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15 Abstract

16 Sabellaria alveolata is a gregarious polychaete that uses sand particles to build three-dimensional structures known 

17 as reefs, fixed atop rocks or built on soft sediments. These structures are known to modify the local grain-size 

18 distribution and to host a highly diversified macrofauna, altered when the reef undergoes disturbances. The goal 

19 of this study was to investigate the different sedimentary and biological changes associated with the presence of a 

20 S. alveolata reef over two contrasting seasons (late winter and late summer), and how these changes were linked. 

21 Three different sediments were considered: the engineered sediment (the actual reef), the associated sediment (the 

22 soft sediment surrounding the reef structures) and a control soft sediment (i.e. no reef structures in close proximity). 

23 Univariate and multivariate comparisons of grain-size distribution, soft sediment characteristics (organic matter 

24 content, chlorophyll a, pheopigments and carbohydrate concentrations) and macrofauna were conducted between 

25 the different sediment types at both seasons and between the two seasons for each sediment type. A distance-based 

26 redundancy analyses (dbRDA) was used to investigate the link between the different environmental parameters 

27 and the macrofauna assemblages. Finally, we focused on a disturbance continuum of the engineered sediments 

28 proxied by an increase in the mud present in these sediments. The effects of a continuous and increasing 

29 disturbance on the associated fauna were investigated using pairwise beta diversity indices (Sørensen and Bray-

30 Curtis dissimilarities and their decomposition into turnover and nestedness). Results showed a significant effect 
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31 of the reef on the local sediment distribution (coarser sediments compared to the control) and on the benthic 

32 primary production (higher in the associated sediments). At both seasons, S. alveolata biomass and sediment 

33 principal mode were the environmental parameters which best differentiated the engineered, associated and control 

34 sediment assemblages. These two parameters are under the ecosystem engineer’s influence stressing its importance 

35 in structuring benthic macrofauna. Furthermore, in late summer but not in late winter, presence/absence and 

36 abundance based beta diversity were positively correlated to our disturbance proxy (mud content) a tendency 

37 driven by a species replacement and a rise in the associated fauna density. Our first set of results highlight the 

38 importance of S. alveolata reefs as benthic primary production enhancers via their physical structure and their 

39 biological activity. The results obtained using beta diversity indices emphasize the importance of recruitment in 

40 structuring the reef’s macrofauna and – paradoxically – the ecological value of S. alveolata degraded forms as 

41 biodiversity and recruitment promoters. 

42 Keywords

43 Honeycomb worm, macrobenthos, benthic primary production, habitat disturbance, silt, beta diversity, France, 

44 Brittany, Mont Saint-Michel Bay

45 Abbreviations

46 MSMB, Mont Saint-Michel Bay; MPB, Microphytobenthos; TOM, Total organic matter; Chl a, Chlorophyll a; 

47 Pheo, Pheopigments; Ins, Insoluble carbohydrates; Sol, Soluble carbohydrates; dbRDA, Distance-based 

48 redundancy analysis; CPUE, Catch-per-unit-effort
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61 1. Introduction 

62 Ecosystem engineers are organisms capable of modifying their local environment through their physical 

63 presence (i.e. autogenic engineers) and/or their biological activity (i.e. allogenic engineers), “directly or indirectly 

64 modulating the availability of resources to other species” (Jones et al., 1994). Ultimately, these species maintain, 

65 modify, create or even destroy habitats (Bouma et al., 2009; Jones et al., 1994). The abiotic modifications caused 

66 by ecosystem engineers can lead to facilitation for some organisms (Hacker and Gaines, 1997) and inhibition 

67 through negative species interaction for others (Bouma et al., 2009; Jones et al., 1997). Nonetheless, bioengineered 

68 habitats are often reported to host a more diverse species assemblage than the adjoining non-engineered habitats 

69 (Ataide et al., 2014; De Smet et al., 2015; Jones et al., 1997; Stachowicz, 2001). Physical ecosystem engineering 

70 appears to be particularly important where the environment is extreme (e.g. thermic, hydrodynamic and/or hydric 

71 stress), like in temperate intertidal areas (Bouma et al., 2009; Jones et al., 1997). Indeed, according to Jones et al. 

72 (1997, 1994), these extreme conditions might have favored the selection of “extended phenotype engineers” 

73 through enhanced survival of the engineer and the cohabiting fauna (Dawkins, 1982). These engineer species 

74 create complex habitats that reduce local pressures such as predation or thermal stress, whilst increasing 

75 biodiversity (Bouma et al., 2009). Ultimately, such favorable environmental changes can lead to an interesting 

76 paradox where “the spatial extent of the realized niche of a species can be larger than the spatial range predicted 

77 by the fundamental niche” as described by Bruno et al. (2003) and reported for mussels and barnacles in 

78 Ascophyllum nodosum canopies by Bertness et al. (1999).

79 Temperate coasts host a striking number of ecosystem engineering species, spanning from mollusks (for 

80 a review see Gutiérrez et al. (2003)) and polychaetes (e.g. Lanice conchilega (De Smet et al., 2015)) to canopy-

81 forming algae (e.g. Ascophyllum nodosum (Bertness et al., 1999)). Along the European coastline, a particular 

82 ecosystem engineer has the ability to build three-dimensional structures on top of sediments qualified as reefs 

83 (Holt et al., 1998). This species is a common gregarious tubiculous polychaete called Sabellaria alveolata 

84 (Linnaeus, 1767), a.k.a. the honeycomb worm. It generally lives in the intertidal zone from mid to low tide levels 

85 and can be found from Scotland and Ireland to Morocco (Muir et al., 2016). Sabellaria alveolata uses sand particles 

86 remobilized by waves and tidal action to build the tube in which it lives (Le Cam et al., 2011). Since the pelagic 

87 larvae are attracted by the L-dopa present in the organic cement produced by the adult worms for their tube-

88 building activity, they will tend to settle on existing reefs (Pawlik, 1988; Wilson, 1968). This phenomenon coupled 

89 with favorable environmental conditions (i.e. grain-size structure, hydrodynamic processes, food availability and 

90 water temperature) can lead to the development of large biogenic reefs (Holt et al., 1998). These structures are 

91 commonly found on rocky substrata as veneers or hummocks where they rarely exceed 50 cm in height for a few 
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92 tens of square meters but in some rare instances, they can be found in soft bottom areas where they can grow up 

93 to two meters in height and several hectares in size (Holt et al., 1998; Noernberg et al., 2010). The largest of these 

94 formations, which is also the largest biogenic habitat in Europe, is located in the Mont Saint-Michel Bay (MSMB) 

95 in France (Desroy et al., 2011; Dubois et al., 2002).

96 The research around this species has mainly focused on its physiology (i.e. reproduction, fecundity, 

97 feeding mode) (Dubois et al., 2003, 2005, 2006a, 2009) and its tube building activity (Fournier et al., 2010; Le 

98 Cam et al., 2011). Other studies have looked into the ecology of reefs with a particular interest on the associated 

99 fauna (Dias and Paula, 2001; Porta and Nicoletti, 2009; Schlund et al., 2016) and factors influencing it such as the 

100 reef’s different growth stages (Dubois et al., 2002), epibionts (Dubois et al., 2006b), human trampling (Plicanti et 

101 al., 2016) and ecological status (Desroy et al., 2011). A large part of these studies has focused on Sabellaria 

102 alveolata reefs on rocky substrata and not on soft sediment. Reefs developing on soft sediment are far less frequent 

103 along the European coast (i.e. MSMB and Bourgneuf Bay in France) (Holt et al., 1998). Nonetheless, they 

104 constitute exceptional locations composed of two distinct entities: the actual three-dimensional reef structures 

105 (engineered sediment), which is spatially discontinuous and the soft sediment present between the reef structures 

106 (associated sediment) (Desroy et al., 2011). Several kilometers separate them from the nearest rocky shore which 

107 signifies, in contrast to the veneer form of S. alveolata structures, complete isolation from most of the juvenile and 

108 adult fauna inhabiting these rocky shores. Furthermore, their physical borders are easy to visualize against the 

109 surrounding soft sediment. These sites give us the chance to study different components of S. alveolata’s 

110 engineering effect (Passarelli et al., 2014; Wright et al., 2006). This engineering effect can be seen from both an 

111 environmental and a biological perspective by looking at how the ecosystem engineer modifies the local 

112 sedimentary characteristics and how the biodiversity changes between a control sediment, the associated and the 

113 engineered sediments. The control soft sediment represents the baseline or the unmodified state before the 

114 honeycomb worms start building reefs, hence representing a new structural state (Jones et al., 2010).

115 This biogenic habitat is not structurally homogenous, mainly due to multiple disturbances; direct natural 

116 disturbances such as storms and cold winters, direct anthropogenic disturbances such as trampling and indirect 

117 anthropogenic disturbances through shellfish farming and coastal engineering. These disturbances lead to a gradual 

118 modification of the reef visible through disaggregation, increasing fine sediments, decreasing ecosystem engineer 

119 density and increasing epibiont cover, causing a number of changes in the associated fauna (Dubois et al., 2006b, 

120 2002; Plicanti et al., 2016). Modifications of the associated fauna have been investigated in several categorical 

121 ways but never along a disturbance continuum (Dubois et al., 2006b, 2002; Plicanti et al., 2016). To understand 
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122 the changes in the associated fauna along this continuum, we chose to focus on the beta diversity seen as “the 

123 extent of change in community composition” as defined by Whittaker (1960) and on an abundance-based 

124 dissimilarity measurement using the Bray-Curtis dissimilarity. Analyzing beta diversity in a S. alveolata reef can 

125 help us understand the functioning of this biogenic habitat and give more relevant information to decision makers 

126 regarding conservation issues. First, taking into account the three previously defined sediment types (control, 

127 associated and engineered sediments), we tested in a categorical way, the following hypotheses: (1) the engineered 

128 sediment affects the different sedimentary characteristics of the associated sediment, especially grain-size, organic 

129 matter content and microphytobenthos and (2) the diversity and species composition of both the engineered and 

130 the associated sediments are different from the control sediment. We also looked into potential changes between 

131 late winter and late summer, regarding sediment composition and macrofauna assemblages for each sediment type. 

132 Then, using beta diversity and dissimilarity measurements, we tested the following hypothesis: an increasing 

133 disturbance of the engineered sediment promotes (1) beta diversity and more specifically species turnover and (2) 

134 abundance-based dissimilarity and more specifically abundance gradients.

135

136 2. Materials and methods

137 2.1. Study area

138 This study took place in the central part of the MSMB where the largest bioconstruction in Europe is 

139 located; the Sainte-Anne reef (48°38’700N and 1°40’100W), built by the honeycomb worm Sabellaria alveolata 

140 (Desroy et al., 2011). This reef is situated in the lower intertidal zone (i.e. between the - 2 and the - 4 m isobaths 

141 (Noernberg et al., 2010)), parallel to the coast and to the dominant tidal currents and also near important blue 

142 mussel (Mytilus edulis) cultures. In 2014, the maximal dimensions of the Sainte-Anne reef were 2.5 km in length 

143 for 1 km in width and the engineered sediment represented about 32 ha for about 128 ha of associated sediment 

144 (unpublished results). The area located in the central part of the bay and along the same isobath as the reef is 

145 characterized by medium to muddy sands (Bonnot-Courtois et al., 2009) and by a species poor “Macoma balthica 

146 community” (Dubois et al., 2002). 

