Tat basic domain is also subjected 

to post-translational modifications which may expandsexpand and modify its 

functionality. All these features make the basic domain the key component of Tat 

protein. WeIn this review, we have summarized the current knowledge on Tat basic 

domain and its role in Tat functions, but most probably new functions of this viral “Swiss 

army knife” will be discovered in the near future. 
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Figure legends 

FigureFIGURE 1. Structure of the Tat protein. Tat contains the following domains: N-

terminus,terminal acidic domain (1-21 aa), cysteine-rich, domain (22-37 aa), 

hydrophobic core, domain (38-47 aa), basic, domain (48-59 aa), glutamine-rich, 

RGD motifs domain (60-72), and domain encoded by the second exon. 

 

FigureFIGURE 2. Post-translational modifications of the Tat basic domain by different 

acetyltransferases. Acetylation of K50 by P300 and pGCN5 leads to association with 

RNA polymerase II (RNAPII),, bromodomain of PCAF, and with SWI/SNF chromatin 

remodelling complex resulting in liberation of Tat protein from TAR and its subsequent 

translocation along with the chromatin-remodelling complexes to elongating RNA 

polymerase II. Deacetylation by SIRTI enables Tat to return to its non-acetylated form 

and begin a new transactivation cycle. 

 

FigureFIGURE 3. Methylation of Tat basic domain. SETDBI methyltransferase methylates K50 and 

K51 residues leading to a decrease in transactivation of transcription. Contrary to SETDBI, 

methylation of the same residues by SET7/9 methyltransferase prompts an increased affinity to TAR 

RNA resulting in upregulation of transactivation of transcription. PRMT6 (an important host factor) 

methylates R52 and R53 residues liberating Tat basic domain from the TAR RNA and leading to 

attenuation of Tat transcriptional activity. PRMT6 modification also allows Tat protein to escape from 

proteasome-dependent degradation and increases Tat stability. 
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