147 2.2. Sampling design and laboratory analyses

148 Two sampling areas were defined; the Sainte-Anne reef area and a control area. The reef area was 

149 composed of two sediment types, the engineered and the associated sediments (Fig. 1). The control area was a soft 

150 sediment zone located 1.5 km North-East of the reef area and on the same bathymetric level. It was characteristic 

151 of the medium to muddy sands found in this part of the bay (Bonnot-Courtois et al., 2009). Sampling took place 
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152 over a two-day period in late winter (late February) and late summer (late September). These two seasons were 

153 chosen because they are highly contrasted environmentally (e.g. hydro-sedimentary features) and biologically (e.g. 

154 recruitment patterns, species turnover, growth rates).  Indeed, winter is a period of low biological activity and high 

155 environmental pressures (cold temperatures, wind and storms) while late summer is a post-recruitment period with 

156 a higher biological activity (Arbach Leloup et al., 2008; Cugier et al., 2010). Hence, sampling at these two seasons 

157 helps us to have a more complete picture of the dynamics happening in our different study zones. 

158 To investigate the effects of S. alveolata on diversity and species composition, we compared the 

159 macrofauna associated with the three different sediment types: the S. alveolata reefs, the sediments present around 

160 these structures and the control soft sediments. For each sediment type (i.e. engineered, associated and control 

161 sediment, Fig. 1), ten stations were sampled. Every engineered sediment station was paired with an associated 

162 sediment station, in order to investigate how the reef structures modify the adjoining soft sediment. The stations 

163 were at least 75 m apart and at each station, six samples separated by at least 5 m were randomly taken at low tide. 

164 The first three samples were done using a 18.5 cm side corer (269 cm²) to a depth of 15 cm (core samples). For 

165 engineered sediments, this depth corresponds to the layer where Sabellaria alveolata and more than 90% of all 

166 species live (Dubois et al., 2002). The other three samples were done using a 1 m² quadrat in order to estimate the 

167 over dispersed macrofauna, mainly composed of bivalves and gastropods (quadrat samples). All engineered 

168 sediment samples (core and quadrat samples) were taken at least 1 m from the reef edge to avoid a known border 

169 effect on the macrofauna diversity (Gruet, 1972), while the associated sediment samples (core and quadrat 

170 samples) were taken at least 1 m away from the reef structures. The soft sediment core samples were sieved through 

171 a 1-mm square mesh on site while the engineered sediment core samples were taken back to the laboratory where 

172 they were broken apart under water and the fauna retained on a 1-mm square mesh was collected. Associated and 

173 control quadrat samples were done by sieving on site the first 5 cm of sediment through a 5-mm square mesh. For 

174 the engineered quadrat samples, we sampled by hand all the visible macrofauna located on the reef and inside the 

175 reef interstices. All core and quadrat samples were fixed in a 5% formaldehyde solution, after which all the 

176 macrofauna was sorted, counted and identified to the species or genus level (except for nemerteans, oligochaetes 

177 and nematodes) and finally preserved in a 70% ethanol solution. For each engineered sediment core sample, all 

178 the Sabellaria alveolata were weighted (total wet weight).

179 To look at how the ecosystem engineer modifies its environment, we randomly collected three sediment 

180 samples for grain-size distribution, total amount of organic matter (TOM), pigment concentration (i.e. chlorophyll 

181 a and pheopigments) and total carbohydrate concentration (i.e. soluble and insoluble carbohydrates), at each 
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182 associated and control sediment station. For the grain-size distribution, the first 5 cm of sediments were sampled 

183 using a small plastic core (19 cm²). For all the other sedimentary characteristics, only the first centimeter of 

184 sediment was sampled using a plastic petri dish (57 cm²). Additional samples were collected in order to 

185 characterize the sediments constituting the Sabellaria alveolata tubes as well as the sediments potentially trapped 

186 within the biogenic structure. These consisted in randomly collecting three small reef parts (about 8 x 3 cm) in 

187 each engineered sediment station. Sediment grain-size distribution was obtained by mechanical sieving using 

188 AFNOR calibrated sieves (from 25 mm to 63 µm) and granulometric parameters were estimated using the ‘G2Sd’ 

189 package in R v. 3.3.0 (Fournier et al., 2014). Prior to mechanical sieving, the engineered sediments were cautiously 

190 broken into their original elements, i.e. mostly bioclasts as evidenced in Le Cam et al. (2011). For all the other 

191 analyses, the sediments were first freeze-dried in order to work on dry matter. TOM was determined as the 

192 difference between the weight of freeze-dried sediment and the weight after 4 hours at 450° (Aminot and Kerouel, 

193 2004). Pigment concentrations (µg.g-1 dry sediment) were estimated using the monochromatic technique 

194 (Lorenzen, 1967) described in Aminot and Kerouel (2004). The chlorophyll a (Chl a) concentration was used as a 

195 proxy for microphytobenthos (MPB) biomass (Jeffrey et al., 1997) while pheopigments (Pheo) concentration gave 

196 us information about the amount of degraded photoautotrophs. Soluble carbohydrates (Sol) present in the sediment 

197 were extracted by hydrolysis (100°C for 45 min), after which the pellets were treated with sulfuric acid (H2SO4) 

198 and placed 4 hours at 100°C in order to obtain the insoluble carbohydrates (Ins). Sol and Ins concentrations (µg.g-1 

199 dry sediment) were then estimated by colorimetric phenol sulfuric dosage (Dubois et al., 1956). Sol were 

200 considered as being an important labile source of carbon for consumers living in the sediment such as bacteria and 

201 deposit-feeding invertebrates (Bellinger et al., 2009) while the insoluble carbohydrates to soluble carbohydrates 

202 ratio (Ins/Sol) was used as a proxy for the C/N ratio and as a TOM degradation index (Delmas, 1983).

203 2.3. Data analysis

204 2.3.1. Biological and environmental engineering effects

205 Since macrofauna was sampled using two different techniques (cores and quadrats), densities of species 

206 were estimated using the catch-per-unit-effort (CPUE) method, i.e. the ratio between the total catch and the total 

207 amount of effort used to harvest the catch (Skalski et al., 2005). At one sampling location, when a species was 

208 only collected by core or quadrat, its density was estimated using the corresponding sampling surface. However, 

209 when a species was sampled by both methods, cumulated abundances were divided by the sum of each gear’s 

210 CPUE. This estimation method was used for 17 species in late winter and 15 in late summer, taking into account 

211 all three sediment types. Species’ densities were calculated using the formula:
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212 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐴 (ind.m2) =  
(𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝐴𝑞 + 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝐴𝑐) 

(𝐶𝑃𝑈𝐸𝑞 + 𝐶𝑃𝑈𝐸𝑐)  

213 where densityA is species’ A abundance per m², abundanceAq is species’ A abundance using the quadrat, 

214 abundanceAc is species’ A abundance using the core, CPUEq is the quadrat’s catch-per-unit-effort (1 m²) and 

215 CPUEc is the core’s catch-per-unit-effort (0.0269 m²). 

216 To assess the effect of Sabellaria alveolata on the associated macrofauna and validate our a priori 

217 grouping into engineered, associated and control sediments, Principal Coordinates Analysis (PCO) were performed 

218 for the late winter and late summer data sets. Analyses were performed on a Bray-Curtis similarity matrix 

219 calculated from log-transformed densities after S. alveolata was removed from the matrix, in order to take into 

220 account only the species associated with this sediment type. Indeed, because of its high abundance (i.e. on average, 

221 63% of the total abundance), the single presence of S. alveolata would automatically cause a strong grouping of 

222 engineered sediment samples. Species present in only one sample (i.e. in less than 2% of all samples) were 

223 excluded from the initial matrix. To identify species typifying each sediment, species that correlated more than 

224 60% with one of the first two axes (i.e. Spearman correlations) were plotted on each PCO. In parallel, a one-way 

225 univariate permutational ANOVA (permanova) was performed on the same species density matrices as for the 

226 PCOs, in order to evaluate if there was a significant difference in the species composition of each sediment type.

227 Finally, the macrofauna diversity of each replicate (core and associated quadrat) sampled in late winter 

228 and late summer, was assessed using Hill’s indices; N0 (number of species), N1 (exp (H’) where H’ is the Shannon-

229 Winner diversity (loge)) and N2 (1/D where D is the Simpson’s dominance index (Hill, 1973)) as recommended 

230 by Gray (2000) and the total macrofauna density. These indices inform how the total abundance is partitioned 

231 between the different species (Gray, 2000; Whittaker, 1972 for details). Densities calculated using the CPUE 

232 method and for 1 m² as previously detailed, were used to calculate N1 and N2. For each replicate, N0 was 

233 calculated as the sum of the species richness recorded in the core and the species richness recorded in the associated 

234 quadrat. For N0, N1 and N2, S. alveolata was either kept or removed from the initial data in order to investigate 

235 how this species influences the partitioning of the associated fauna abundance. 

236 To test for significant differences between the three sediment types for the different grain size and 

237 macrofauna descriptors and because none of the descriptors fulfilled normality of distribution and homogeneity of 

238 variance, permanovas were performed, with sediment type considered as a fixed factor. We used Euclidian distance 

239 as a distance measure and ran 9999 permutations for each test. If the main test was significant, pairwise tests were 

240 performed. Effect of the presence of the engineered sediment on soft sediment environmental parameters (TOM, 

241 Chl a, Pheo and Ins/Sol) was investigated by comparing these parameters between associated and control 
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242 sediments, also using permanovas. Prior to performing permanovas, we tested for homogeneity of dispersions 

243 using the PERMDISP PRIMER routine (Anderson et al., 2008). When raw data presented significantly different 

244 dispersions between the three sediment types (p < 0.05), it was log transformed (in late winter: principal mode, 

245 TOM, Chl a, Pheo, macrofauna density with and without S. alveolata, N0 with and without S. alveolata and N2 

246 with S. alveolata, in late summer: macrofauna density with and without S. alveolata, N0 with and without S. 

247 alveolata and N1 without S. alveolata). When log transformation did not lead to homogenous dispersions (in late 

248 winter: % mud, % sand and Sol, in late summer: TOM, Chl a, Sol, N1 and N2 calculated with S. alveolata), non-

249 parametric statistical tests were performed (Kruskal-Wallis test for the granulometric and macrofauna parameters 

250 and Wilcoxon-Mann-Whitney for the other environmental parameters). 

251 In order to evaluate if the different environmental and macrofauna parameters were significantly different 

252 between late winter and late summer for each sediment type, one-factor permanovas were performed, with season 

253 considered as a fixed factor. We chose to perform one-factor rather than two-factor univariate analysis of variance 

254 (in this case with sediment type and season as fixed factors), because we lacked replication inside each season for 

255 our different sediment types (Underwood, 1997). As previously mentioned, permanovas (9999 permutations) were 

256 used rather than t-tests because none of the investigated variables were normally distributed. Homogeneity of 

257 dispersions was also tested (PERMDISP) and data was transformed when necessary (square-root transformation 

258 for TOM in the associated sediments, log transformation for macrofauna density with S. alveolata in the control 

259 sediments and for macrofauna density without S. alveolata in the engineered sediments). The Permanovas, 

260 PERMDISP routines and PCOs were performed using the PRIMER v6 software with the PERMANOVA+ add-

261 on (Anderson et al., 2008). Post-hoc Kruskal-Wallis tests were performed with the ‘kruskalmc’ function from the 

262 ‘pgirmess’ package (Giraudoux, 2016) using R version 3.3.0 (R Core Team, 2016).

263 2.3.2. Linking environmental and biological engineering effects

264 The relationship between the environmental characteristics and the macrofauna present in the three 

265 sediment types was investigated using distance-based linear models (DistLM). In line with Legendre and Anderson 

266 (1999) and McArdle and Anderson (2001), DistLM models were coupled to a distance-based redundancy analysis 

267 (dbRDA) to define the best fitted model in a multi-dimensional space in a way similar to a constrained PCO.  

268 DistLM models were built using the Bayesian Information Criterion (BIC) to identify “good” models and the ‘best’ 

269 procedure to select the variables according to the BIC. Prior to the DistLM and dbRDA analysis, the environmental 

270 parameters were displayed using Draftsman plots and the ones presenting an important skewness were transformed 

271 to approach normality (Anderson et al., 2008). If two predictor variables were strongly correlated (r² > 0.80), one 
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272 of them was removed from the analysis in order to avoid multi-collinearity (Dormann et al., 2013). Except for the 

273 grain-size data, environmental parameters used to characterize an engineered sediment sample were the same as 

274 for its corresponding associated sediment sample. For late winter, the final predictor data set contained the % sand, 

275 Pheo (both square-root transformed), % mud, TOM, S. alveolata biomass (all three fourth-root transformed), 

276 principal mode and Ins/Sol (both log transformed). For late summer, the final predictor data set was the same as 

277 for late winter, except the % sand which was removed (absolute correlation with % mud > 0.8). S. alveolata 

278 biomass was used rather than abundance because this parameter provides more information about ecosystem 

279 functioning (Cardinale et al., 2013). S. alveolata biomass was considered as a predictor variable since it physically 

280 modifies its environment and it was consequently removed from the macrofauna data set. The DistLM models and 

281 dbRDA analysis were performed using the PRIMER v6 software with the PERMANOVA+ add-on (Anderson et 

282 al., 2008).

283 2.3.3. Disturbances and biological engineering effect

284 At its climax, a S. alveolata reef is formed by 100% honeycomb worm tubes, leaving virtually no space 

285 for infaunal organisms. When natural or anthropogenic disturbances (e.g. storms, trampling) physically damage 

286 the reef, tubes are destroyed, freeing up space. This new available space can be filled either with other organisms 

287 such as the oyster Magallana gigas (formerly known as Crassostrea gigas) or by fine particles. Fine particles 

288 accumulate from suspended sediments, or from the feces and pseudofeces of S. alveolata and other bivalves 

289 (biodeposition) (Dubois et al., 2006b). In either case, this fine sediment can end up trapped inside the S. alveolata 

290 reefs. Consequently, the increased deposition of mud inside the engineered sediments is the result of several 

291 different and often concomitant disturbances. Fine sediment deposition has previously been recognized as a 

292 significant disturbance to stream macroinvertebrates (Mathers et al., 2017) and benthic habitats (Balata et al., 2007; 

293 Mateos-Molina et al., 2015; Miller et al., 2002). Similarly, we chose to consider mud content as a proxy for 

294 disturbance. This proxy was also chosen because it is independent from Sabellaria alveolata population dynamics 

295 and physiological state. Finally, using the mud content makes the two seasons readily comparable. 

296 Beta diversity was calculated using pairwise multivariate distances since they are independent of sample 

297 size and regional diversity (gamma diversity) allowing accurate potential comparisons among regions (Bennett 

298 and Gilbert, 2016). We chose to use the presence/absence based indices presented by Baselga (2010) in order to 

299 partition total beta diversity, expressed by Sørensen dissimilarity (βsor), into the turnover (βsim) and nestedness 

300 (βnes) components.  In this case, βsor = βsim + βnes. Under conditions of equal species richness, βsor = βsim and βnes = 

301 0, while under conditions of unequal species richness, βsim and βnes vary between 0 and βsor. Sørensen dissimilarity 
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302 varies between 0 and 1, with 0 indicating that two samples have identical species list and 1 indicating no common 

303 species (Baselga, 2010). For βsim, 0 indicates complete nestedness, and a maximal value of 1 can be found if in one 

304 of the two considered samples, there are no species recorded and in the other, the number of species is maximal 

305 (Koleff et al., 2003). To have a complementary vision of how disturbance affected the associated fauna abundance, 

306 the abundance-based dissimilarity (Bray-Curtis dissimilarity, dBC) was also partitioned into balanced changes in 

307 abundance (dBC-bal) and abundance gradients (dBC-gra), which are closely related to turnover and nestedness 

308 components respectively (Baselga, 2013). These indices were computed after removing S. alveolata from the 

309 presence/absence and density matrices. They were calculated using the pairwise measures in order to have the beta 

310 diversity and the dissimilarities for each pair of samples (i.e. 435 pairs). Then, using Euclidian distance, all the 

311 mud content pairwise differences were calculated. Finally, using the different pairwise measures, we performed 

312 Mantel tests (9999 permutations) for late winter and late summer data, to test the null hypothesis of no relationship 

313 between the mud content distance matrix and each beta diversity matrix. A p-value below 0.05 indicates a 

314 significant correlation between the two investigated distance matrices, with the sign of the r-value indicating if the 

315 two matrices are positively or negatively associated. The beta diversity indices were computed using the ‘beta.pair’ 

316 function, and the Bray-Curtis dissimilarity indices using the ‘bray.part’ function, both from the ‘betapart’ R 

317 package (Baselga, 2013). The Mantel tests were performed using the ‘mantel.rtest’ function from the ‘ade4’ R 

318 package (Dray and Dufour, 2007). 

319 To test the link between the macrofaunal assemblages based on their respective beta diversity and 

320 dissimilarity indices and the disturbance parameter (i.e. mud content), non-metric multidimensional scaling 

321 ordinations (nMDS) were successively performed for each index (βsor, βsim, βnes, dBC, dBC-bal and dBC-gra) and at each 

322 sampling period (late winter and late summer) using the ‘metaMDS’ function of the ‘MASS’ R package (Venables 

323 and Ripley, 2002). Then, the ‘envfit’ function (‘vegan’ R package) was used to test if the mud content was 

324 significantly correlated with each ordination (Oksanen et al., 2016). When a correlation was significant, the mud 

325 contents were fitted and plotted on the given nMDS using the ‘ordisurf’ function of the ‘vegan’ R package 

326 (Oksanen et al., 2016). All these analyses were performed using R version 3.3.0 (R Core Team, 2016).

327

328 3. Results

329 3.1. Environmental engineering effect

330 Mean values of grain-size distribution parameters measured within each sediment type are reported in 

331 Table 1a. Analyses revealed significant differences between the sediment types for all tested metrics in late winter 
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332 (p < 0.001) and for all but one in late summer (mud content). At both periods, there was a strong engineering effect 

333 on the principal mode marked by a significantly coarser sediment in the engineered and associated sediments than 

334 in the control sediments (Table 1a). In late winter, the sorting index S0 was significantly lower in the engineered 

335 and associated sediments than in the control and mud content was significantly lower in the associated sediments 

336 than in the other two sediment types. Finally, the sand content was significantly higher in the engineered sediment 

337 relative to the other sediment types. In late summer, associated sediments had a higher sorting index than the 

338 engineered sediments and one comparable to the control sediments. Although associated sediments were also 

339 characterized by a higher mud content in late summer compared to late winter (permanova: p = 0.0051), no 

340 significant difference was observed between the three sediment types. For all grain-size parameters, the control 

341 sediments showed no significant changes between late winter and late summer (permanova: p(principal mode) = 

342 0.23 , p(S0) = 0.60, p(mud) = 0.37 and p(sand) = 0.42). The pattern was similar for the engineered sediments 

343 (permanova: p(principal mode) = 0.059 , p(S0) = 0.78, p(mud) = 0.78 and p(sand) = 0.39). The associated sediments 

344 showed significant changes in their grain-size distribution between late winter and late summer. In late winter, 

345 they were much more homogenous than in late summer (Table 1) and they became significantly muddier between 

346 the two sampling campaigns (permanova: p = 0.0051) leading to a significant decrease in the principal mode 

347 (permanova = 0.025). 

348 The comparison of sedimentary parameters revealed a strong engineering effect at both periods regarding 

349 TOM, Chl a and Sol (Table 1b, p < 0.005). In both seasons, TOM was consistently twice as high in the engineered 

350 environment than in the control zone. Organic matter content also showed a significant decrease between late 

351 winter and late summer in the reef zone (permanova: p = 0.029) and no significant temporal change in the control 

352 sediments (permanova: p = 0.29). Similarly, Chl a concentration was ten times higher in the soft sediments adjacent 

353 to the engineered structures than in the control and did not display any significant temporal changes in either the 

354 control (permanova: p = 0.29) or the associated sediments (permanova: p = 0.72). Sol concentration was also 

355 consistently four times higher in the reef environment than in the control and displayed a temporal stability similar 

356 to the Chl a (permanova: p(control) = 0.87 and p(associated) = 0.82). In late winter, the Pheo concentration was 

357 significantly higher in the control than in the associated sediments while in late summer, there was no significant 

358 difference. In both sediment types, Pheo concentrations did not show significant changes between the two sampling 

359 campaigns (permanova: p(control) = 0.10 and p(associated) = 0.11). Finally, Ins/Sol was not significantly different 

360 between associated and control sediments in late winter and late summer, and was significantly higher in late 

361 winter compared to late summer for the control sediments (permanova: p = 0.0001). This temporal pattern was not 
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362 detected in the associated sediments (permanova: p = 0.28) probably because of the important variability in late 

363 winter (Table 1). 

364 3.2. Biological engineering effect

365 In late winter, 9244 organisms belonging to 121 different taxa were sampled in the cores and 8478 

366 organisms belonging to 26 different taxa were sampled with the quadrats (see the Appendix for a complete list of 

367 species). Comparatively, in late summer more organisms and taxa were sampled with the cores (23463 

368 organisms/125 taxa) while fewer organisms and more taxa were sampled with the quadrats (4677 organisms/30 

369 taxa). For all sediment types, total species richness was consistently higher in late summer than in late winter but 

370 this difference was significant only for the control and engineered sediments (permanova: p(control) = 0.039, 

371 p(associated) = 0.071 and p(engineered) = 0.0001). 

372 PCOs and one-way permanovas performed on density matrices indicated that the three sediment types 

373 significantly differed (p < 0.05) in their associated fauna at both sampling periods, confirming our a priori sediment 

374 type grouping (Fig. 2 and Fig. 3). PCO axis 1 explained in late winter and late summer, respectively 26.1 and 

375 30.3% of the total variation present in the resemblance matrix and clearly separated the engineered samples from 

376 the control samples. PCO axis 2 explained in late winter and late summer, respectively 14.6 and 14.8% of the total 

377 variation and discriminated the engineered and control samples from the associated samples. In both seasons, 

378 engineered samples were highly clustered compared to the more scattered associated and control sediments 

379 samples. In late winter, the control and associated sediments were well separated while there was a small overlap 

380 between the associated and engineered sediments (Fig. 2). In late summer, there was an overlap between the 

381 associated and control sediments (Fig. 3). This overlap was mostly due to bivalves like Limecola balthica or 

382 Cerastoderma edule and to the polychaete Nephtys hombergii (Fig. 3 and Appendix). Finally, engineered 

383 sediments were characterized by a much greater number of species correlated at more than 60% with each PCO 

384 axis (11 in late winter and 17 in late summer) than the associated (3 in late winter and 1 in late summer) and the 

385 control sediments (3 in late winter and 6 in late summer). 

386 Mean macrofauna diversity indices and densities were calculated within each sediment type and for each 

387 sampling campaign (Table 2a and b). At the sediment type scale, one-way permanovas showed significant 

388 differences between engineered sediments on the one hand and associated and control sediments on the other, for 

389 all the diversity measurements and densities at both periods. There were two exceptions regarding N1 and N2 

390 calculated in late summer with S. alveolata taken into account. In these cases, there were no significant differences 

391 between the three sediment types. When S. alveolata was taken into account, total macrofauna density was 20 
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392 times higher in the engineered sediments at both periods. This difference was maintained even after S. alveolata 

393 was removed from the data set but it was reduced to an average 5-fold difference. The engineered sediment was 

394 also home to significantly more species (mean species richness N0) than the associated and control sediments and 

395 this, whatever the situation.

396  Regarding macrofauna density, N1 and N2, associated and control sediments presented similar temporal 

397 patterns when comparing late winter and late summer. Their respective macrofauna density increased significantly 

398 between the two campaigns (permanova: p(control) = 0.023 and p(associated) = 0.018) while N1 and N2 showed 

399 non-significant differences (permanova: p(control-N1) = 0.15, p(control-N2) = 0.25, p(associated-N1) = 0.83 and 

400 p(associated-N2) = 0.53). Between late winter and late summer, the engineered sediments presented a significant 

401 increase in the total macrofauna density (permanova: p(density with S. alveolata) = 0.0001) only driven by a 

402 significant increase in the associated fauna density (permanova: p(density without S. alveolata) = 0.0001 and p(S. 

403 alveolata density) = 0.54). They also showed a significant increase in the case of N1 and N2 calculated with S. 

404 alveolata (permanova: p(N1) = 0.0007 and p(N2) = 0.0001), a change which was not significant once the engineer 

405 species was removed (permanova: p(N1) = 0.089 and p(N2) = 0.73). 

406 3.3. Linking environmental and biological engineering effects

407 DistLM and dbRDA analysis were performed in late winter (Fig. 4a) and late summer (Fig. 4b) with S. 

408 alveolata biomass considered as an environmental parameter. In both seasons, S. alveolata biomass was the 

409 parameter which best explained the relationship between environmental parameters and macrofauna assemblages 

410 (18.0% in late winter and 24.8% in late summer). In late winter, the most parsimonious model, explaining 33.6% 

411 of the total variation in species assemblages, was defined by (1) Sabellaria biomass (square-root transformed, 

412 18.0%), (2) principal mode (log transformed, 13.2%) and (3) total organic matter content (fourth-root transformed, 

413 10.7%, Fig. 4). The first two axes explained 91.6% of the fitted variation and 30.7% of the total variation. Species 

414 assemblage were structured according to two gradients. The first was driven by S. alveolata, and separated 

415 engineered sediments from the two other types. The second was driven by the sediment principal mode and the 

416 total organic matter content and separated the associated from the control sediments (Fig. 4a). In late summer, the 

417 most parsimonious model explained 40.7% of the total variation in species assemblages. It was defined by the 

418 same first two variables as for late winter: Sabellaria biomass (square-root transformed, 24.8%) and principal 

419 mode (log transformed, 16.9%). The third selected variable differed from late winter since it was the mud content 

420 (fourth-root transformed) and it explained only a very small part of the total variation (0.079%). The first two axes 

421 explained 87.5% of the fitted variation and 35.6% of the total variation. Again, species assemblages were 

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826



15

422 structured according to two gradients but they did not separate the different sediment types as clearly as in late 

423 winter. S. alveolata still defined the first gradient and clearly separated the engineered sediments from the two soft 

424 sediments. The opposition between the principal mode and the mud content defined the second gradient. Along 

425 this gradient, the distinction associated/control sediments was not well defined. Indeed, there were three associated 

426 sediment samples characterized by high mud contents and isolated from the rest of the associated sediment samples 

427 (Fig. 4b). 

428 3.4. Disturbances and biological engineering effect 

429 Consistent mean values in late winter (10%) and late summer (9.59%), confirm the choice of the mud 

430 content as a suitable ‘disturbance parameter’ (Table 1a). Indeed, these values did not significantly vary between 

431 the two contrasted seasons we sampled (permanova: p = 0.78). In contrast, the mean S. alveolata density almost 

432 doubled between late winter (7682 ± 3312 ind.m-²) and late summer (12844 ± 14262 ind. m-²), with a very high 

433 summer variability, leading to no significant change (permanova: p = 0.54). Oppositely, the mean S. alveolata 

434 biomass by surface unit significantly decreased between late winter (646 ± 317 g. m-²) and late summer (318 ± 

435 211 g. m-²) (permanova: p = 0.0001).

436 Mantel tests performed between the mud content distance matrix and the different beta diversity matrices 

437 showed a clear temporal difference between late winter and late summer. The tests were not significant when 

438 performed using the late winter data sets (p > 0.05, Table 3), while they revealed a significant and positive 

439 correlation between the mud content distance matrix and βsor (p < 0.001, r = 0.24), βsim (p = 0.0066, r = 0.15), dBC 

440 (p < 0.001, r  = 0.38) and dBC-gra (p < 0.001, r  = 0.29) (Table 3) using the late summer data sets. These results 

441 indicate that in late winter, an increase in mud content, used as a proxy for disturbance, does not lead to beta 

442 diversity changes but in late summer, it leads to (1) an increase in beta diversity driven by a species replacement 

443 and (2) an increase in abundance based dissimilarity driven by an abundance gradient. Ordination plots of 

444 similarities (nMDS) of macrofaunal assemblages based on βsor, βsim, βnes, dBC, dBC-bal and dBC-gra indices were 

445 performed in late winter and late summer (Fig. 5 and 6). In late winter, the correlation between the mud content 

446 and the different nMDS plots was significant for βsor (p = 0.008), βnes (p = 0.023), dBC (p = 0.019) and dBC-gra (p = 

447 0.027). The mud content explained 30.67% of the ordination based on βsor and 24.54% of the ordination based on 

448 βnes. Similarly, 26.93% and 24.51% of the ordination based on dBC and dBC-gra respectively where explained by the 

449 mud content. In late summer, the correlation between the mud content and the different nMDS plots was significant 

450 and much higher for all the indices; βsor (p = 0.001), βnes (p = 0.036), βsim (p = 0.001), dBC (p = 0.001), dBC-gra (p = 

451 0.002) and dBC-bal (p = 0.006). Indeed, the mud content explained over 50% of the ordination based on βsor (r² = 
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452 53.07%) and dBC (r² = 52.76%), around 40% of the ordination based on βsim (r² = 39.23%) and dBC-gra (r² = 41.33%), 

453 and between 20 and 30% of βnes (r² = 21.25%) and dBC-bal (r² = 29.56%). When the correlation was significant, the 

454 fitted mud contents were plotted on the corresponding nMDS plots (Fig. 5 and 6). The correlation between the 

455 disturbance proxy and the different nMDS plots showed a pattern similar to the one revealed by the late summer 

456 Mantel test, with beta diversity changes mainly driven by a species turnover and an abundance gradient. 

457

458 4. Discussion

459 4.1. Engineered structures cause grain-size distribution changes

460 Environmental engineering effects are composed of two types of changes, structural and abiotic changes, 

461 structural changes being caused by ecosystem engineers and inducing abiotic changes (Jones et al., 2010). S. 

462 alveolata is capable of biologically modifying soft sediments by selectively gluing together bioclastic sand 

463 particles, in order to build its tube (Fournier et al., 2010). This leads to the transformation of an initial soft sediment 

464 into a three-dimensional hard substratum with a long lasting resistance to physical loading via the secreted organic 

465 cement (Le Cam et al., 2011). Sabellaria alveolata can therefore be considered as a “structural engineer” according 

466 to Berke (2010). Structural changes caused by physical ecosystem engineers result in a variation in the distribution 

467 of fluid and solid material termed abiotic changes (Jones et al., 2010). In the case of S. alveolata, a direct abiotic 

468 engineering effect observable through the engineered sediments and an indirect one, observable through the 

469 associated sediments, were detected. Engineered and associated sediments presented, at both sampling periods, a 

470 coarser texture than the control sediments, confirming the impact Sabellariidae polychaetes have on the local 

471 sediment’s texture by selecting sand particles of a specific size to build their tubes (Phragmatopoma caudata (= 

472 P. lapidosa) (Gram, 1968; Kirtley and Tanner, 1968; Main and Nelson, 1988), Sabellaria vulgaris (Wells, 1970), 

473 Sabellaria nanella (Bremec et al., 2013)). Ultimately, these bioconstructing Sabellariidae species create reefs 

474 characterized by a grain-size distribution different from the local soft sediments. The case of the associated 

475 sediments raises the question of the definition of a reef habitat. In Europe, “reefs” are recognized as a marine 

476 habitat to be protected and are listed under Annex I of the EC Habitats Directive (Council Directive EEC/92/43 

477 on the Conservation of Natural Habitats and of Wild Fauna and Flora) under the designation of Special Areas of 

478 Conservation (SACs). They are defined as “submarine or exposed at low tide, rocky substrates and biogenic 

479 concretions”. In the light of our findings, we can very well consider the engineered and the associated sediments 

480 as the same sediment but under two different forms, a consolidated (engineered sediments) and an unconsolidated 
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481 form (associated sediments). Hence, we propose to widen the definition of a “reef” to include the non-engineered 

482 sediments under its direct influence. 

483 The main difference between the engineered and associated sediments concerns their mud content. At 

484 both seasons, the engineered sediments have a mean mud content around 10 %, as previously observed by Le Cam 

485 et al. (2011). Sabellaria wilsoni veneers have also been reported to present consistent silt and clay contents across 

486 two contrasting seasons (rainy and dry seasons in Ataide et al., 2014) indicating that Sabellariidae polychaetes 

487 build new habitats presenting stable sedimentary conditions. The mud present in the engineered sediments is 

488 located in small cracks and crevices protected from the main hydrodynamic processes (i.e. winter storms, tidal 

489 currents and swell). Conversely, the associated sediments are characterized by a steep and significant increase in 

490 mud content between winter (2 %) and summer (21 %). As shown by Caline et al. (1988) for the Sainte-Anne reef 

491 (MSMB), localized mud depositions are linked to hydrodynamic and associated hydro-sedimentary processes 

492 induced by the presence of the reef itself and of the mussel farms (bouchots) in front of the reef (McKindsey et al., 

493 2011). These mud depositions are observed behind reef structures important enough to act as physical barriers 

494 (Caline et al., 1988), where they are generally superficial and consequently easily eroded by strong wave action, 

495 limiting their presence in winter.

496 4.2. Engineered structures enhance benthic primary production and potentially microbial activity

497 As reported by Jones et al. (2010), abiotic changes induced by physical engineering activity can 

498 themselves cause biotic changes. Our results clearly show that at both seasons, associated sediments have a higher 

499 organic matter content compared with the control sediments. At both seasons, high levels of organic matter were 

500 associated with high chlorophyll a concentrations, indicating that part of the organic matter present in the 

501 associated sediments is the consequence of MPB development. The high benthic primary production promoted by 

502 the Sainte-Anne reef, compared to a generally lower benthic production in the MSMB as measured by Davoult et 

503 al. (2008) and Migné et al. (2009), confirms its important biotic engineering effect. Similar results were found for 

504 the invading intertidal reef-forming polychaete Ficopomatus enigmaticus (Bruschetti et al., 2011), for shallow 

505 oyster reefs (Crassostrea virgina, Newell et al., 2002) and for intertidal mussel beds (Engel et al., 2017). According 

506 to Berke (2010), “structural engineers operate through similar processes and have similar types of effects”. 

507 Consequently, the creation of benthic primary production hotspots by reef-building structural engineers could be 

508 a general property of these marine species. Nonetheless, this phenomenon was observed at the scale of the largest 

509 and probably oldest S. alveolata reef in Europe (Audouin and Milne-Edwards, 1832) and the study by Engel et al. 

510 (2017) highlighted the importance of the size and age of the bioconstruction in promoting local benthic microalgae. 
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511 Hence, further studies are needed to confirm the general role of S. alveolata reefs as “biological power stations” 

512 (Engel et al., 2017).

513 Furthermore, the high chlorophyll a concentrations measured in late winter and late summer indicate that 

514 S. alveolata reefs promote an important benthic primary production all year round, that could be a relevant food 

515 source for deposit- (Kanaya et al., 2008) and suspension-feeders (Lefebvre et al., 2009) through resuspension 

516 processes (Hylleberg, 1975; Ubertini et al., 2015). In the associated sediments, MPB often grows on small 

517 accumulations of pure mud and is consequently easily eroded and available to consumers. Such benthic primary 

518 production may have a trophic importance during the winter months (Lefebvre et al., 2009), when the 

519 phytoplankton production is typically low (Arbach Leloup et al., 2008; Cugier et al., 2010). Filter feeding mollusks 

520 are known to stimulate MPB growth (Engel et al., 2017; Newell et al., 2002) via inorganic nutrient release (i.e. 

521 carbon, nitrogen and phosphorus (van Broekhoven et al., 2014)) and bacterial remineralization of their biodeposits 

522 (van Broekhoven et al., 2015).  Similarly, S. alveolata produces large amounts of feces and pseudofeces visible on 

523 the sediment (Dubois et al., 2005), that could favor MPB growth. Primary production could also be enhanced by 

524 the presence of other suspension-feeders living in the engineered sediments, such as Magallana gigas, which can 

525 reach densities of 100 ind.m-2 as measured in the disturbed engineered sediments using the quadrats. As already 

526 observed in Ficopomatus enigmaticus reefs (Bruschetti et al., 2011), S. alveolata reefs probably increase the 

527 bentho-pelagic coupling by linking pelagic organic matter to the benthic compartment via their suspension-feeding 

528 activity and biodeposition. 

529 In late winter and late summer, associated sediments had consistently higher soluble carbohydrate 

530 concentrations than the control sediments. Carbohydrates are the components of the mucus coating the pseudofeces 

531 produced by S. alveolata and other suspension-feeders (van Broekhoven et al., 2015). Hence, when these 

532 pseudofeces are deposited on the associated sediments, it could increase their concentration in soluble 

533 carbohydrates. Soluble carbohydrates also compose the extracellular polymeric substances produced by benthic 

534 diatoms (Bellinger et al., 2009) and are an important source of organic carbon, rapidly consumed by heterotrophic 

535 microorganisms present in the sediment (Bhaskar and Bhosle, 2005; Goto et al., 2001). Consequently, S. alveolata 

536 presence could support all year round an important bacterial activity through the soluble carbohydrates excreted 

537 by the diatoms and present in the mucus coating the biodeposits. This organic carbon can either be used by the 

538 bacteria for their growth (bacterial biomass production) or be remineralized (bacterial respiration) as showed by 

539 Hubas et al. (2006). In the first case, the bacteria can be a source of food for infaunal organisms such as nematodes 

540 and become an important trophic link in structuring energy fluxes in the community (Pascal et al., 2009, 2008). In 
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541 the second case, the bacteria release inorganic nutrients such as carbon (Jiao et al., 2010), which can then be used 

542 by photoautotrophs present in the sediment (e.g. diatoms) or in the water column (e.g. phytoplankton) further 

543 maintaining the local primary production. 

544 Furthermore, according to Delmas (1983), an insoluble/soluble carbohydrate ratio (Ins/Sol) ranging 

545 between 6 and 8 indicates a low degradation rate of the organic matter, while a ratio varying between 10 and 30 

546 reflects a high degradation rate. Delmas (1983) also suggests using the Ins/Sol ratio as a proxy for the C/N ratio. 

547 Mean Ins/Sol ratios were not significantly different between the associated and control sediments with values 

548 around 8.6 in late winter, and 6.0 in late summer, indicating that S. alveolata does not affect the organic matter 

549 degradation rate in soft sediments; it is consistently of good quality and weakly degraded. Nonetheless, in late 

550 summer, the organic matter present in the control and associated sediments appears less degraded and more easily 

551 incorporable in the food web than in late winter, probably in response to a higher biological activity of 

552 photoautotrophs and bacterial communities (Hubas et al., 2006).

553 4.3. Engineered structures create an original macrofauna assemblage linked to the sedimentary changes

554 In addition to promoting the local benthic production, S. alveolata strongly modifies the macrofauna 

555 assemblages present in the engineered and associated sediments compared to the control sediments and this 

556 difference is present at both sampling seasons. Consequently, S. alveolata engineers two original species 

557 assemblages, one associated with the actual bioconstructions and the other associated with the sediments 

558 surrounding these structures. In late winter and late summer, the environmental parameter primarily responsible 

559 for macrofauna differences between the three sediment types is the ecosystem engineer via its biomass. Studies on 

560 other ecosystem engineers have demonstrated a similar structuring effect of the engineer on the macrofauna, for 

561 example via Haploops nirae density in subtidal mats (Rigolet et al., 2014) and Lanice conchilega density in 

562 intertidal beds (De Smet et al., 2014). The benthic macrofauna is secondarily structured by the principal mode and 

563 the organic matter content of the sediments, two environmental parameters reported to structure soft sediment 

564 macrofauna communities in a large diversity of sites such as the intertidal flats of the Schelde estuary (Ysebaert 

565 and Herman, 2002) and over multiple spatial scales in Portuguese transitional water systems (Veiga et al., 2016). 

566 In our case, these two parameters are influenced by S. alveolata, indicating the importance of this engineer species 

567 in structuring the local benthic macrofauna.

568 Structural diversity analyses indicate that assemblages present in the associated and control sediments are 

569 similarly structured in late winter and late summer. Dominant species are mainly polychaetes (e.g. Goniadella 

570 bobrezkii) and mollusks species (e.g. Crepidula fornicata) in the associated sediments and the mollusks Limecola 
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571 balthica and Cerastoderma edule in the control sediments, with a consortium of less abundant species. 

572 Furthermore, the benthic fauna present in the associated sediments appears as a combination of species living in 

573 the two other sediment types, enriched by polychaete species such as Glycera tridactyla, Protodorvillea kefersteini 

574 and Saccocirrus papillocercus. These three polychaete species are either carnivore-scavengers or surface deposit-

575 feeders, with important movement capacities, key biological traits in organic matter rich and variable environments 

576 (Rigolet et al., 2014) like the associated sediments. The overlapping observed between the control and associated 

577 sediments is much more pronounced in late summer, after the recruitment period (Thorin et al., 2001) and is caused 

578 by a few species (e.g. Cerastoderma edule, Limecola balthica or Nephtys hombergii). Cerastoderma edule 

579 recruitment and settlement of macrozoobenthos larvae is known to be enhanced coastward of mussel beds due to 

580 a decrease in hydrodynamic forces caused by these bioengineered habitats (Commito et al., 2005; Donadi et al., 

581 2014, 2013). Similarly, S. alveolata reefs act as natural breakwaters limiting hydrodynamic energy, which could 

582 lead to an enhanced recruitment of macrobenthic species like Cerastoderma edule and Limecola balthica. This 

583 phenomenon is a lot less visible in winter maybe indicating that these species do not survive the variable 

584 environmental conditions characterizing the associated sediments or the winter temperatures. Indeed, locals 

585 repeatedly come to the Sainte-Anne reef to dig up bivalves like cockles (Cerastoderma edule) and Japanese carpet 

586 shells (Ruditapes philippinarum) enhancing small-scale spatial heterogeneity and potentially leading to changes 

587 in the macrofauna of the associated sediments (Watson et al., 2017). We also recorded inside the associated 

588 sediments some species generally present in the engineered sediments, like P. cultrifera or G. vulgaris. This can 

589 be caused by the presence of broken reef parts in the associated sediments, because of the variable sedimentary 

590 preferences of some species  (e.g. G. vulgaris) or because of the use of the associated sediments by some species 

591 to move between reef patches (e.g. Perinereis cultrifera).

592 Species richness and associated macrofauna density were always highest in the engineered sediments than 

593 in the two soft sediments, stressing S. alveolata’s role in enhancing local biodiversity and abundance. Our results 

594 confirm previous studies on S. alveolata reefs (Dias and Paula, 2001; Dubois et al., 2002; Holt et al., 1998) and 

595 agree with a large body of literature reporting positive effects of tubiculous polychaete species (De Smet et al., 

596 2015), reef-building polychaetes (McQuaid and Griffiths, 2014) and bivalves (Gutiérrez et al., 2003; Lejart and 

597 Hily, 2011; Norling and Kautsky, 2007) on species richness and associated fauna abundances. Intertidal engineers 

598 like S. alveolata create new complex habitats that reduce pressures such as thermal and hydric stress and increase 

599 the number of primary producers (i.e. MPB and ulva), potentially extending trophic niches and overall leading to 

600 a biodiversity increase (Bouma et al., 2009; Jones et al., 1997; Stachowicz, 2001). New environmental conditions 
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601 created by S. alveolata also lead to the paradox mentioned by Bertness et al. (1999), and facilitate the colonization 

602 of intertidal zones by subtidal species, like the polychaete Spirobranchus lamarcki or the gastropod Crepidula 

603 fornicata. 

604 Structural diversity indices calculated for the engineered sediments (considering S. alveolata) and the beta 

605 diversity analysis both reveal a change between late winter and late summer in how the macrofauna is structured. 

606 In late winter, N1 and N2 are both significantly lower than in the two other sediment types while in late summer, 

607 macrofauna density in the engineered sediments is distributed similarly than in the associated and control 

608 sediments. Consequently, during winter S. alveolata dominates more strongly the engineered sediments than the 

609 dominant species present in the associated and control sediments, a result similar to the Haploops nirae habitats 

610 in summer (Rigolet et al., 2014). Differently, in late summer S. alveolata does not affect the community structure 

611 in a different way than other abundant species do in the associated (Crepidula fornicata, Cirriformia tentaculata, 

612 Mediomastus fragilis, Goniadella bobrezkii) and control sediments (Cerastoderma edule, Limecola balthica, 

613 Lanice conchilega, Malmegrenia arenicolae and Nepthys spp.). Regarding beta diversity, it significantly increases 

614 along the disturbance gradient in late summer but not in late winter. These observed contrasts between the two 

615 seasons can have two causes, probably acting in synergy: a low S. alveolata recruitment and an important 

616 recruitment of associated species. This last argument was also suggested by Mateo-Ramirez et al. (2015) to explain 

617 the increase in decapod abundance associated with Posidonia oceanica meadows, between winter-spring and 

618 summer-autumn. In the MSMB, the recruitment success of S. alveolata is known to be strongly year-to-year 

619 variable depending on the synchrony between favorable environmental conditions (tidal and meteorological 

620 conditions) and main reproductive periods (Ayata et al., 2009), and 2015 seemed to be a year characterized by low 

621 settlement rates (pers. obs.). A weak S. alveolata recruitment leads to a decrease in spatial competition between 

622 the engineer and other macrofauna species favoring recruitment of associated species. Indeed, between winter and 

623 summer, many other benthic species recruit in the MSMB (Thorin et al., 2001) and biogenic habitats like Mytilus 

624 edulis and Crepidula spp. beds, are known to favor recruitment of pelagic larvae (Berke, 2010) by affecting 

625 boundary-layer flow (Eckman, 1983). Consequently, a low S. alveolata recruitment associated with the upraised 

626 position of the reef in a soft bottom environment and the absence of neighboring hard substratum, one exception 

627 being the off-bottom mussel farms, lead to an important recruitment of benthic larvae to the Sainte-Anne reef. The 

628 hard nature of the engineered sediments can also act as either a support for egg capsules (e.g. Nucella lapillus) or 

629 an attractant for pelagic larvae of rocky shore species like Gibbula umbilicalis or Eulalia viridis (Kingsford et al., 

630 2002). When S. alveolata is excluded, N1 and N2 values are systematically higher in the engineered sediments, a 
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631 pattern unaffected by season. Sabellaria alveolata associated macrofauna shows a structuration similar to Lanice 

632 conchilega intertidal beds (De Smet et al., 2015) when compared to non-engineered sediments. De Smet et al. 

633 (2015) also recorded the lack of a temporal effect on N1 and N2. Consequently, despite its strong dominance, S. 

634 alveolata creates a species-rich habitat where individuals are overall equitably distributed between taxa. 

635 4.4. Engineered sediment disturbance and mechanisms linked to beta diversity changes 

636 S. alveolata reefs are subject to various disturbances causing changes in species richness and composition 

637 (Dubois et al., 2006b, 2002; Plicanti et al., 2016) but not in diversity indices (Dubois et al., 2002). According to 

638 Clarke and Gorley (2006), diversity indices are unable to detect subtle changes in complex communities like S. 

639 alveolata reefs. Hence, using beta diversity and abundance-based dissimilarity along a continuum can help us  

640 detect these changes and better understand how disturbances affect the macrofauna associated with the reef. The 

641 Mantel tests indicate that in summer the beta diversity increases along the disturbance gradient, driven by a species 

642 turnover and an increase in species abundances. Differently, the multidimensional ordinations based on Sørensen 

643 and Bray-Curtis dissimilarities, are at both seasons significantly correlated with the mud content. Consequently, 

644 mud appears as a driver of beta diversity changes all year round but its importance increases between late winter 

645 and late summer. 

646 All year round, mud can act directly as an environmental filter for some benthic species present inside the 

647 reef and lead to a beta diversity increase (Baselga, 2010). Indeed, mud could play the same environmental filter 

648 role in the engineered sediments as it does in soft sediments (Anderson, 2008; Ysebaert and Herman, 2002). 

649 Disturbances to the reef also increase its structural complexity and frees space creating new microhabitats. The 

650 increase in the engineered sediment’s complexity and heterogeneity, linked to our disturbance proxy, lead to an 

651 increase in species richness and beta diversity (Ellingsen and Gray, 2002) by mechanisms like the provision of 

652 refuges from predation and physical stressors (Margiotta et al., 2016). Finally, disturbed engineered sediments are 

653 more fragmented than their undisturbed counterparts. The important spatial continuity characterizing platform 

654 reefs (Dubois et al., 2002) and engineered sediments in “good ecological status” (Desroy et al., 2011) lead to an 

655 increase in the dispersal potential of mobile predators like decapods (e.g. Carcinus maenas), gastropods (e.g. 

656 Ocenebra erinaceus) and errant polychaetes (e.g. Eulalia viridis). In an experimental microbial landscape, 

657 dispersal had a negative effect on local community, metacommunity and landscape beta diversity (Sørensen 

658 dissimilarity) mainly because of predation by generalist predators (Cadotte and Fukami, 2005). Consequently, all 

659 year round, negative biotic interactions are probably acting in synergy with environmental sorting and habitat 

660 complexity to shape the observed beta diversity changes. 
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661 Between late winter and late summer, many benthic species recruit. The recruitment of benthic species to 

662 soft bottom sediments is known to be under the influence of biotic factors like organic content and food supply 

663 (Snelgrove and Butman, 1994). In spring-summer, the mud present in the disturbed engineered sediments is 

664 probably richer in organic matter, presenting a better quality compared to winter, as suggested by the associated 

665 sediment results. Multiple facts go in this direction. First, part of the spring phytoplankton bloom is known to 

666 sediment, potentially enriching the mud in fresh organic matter (Cugier et al., 2010). Second, during spring and 

667 summer green algae develop on the reef (Dubois et al., 2006b) enriching the mud in fresh detritus. Finally, in 

668 spring and summer S. alveolata and other suspension-feeders (Magallana gigas and Mytilus cf. galloprovincialis) 

669 increase their metabolic rates (Gillooly et al., 2001) and consequently produce more feces and pseudofeces, which 

670 could further enrich the mud in organic matter. In the end, changes in abiotic factors (topographic complexity, 

671 spatial competition and presence of microdepositional environments (small gapes in the reef filled with fine 

672 sediments, Snelgrove et al., 1993)) associated with changes in trophic factors (trophic competition, trophic cues 

673 (green algae and MPB present on and around the tubes – pers. obs.)) probably act in synergy and cause the 

674 recruitment of a richer and different assemblage of species in the disturbed reef parts compared to the undisturbed 

675 ones. Indeed, our results show an increase settlement of opportunistic and deposit-feeding species, like Capitella 

676 capitata, Cirriformia tentaculata, Parathelepus collaris and Tharyx killariensis, and of species presenting a high 

677 affinity for mud (Corophium volutator) in the more disturbed reefs. In the same time, the release in spatial and 

678 trophic competition linked to a decrease in the engineer density, favors the settlement of suspension-feeding 

679 species like Magallana gigas and Porcellana platycheles. In late summer, some of these species are present in 

680 very high densities like P. platycheles (up to 9000 ind.m-2), Achelia spp. (up to 7000 ind.m-2) or Corophium 

681 volutator (up to 5000 ind.m-2), while the others are less abundant. In the end, the interplay between recruitment 

682 and the engineered sediments dynamics seem responsible for the observed species turnover and abundance 

683 increase along the disturbance gradient. In addition, other factors linked to an increasing disturbance, like a higher 

684 oyster cover (Magallana gigas) probably also structure the associated fauna as shown by Dubois et al. (2006). 

685 Indeed, oyster shells provide a suitable substratum for many sessile species and are known to enhance species 

686 richness and abundance (Lejart and Hily, 2011).

687 Finally, the late winter and late summer multidimensional ordinations also show that at both seasons, mud 

688 rates above 10-12% induce a homogenization of the species composition, congruently with results of Balata et al. 

689 (2007). They reported that in subtidal rocky reefs structured by the coralline algae Lithophyllum spp., the 

690 sedimentation “reduced the dissimilarity between assemblages overriding the influence of inclination of the 
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691 substratum on beta diversity”. The packing of samples ordinated by dBC is also greater for mud contents above 

692 12% indicating that high mud contents not only streamline the species composition but also their absolute 

693 abundances. 

694

695 Conclusion

696 Our results illustrate the need to protect a system in its integrity and not just parts of it. In our case, future 

697 conservation plans should consider S. alveolata reefs and associated sediments as an ecological entity. These 

698 habitats are in theory targeted by the European Union’s Habitats Directive 92/43/EEC (habitat type 1170 ‘Reef’) 

699 but in practice, very few reefs are protected. In the Sainte-Anne reef, a local legislation prohibits the harvesting of 

700 bivalves in the associated soft sediments (e.g. Ruditapes philippinarum) but not on the engineered sediments (e.g. 

701 Magallana gigas) increasing anthropogenic disturbances to the reef. In this context, prohibiting such practices 

702 until interactions between S. alveolata and M. gigas, particularly regarding benthic primary production and trophic 

703 competition, are clearly elucidated, should be considered. 

704 Furthermore, the biogenic habitat created by S. alveolata is home to an original species assemblage 

705 presenting a high richness and density all year round, a case similar to many other structural engineers (Berke, 

706 2010; Jones et al., 1994). These habitats are subject to numerous environmental and anthropogenic disturbances 

707 leading to changes in their physical structuration and complexity. In the MSMB, these changes are associated with 

708 the establishment of mud inside the engineered sediments, the increase in microhabitat availability and more 

709 diversified food sources. All year round, these differences act as environmental filters for post-recruits and 

710 juveniles. During the summer recruitment period, these differences act as cues for settling larva, leading to an 

711 enhanced recruitment inside the more disturbed reefs. In the end, during the spring-summer period, an increasing 

712 disturbance leads to an increase in species richness, a change in the species present in the engineered sediments 

713 (turnover) and to higher abundances (abundance gradient). This species turnover pleads for a recognition of the 

714 ecological value the “degraded” S. alveolata reefs have, as biodiversity and recruitment promoters.  

715 Finally, our results are in contradiction with a study reporting that increasing disturbances to mussel beds 

716 increased patchiness and in the end reduced the diversity of the associated macrofauna (Díaz et al., 2015), 

717 highlighting the variable response fauna associated to structural engineers can have to disturbances. These different 

718 results also stress the importance of spatial and temporal scale on evaluating the impact disturbances have on 

719 biodiversity, as reported by Lepori and Hjerdt (2006) for aquatic systems.

720
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1054 Fig. 1. Schematic overview presenting the habitat modifications caused by (1) the establishment of an ecosystem 

1055 engineer and (2) disturbances of the engineered sediment. Recruitment of S. alveolata leads to the formation of a 

1056 biologically modified sediment (engineered sediment) and to a soft sediment under the influence of the engineered 

1057 sediment (associated sediment). Engineered sediment then face direct (e.g. trampling, storms) and/or indirect 

1058 disturbances (e.g. shellfish farming) which can lead to a gradual alteration.

1059

1060 Fig. 2. PCO analysis of macrobenthos associated with the three sediment types in late winter. The analysis is based 

1061 on Bray-Curtis similarities of log transformed density data. The black diamonds, the grey squares and the light 

1062 grey circles represent the engineered, the associated and the control sediment samples respectively. Vectors 

1063 represent species correlating more than 60% with one of the first two PCO axes. The correlations are based on 

1064 Spearman coefficients. ASIM: Achelia simplex, CEDU: Cerastoderma edule, CFOR: Crepidula fornicata, CMAE: 

1065 Carcinus maenas, CVOL: Corophium volutator, GBOB: Goniadella bobrezkii, GUMB: Gibbula umbilicalis, 

1066 GVUL: Golfingia vulgaris, LBAL: Limecola balthica, LLEV: Lekanesphaera levii, LRUG: Lekanesphaera 

1067 rugicauda, McfGAL: Mytilus cf. galloprovincialis, MFRA: Mediomastus fragilis, MGIG: Magallana gigas, 

1068 MPAL: Melita palmata, NCIR: Nephtys cirrosa, NLAP: Nucella lapillus, PCUL: Perinereis cultrifera, PPLA: 

1069 Porcellana platycheles. 

1070

1071 Fig. 3. PCO analysis of macrobenthos associated with the three sediment types in late summer. The analysis is 

1072 based on Bray-Curtis similarities of log transformed density data. The black diamonds, the grey squares and the 

1073 light grey circles represent the engineered, the associated and the control sediment samples respectively. Vectors 

1074 represent species correlating more than 60% with one of the first two PCO axes. The correlations are based on 

1075 Spearman coefficients. AECH: Achelia echinata, ALAE: Achelia laevis, ASIM: Achelia simplex, CEDU: 

1076 Cerastoderma edule, CMAE: Carcinus maenas, CVOL: Corophium volutator, EORN: Eulalia ornata, GBOB: 

1077 Goniadella bobrezkii, GMAX: Gnathia maxillaris, GUMB: Gibbula umbilicalis, GVUL: Golfingia vulgaris, 

1078 LBAL: Limecola balthica, LCON: Lanice conchilega, LLEV: Lekanesphaera levii, LRUG: Lekanesphaera 

1079 rugicauda, MARE: Malmgrenia arenicolae, McfGAL: Mytilus cf. galloprovincialis, MFRA: Mediomastus 

1080 fragilis, MGIG: Magallana gigas, MPAL: Melita palmata, NCIR: Nephtys cirrosa, NEMA: Nematoda spp., 

1081 NEME: Nemerte sp., NHOM: Nephtys hombergii, NLAP: Nucella lapillus, NMIN: Nephasoma minutum, OCTE: 

1082 Odontosyllis ctenostoma, PCUL: Perinereis cultrifera, PPLA: Porcellana platycheles. 
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1084 Fig. 4. dbRDA plots based on a) the late winter data set and b) the late summer data set and representing the three 

1085 sediment type macrofauna composition as explained by the set of environmental parameters composing the most 

1086 parsimonious explanatory model. Vectors represent the environmental parameters selected by the DistLM routine. 

1087 The black diamonds, the grey squares and the light grey circles represent the engineered, the associated and the 

1088 control sediment samples respectively.

1089

1090 Fig. 5. Late winter nMDS ordination plots of the benthic macrofauna assemblages based on a) the Sørensen total 

1091 beta diversity, b) the nestedness component of the total beta diversity, c) the Bray-Curtis index of dissimilarity and 

1092 d) the abundance gradient component of the Bray-Curtis dissimilarity. The stress value of the nMDS is indicated 

1093 on each plot. The lines indicate the different fitted mud contents obtained using the ‘ordisurf’ function. 

1094

1095 Fig. 6. Late summer nMDS ordination plots of the macrofauna benthic assemblages based on a) the Sørensen total 

1096 beta diversity, b) the turnover component of the total beta diversity, c) the nestedness component of the total beta 

1097 diversity, d) the Bray-Curtis index of dissimilarity, e) the abundance gradient component of the Bray-Curtis 

1098 dissimilarity and f) the balanced variation in abundances component of the Bray-Curtis dissimilarity. The stress 

1099 value of the nMDS is indicated on each plot. The lines indicate the different fitted mud contents obtained using 

1100 the ‘ordisurf’ function. 
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1143 Tables 1, 2 and 3

1144 Table 1 Mean values (± standard errors) for (a) the grain-size parameters of the three sediment types (engineered, 

1145 associated and control) and (b) the environmental parameters for the associated and the control sediments. 

1146 Significant differences (p < 0.05) of the one-way ANOVAs are in bold and for (a), post-hoc results are designated 

1147 by superscript letters indicating homogenous groups of samples. TOM: total organic matter content, Chl a: 

1148 chlorophyll a concentration, Pheo: pheopigments concentration, Sol: soluble carbohydrates concentration, Ins/Sol: 

1149 ratio of the concentration of insoluble carbohydrates on soluble carbohydrates.

(a) Late winter Late summer
Engineered Associated Control p-value Engineered Associated Control p-value

Principal     
mode (µm)

688 ± 35a 1010 ± 118a 186 ± 8b < 0.001 618 ± 8a 692 ± 74a 201 ± 9b < 0.001

Sorting index  
(S0)

1.71 ± 0.05a 1.72 ± 0.05a 2.97 ± 0.34b < 0.001 1.69 ± 0.05a 2.98 ± 0.45b 2.70 ± 0.37b 0.018

Mud (%)       
(< 63 µm)

10.00 ± 0.83a 1.84 ± 0.44b 27.38 ± 3.62a < 0.001 9.59 ± 1.22a 20.47 ± 5.37a 21.61 ± 5.23a 0.106

Sand (%)       
(63-200 µm)

87.19 ± 0.83a 76.74 ± 1.40b 71.69 ± 3.53b < 0.001 85.77 ± 1.40a 65.11 ± 4.09b 76.79 ± 5.17ab 0.001

1150
(b) Late winter Late summer

Associated Control p-value Associated Control p-value
TOM (%) 6.96 ± 0.72 2.70 ± 0.30 <0.001 4.91 ± 0.59 2.26 ± 0.28 <0.001
Chl a (µg.g-1 sediment) 12.21 ± 2.49 2.83 ± 0.58 0.0022 13.39 ± 2.24 3.92 ± 0.88 0.002
Pheo (µg.g-1 sediment) 14.54 ± 0.36 16.18 ± 0.36 0.0014 15.56 ± 0.53 15.41 ± 0.29 0.826
Sol (µg.g-1 sediment) 442 ± 72 113 ± 25 0.0027 467 ± 78 120 ± 25 <0.001
Ins/Sol 8.59 ± 2.29 8.63 ± 0.37 0.9998 5.96 ± 0.43 6.32 ± 0.33 0.5175
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1163 Table 2 Mean values (± standard errors) for the total macrofauna density (number of individuals.m-²), N0, N1 and 

1164 N2 with (a) Sabellaria taken into account and (b) Sabellaria excluded, for the three sediment types (engineered, 

1165 associated and control) and at both sampling periods (late winter and late summer). N0 represents the species 

1166 richness, N1 the exponential of the Shannon-Winner diversity and N2 the inverse of the Simpson dominance index. 

1167 Significant differences (p < 0.05) of the one-way ANOVAs are in bold and post-hoc results are designated by 

1168 superscript letters indicating homogenous groups of samples.

Late winter Late summer
(a) Macrofauna (Sabellaria included in the analyses)

Engineered     Associated       Control     p-value Engineered Associated         Control p-value 
Density 10067 ± 841a 585 ± 102b 629 ± 109b <0.001 23911 ± 2530a 1029 ± 156b 1403 ± 351b <0.001

N0 17 ± 1a 7 ± 1b 8 ± 1b <0.001 26 ± 1a 9 ± 1b 10 ± 1b <0.001

N1 2.92 ± 0.37a 4.46 ± 0.50b 4.54 ± 0.37b 0.013 6.01 ± 0.65a 4.61 ± 0.38a 5.22 ± 0.28a 0.229

N2 1.87 ± 0.23 a 3.75 ± 0.40 b 3.60 ± 0.28 b <0.001 3.93 ± 0.44a 3.44 ± 0.30a 4.04 ± 0.25a 0.315
(b) Macrofauna (Sabellaria excluded from the analyses)

Engineered     Associated       Control     p-value Engineered Associated         Control p-value 
Density 2385 ± 518 a 538 ± 91 b 629 ± 109b <0.001 11066 ± 1814a 981 ± 137b 1403 ± 351b <0.001

N0 16 ± 1 a 7 ± 1 b 8 ± 1b <0.001 25 ± 1a 9 ± 1b 10 ± 1b <0.001

N1 7.73 ± 0.51 a 4.30 ± 0.49 b 4.54 ± 0.37b <0.001 9.00 ± 0.52a 4.51 ± 0.37b 5.22 ± 0.28b <0.001

N2 5.63 ± 0.42 a 3.64 ± 0.39 b 3.60 ± 0.28 b <0.001 5.82 ± 0.38a 3.36 ± 0.30b 4.04 ± 0.25b <0.001
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1183 Table 3 Results of the Mantel tests between (a) the different beta diversity matrices and the mud content distance 

1184 matrix and (b) the different abundance-based dissimilarity matrices and the mud content distance matrix at both 

1185 sampling periods (late winter and late summer). βsor is the Sørensen pairwise dissimilarity and accounts for the 

1186 total beta diversity, βsim is the Simpson pairwise dissimilarity and accounts for the turnover component of the total 

1187 beta diversity, βnes is the nestedness-resultant dissimilarity and accounts for the nestedness component of the total 

1188 beta diversity; βsor = βsim + βnes. dBC is the Bray-Curtis index of dissimilarity and accounts for the total abundance-

1189 based dissimilarity, dBC-bal is the balanced variation in abundances component of the Bray-Curtis dissimilarity and 

1190 is equivalent to an abundance-based turnover, dBC-gra is the abundance gradient component of Bray-Curtis 

1191 dissimilarity and is equivalent to an abundance-based nestedness; dBC = dBC-bal + dBC-gra. Significant simulated p-

1192 values (p < 0.05) and associated observed correlation are in bold.

Late winter Late summer

Observed correlation r Simulated p-value Observed correlation r Simulated p-value

(a) Beta diversity indices 

βsor 0.13 0.070 0.24 <0.001

βsim 0.066 0.23 0.15 0.0066

βnes 0.032 0.33 0.077 0.094

(b) Abundance based dissimilarity indices 

dBC 0.14 0.052 0.38 <0.001

dBC-bal 0.050 0.28 0.058 0.18

dBC-gra 0.046 0.28 0.29 <0.001

1193

1194

1195

1196

1197

1198

1199

1200

2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360



41

1201 Appendix Mean densities (number of individuals.m-2) of species present in each sediment type (control, associated and engineered) at the two sampling seasons (late winter 

1202 and late summer). The mean densities were calculated using the ten stations sampled in each sediment type and at each season.

Species Late winter Late summer
Control Associated Engineered Control Associated Engineered

Polychaete Acromegalomma vesiculosum 0.00 0.00 0.00 0.00 0.00 2.48
Ampharete baltica 0.00 0.00 0.00 0.00 1.24 0.00
Aonides oxycephala 0.00 1.24 0.00 0.00 0.00 0.00
Aonides paucibranchiata 0.00 0.00 0.00 0.00 6.20 0.00
Armandia polyophthalma 1.24 0.00 0.00 0.00 0.00 0.00
Capitella capitata 6.20 0.00 0.00 1.24 0.00 1.24
Caulleriella alata 0.00 0.00 0.00 1.24 0.00 0.00
Cirriformia tentaculata 0.00 35.96 0.00 0.00 42.16 4.96
Dipolydora flava 0.00 0.00 0.00 0.00 0.00 4.96
Eteone flava 0.00 0.00 0.00 1.24 0.00 0.00
Eteone longa 0.00 0.00 0.00 3.72 3.72 0.00
Eulalia aurea 0.00 0.00 3.72 0.00 0.00 0.00
Eulalia clavigera 0.00 0.00 9.92 0.00 0.00 1.24
Eulalia ornata 0.00 0.00 1.24 0.00 0.00 93.01
Eulalia viridis 0.00 0.00 22.32 0.00 0.00 27.28
Eumida arctica 0.00 0.00 0.00 0.00 0.00 1.24
Eumida sanguinea 12.40 1.24 16.12 14.88 0.00 47.12
Eunereis longissima 0.00 0.00 0.00 3.72 0.00 0.00
Glycera alba 3.72 4.96 2.48 13.64 13.64 1.24
Glycera tridactyla 0.00 1.24 0.00 0.00 1.24 0.00
Goniadella bobrezkii 1.24 228.17 0.00 14.88 189.73 11.16
Lanice conchilega 62.00 0.00 0.00 602.67 8.68 0.00
Lepidonotus squamatus 0.00 0.00 2.48 0.00 0.00 0.00
Magelona johnstoni 1.24 0.00 0.00 1.24 0.00 0.00
Malacoceros fuliginosus 1.24 0.00 0.00 3.72 0.00 0.00
Malmgrenia arenicolae 6.20 3.72 0.00 142.61 2.48 0.00
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Mediomastus fragilis 6.20 65.72 6.20 13.64 280.26 44.64
Myrianida sp. 0.00 2.48 0.00 0.00 0.00 0.00
Mysta picta 1.24 0.00 0.00 0.00 0.00 0.00
Nephtys cirrosa 59.52 0.00 0.00 54.56 8.68 0.00
Nephtys hombergii 17.36 0.00 0.00 55.80 38.44 0.00
Nephtys sp. 1.24 0.00 0.00 0.00 0.00 0.00
Notomastus latericeus 16.12 2.48 1.24 48.36 2.48 48.36
Odontosyllis ctenostoma 0.00 1.24 12.40 0.00 0.00 271.57
Odontosyllis gibba 0.00 1.24 29.76 0.00 0.00 0.00
Parathelepus collaris 0.00 0.00 0.00 0.00 1.24 49.60
Perinereis cultrifera 0.00 7.44 164.93 0.00 1.24 146.33
Pholoe inornata 0.00 0.00 1.24 1.24 0.00 7.44
Phyllodoce laminosa 0.00 0.00 2.48 0.00 0.00 11.16
Phyllodoce mucosa 0.00 0.00 0.00 11.16 0.00 0.00
Polycirrus aurantiacus 0.00 3.72 0.00 0.00 0.00 0.00
Polycirrus sp. 0.00 0.00 7.44 0.00 0.00 0.00
Protodorvillea kefersteini 0.00 1.24 0.00 0.00 6.20 0.00
Pseudopolydora pulchra 0.00 1.24 0.00 0.00 0.00 0.00
Pseudopotamilla reniformis 0.00 0.00 0.00 0.00 0.00 3.72
Pygospio elegans 4.96 0.00 0.00 0.00 0.00 6.20
Sabellaria alveolata 0.00 47.12 7682.22 0.00 48.36 12844.62
Saccocirrus papillocercus 0.00 1.24 0.00 0.00 13.64 0.00
Scalibregma celticum 0.00 1.24 0.00 0.00 0.00 0.00
Scolelepis (Parascolelepis) tridentata 1.24 0.00 0.00 0.00 0.00 0.00
Scolelepis (Scolelepis) cantabra 0.00 0.00 0.00 0.00 2.48 0.00
Scoloplos (Scoloplos) armiger 14.88 0.00 0.00 4.96 0.00 0.00
Sphaerosyllis bulbosa 0.00 0.00 0.00 0.00 14.88 7.44
Sphaerosyllis sp. 0.00 1.24 0.00 0.00 0.00 0.00
Spio martinensis 6.20 0.00 0.00 0.00 0.00 0.00
Spio symphyta 0.00 0.00 0.00 2.48 0.00 0.00
Spirobranchus lamarcki 0.00 22.32 24.80 0.00 14.88 68.20
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Spirobranchus triqueter 0.00 0.00 1.24 0.00 0.00 0.00
Sthenelais boa 0.00 0.00 1.24 0.00 0.00 0.00
Syllis garciai 0.00 1.24 0.00 0.00 2.48 3.72
Syllis gracilis 0.00 0.00 2.48 0.00 1.24 11.16
Tharyx killariensis 126.49 2.48 0.00 1.24 2.48 1.24
Thelepus setosus 0.00 0.00 0.00 0.00 1.24 28.52
Websterinereis glauca 0.00 0.00 0.00 1.24 1.24 0.00

Crustacea Anapagurus sp. 0.04 0.00 0.00 0.00 0.00 0.00
Athanas nitescens 0.00 1.24 1.24 0.00 0.00 1.24
Bathyporeia elegans 0.00 0.00 0.00 7.44 0.00 0.00
Bathyporeia guilliamsoniana 34.72 0.00 0.00 0.00 0.00 0.00
Bathyporeia nana 0.00 0.00 0.00 1.24 0.00 0.00
Bathyporeia pelagica 1.24 0.00 0.00 4.96 0.00 0.00
Bathyporeia pilosa 0.00 0.00 0.00 2.48 0.00 0.00
Bodotria pulchella 0.00 0.00 0.00 0.00 1.24 0.00
Bodotria scorpioides 1.24 0.00 0.00 0.00 1.24 0.00
Cancer pagurus 0.00 0.00 2.48 0.00 0.00 1.24
Carcinus maenas 2.48 0.00 29.76 7.44 1.24 89.28
Cleantis prismatica 0.00 1.24 0.00 4.96 0.00 0.00
Corophium arenarium 3.72 0.00 18.60 0.00 0.00 29.76
Corophium volutator 0.00 0.00 64.48 0.00 0.00 403.02
Crangon crangon 0.08 0.00 0.00 0.00 0.00 0.00
Cumopsis goodsir 1.24 0.00 0.00 62.00 1.24 0.00
Diogenes pugilator 0.11 0.00 0.00 0.11 0.00 0.04
Eocuma dollfusi 6.20 0.00 0.00 6.20 0.00 1.24
Ericthonius punctatus 0.00 0.00 0.00 0.00 0.00 2.48
Eurydice pulchra 0.00 0.00 0.00 2.48 0.00 0.00
Gammaropsis nitida 0.00 0.00 4.96 0.00 0.00 2.48
Gnathia maxillaris 0.00 0.00 9.92 0.00 0.00 90.52
Hemigrapsus sp. 0.00 1.24 1.24 0.00 0.00 0.00
Jaera (Jaera) albifrons 1.24 0.00 0.00 1.24 0.00 0.00
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Jassa ocia 0.00 0.00 26.04 0.00 1.24 60.76
Lekanesphaera levii 8.68 13.64 171.13 12.40 47.12 358.38
Lekanesphaera rugicauda 3.72 3.72 79.36 9.92 9.92 49.60
Leptocheirus sp. 0.00 0.00 1.24 0.00 0.00 0.00
Liocarcinus holsatus 0.00 0.00 0.00 0.12 0.00 0.00
Melita palmata 0.00 9.92 161.21 1.24 6.20 117.81
Microdeutopus sp. 0.00 0.00 1.24 0.00 0.00 0.00
Nymphon brevirostre 0.00 0.00 0.00 0.00 0.00 2.48
Orchomene humilis 0.00 0.00 0.00 1.24 0.00 0.00
Phtisica marina 0.00 0.00 0.00 1.24 0.00 0.00
Porcellana platycheles 0.00 2.48 711.80 0.00 1.24 2679.79
Portumnus latipes 1.24 0.00 0.00 0.31 0.00 0.00
Pseudocuma (Pseudocuma) longicorne 3.72 0.00 0.00 0.00 0.00 0.00
Pseudomystides limbata 0.00 0.00 4.96 0.00 0.00 0.00
Siphonoecetes (Centraloecetes) kroyeranus 1.24 0.00 0.00 11.16 0.00 0.00
Thia scutellata 0.12 0.00 0.00 0.00 0.00 0.00
Tryphosites longipes 0.00 0.00 0.00 1.24 0.00 0.00
Urothoe brevicornis 2.48 0.00 0.00 2.48 0.00 0.00
Urothoe elegans 0.00 0.00 0.00 1.24 0.00 0.00
Urothoe poseidonis 3.72 0.00 0.00 12.40 0.00 1.24
Urothoe pulchella 23.56 0.00 0.00 24.80 0.00 0.00
Urothoe sp. 2.48 0.00 0.00 0.00 0.00 0.00

Mollusca Abra alba 0.19 0.06 0.00 1.26 0.07 0.00
Acanthochitona crinita 0.00 0.00 4.96 0.00 0.00 0.00
Aeolidia papillosa 0.00 0.00 1.24 0.00 0.00 0.00
Buccinum undatum 0.00 0.00 1.24 0.00 0.00 0.00
Cerastoderma edule 70.95 0.12 0.11 18.39 0.20 0.06
Crepidula fornicata 0.64 25.11 26.76 0.00 15.54 7.11
Gibbula cineraria 0.00 0.00 0.23 0.00 0.00 0.12
Gibbula umbilicalis 0.00 0.15 26.02 0.00 0.00 39.53
Lacuna pallidula 0.00 0.00 0.00 0.00 0.00 1.24
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Limecola balthica 89.00 0.12 0.03 187.04 3.97 0.00
Littorina littorea 0.00 0.00 3.16 0.00 0.00 1.40
Littorina saxatilis 0.00 0.00 0.04 0.00 0.00 0.00
Macomangulus tenuis 0.27 0.00 0.00 0.52 0.03 0.00
Magallana gigas 0.00 0.00 17.60 0.00 0.12 23.31
Modiolula phaseolina 0.00 0.00 0.00 0.00 0.00 21.08
Modiolus sp. 0.00 0.00 0.00 0.00 0.00 14.88
Mytilus cf. galloprovincialis 1.24 0.31 5.13 0.76 0.20 10.91
Nucella lapillus 0.00 0.04 6.21 0.00 0.00 8.10
Ocenebra erinaceus 0.00 0.03 0.52 0.00 0.08 0.25
Ostrea edulis 0.00 0.00 0.04 0.00 0.00 0.04
Phorcus lineatus 0.00 0.00 0.00 0.00 0.00 0.04
Polititapes aureus 0.00 0.00 2.48 0.00 0.00 0.00
Polititapes rhomboides 0.00 0.04 0.07 0.00 0.00 0.00
Ruditapes decussatus 0.00 0.04 0.03 0.00 0.11 0.03
Ruditapes philippinarum 0.24 0.39 0.25 0.28 0.99 0.10
Scrobicularia plana 0.00 0.00 0.00 1.24 0.00 0.00
Spisula elliptica 0.00 0.00 0.00 0.00 2.48 0.00
Spisula solida 0.04 0.41 0.00 0.91 0.16 0.00
Tritia reticulata 6.73 0.08 0.24 3.61 0.35 0.10
Venerupis corrugata 0.12 0.54 0.81 0.16 0.23 1.62
Venus verrucosa 0.00 0.00 0.00 0.00 0.04 0.00

Ascidiacea Microcosmus claudicans 0.00 0.00 0.00 0.00 0.00 9.92
Molgula sp. 0.00 0.00 0.00 0.00 1.24 7.44
Phallusia mammillata 0.00 0.00 0.00 0.00 0.00 1.24
Polycarpa fibrosa 0.00 0.00 0.00 0.00 0.00 14.88
Polyclinum aurantium 0.00 0.00 11.16 0.00 0.00 0.00
Pyura microcosmus 0.00 0.00 7.44 0.00 0.00 0.00
Styela clava 0.00 0.00 7.44 0.00 0.00 16.12

Anthozoa Actinia equina 0.00 0.00 0.00 0.00 0.03 0.04
Anemona sp. 0.00 0.00 0.00 0.00 0.00 1.24
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Cereus pedunculatus 2.48 9.92 64.48 0.00 2.48 58.28
Urticina felina 0.00 0.00 0.00 0.00 0.00 0.04

Pycnogonida Achelia echinata 0.00 1.24 54.56 0.00 4.96 1311.99
Achelia laevis 0.00 0.00 8.68 0.00 1.24 261.65
Achelia simplex 0.00 1.24 95.49 0.00 2.48 962.29
Anoplodactylus virescens 0.00 0.00 0.00 0.00 0.00 17.36

Sipuncula Golfingia (Golfingia) elongata 0.00 3.72 6.20 0.00 0.00 57.04
Golfingia (Golfingia) vulgaris vulgaris 0.00 24.80 192.21 0.00 8.68 130.21
Nephasoma (Nephasoma) minutum 0.00 22.32 62.00 0.00 16.12 626.23
Phascolion (Phascolion) strombus strombus 0.00 1.24 0.00 0.00 0.00 0.00

Echinodermata Acrocnida spatulispina 1.24 0.00 0.00 1.24 0.00 0.00
Amphipholis squamata 0.00 2.48 0.00 0.00 2.48 49.60

Other Nematoda 1.24 6.20 9.92 1.24 102.93 2368.53
Nemertea 0.00 11.16 69.44 6.20 47.12 184.77
Oligochaeta 0.00 0.00 1.24 0.00 33.48 38.44

Insecta Axelsonia littoralis 0.00 0.00 79.36 0.00 0.00 13.64
Hydrogamasus sp. 0.00 0.00 14.88 0.00 0.00 8.68

Vertebrata Lipophrys pholis 0.00 0.00 0.04 0.00 0.00 0.12
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