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THE SELBERG-DELANGE METHOD IN SHORT INTERVALS
WITH SOME APPLICATIONS

Z. CUI, G.-S. LÜ & J. WU

Abstract. In this paper, we establish a quite general mean value result of arith-
metic functions over short intervals with the Selberg-Delange method and give some
applications. In particular, we generalize Selberg’s result on the distribution of in-
tegers with a given number of prime factors and Deshouillers-Dress-Tenenbaum’s
arcsin law on divisors to the short interval case.

1. Introduction

This is the second paper of our series on the Selberg-Delange method for short
intervals [1]. The method was initially introduced by Selberg [19] to study the distri-
bution of integers having a given number of prime factors, and subsequently further
developed by Delange [2, 3]. Roughly speaking it applies to evaluate mean values of
arithmetic functions whose associated Dirichlet series are close to complex powers of
the Riemann ζ-function. An excellent exposition of the theory and applications can be
found in [20, Chapters II.5 and II.6]. Recently Cui & Wu [1] generalized this method
to short interval when the power is positive real. In this paper we shall consider the
complex power case which cannot be plainly treated with the method in [1]. Our
aim is two-fold. First, we establish a quite general mean value result of arithmetic
functions over short intervals, which generalize and improve the main result of [1].
Second, we provide five arithmetic applications of our mean value result on :
• Distribution of integers having a given number of prime factors in short intervals,
• Deshouillers-Dress-Tenenbaum arcsin law on divisors in short intervals,
• Divisor problem for τk(n) in short intervals.
• Mean values of 1/τk(n) over short intervals.

We shall proceed along the same line of argument as in [1]. Its origin can be found in
[20, Chapters II.5 and II.6].

1.1. Statement of main results.

Let f(n) be an arithmetic function and let its Dirichlet series be defined by

(1.1) F(s) :=
∞∑
n=1

f(n)n−s.

Let z ∈ C, w ∈ C, α > 0, δ > 0, A > 0, B > 0, C > 0, M > 0 be some constants. A
Dirichlet series F(s) defined as in (1.1) is said to be of type P(z, w, α, δ, A,B,C,M)
if the following conditions are verified:
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(a) for any ε > 0 we have

(1.2) |f(n)| �ε Mnε (n > 1),

where the implied constant depends only on ε;
(b) we have

∞∑
n=1

|f(n)|n−σ 6M(σ − 1)−α (σ > 1);

(c) the Dirichlet series

(1.3) G(s; z, w) := F(s)ζ(s)−zζ(2s)−w

can be analytically continued to a holomorphic function in (some open set containing)
σ > 1

2
and, in this region, G(s; z, w) satisfies the bound

(1.4) |G(s; z, w)| 6M(|τ |+ 1)max{δ(1−σ),0} logA(|τ |+ 1)

uniformly for |z| 6 B and |w| 6 C, where and in the sequel we implicitly define the
real numbers σ and τ by the relation s = σ+ iτ and choose the principal value of the
complex logarithm.

Our first aim of this paper is to establish, under the previous assumptions, an
asymptotic formula of

(1.5)
∑

x<n6x+xθ

f(n)

with θ ∈ (0, 1] as small as possible. In view of the zero-free region of Vinogradov for
ζ(s) (see [20, page 161]), it seems rather difficult to prove such a result. One of our
principal tools is Huxley’s estimation on the zero density of the Riemann ζ-function.
As usual, we denote by N(σ, T ) the number of zeros of ζ(s) in the region <e s > σ
and |=ms| 6 T . It is well known that there are two constants ψ and η such that

(1.6) N(σ, T )� Tψ(1−σ)(log T )η

for 1
2
6 σ 6 1 and T > 2. Huxley [7] showed that

(1.7) ψ = 12
5

and η = 9

are admissible. The zero density hypothesis is stated as

(1.8) ψ = 2.

Combining (1.7) with the explicit formula (see [20, page 177]), Huxley derived his well
known prime number theorem in short intervals [7] : for any θ ∈ ( 7

12
, 1] and y = xθ,

the asymptotic formula

(1.9)
∑

x<p6x+y

1 ∼ y

log x

holds as x → ∞. Corresponding to (1.9), Motohashi [13] proved the following result
for the Möbius function µ(n) : For any θ > 7

12
and y = xθ, the inequality

(1.10)
∑

x<n6x+y

µ(n) = o(y)
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holds as x→∞. Independently Ramachandra [14] obtained a better result :

(1.11)
∑

x<n6x+y

µ(n)�A,θ
y

(log x)A

For each A > 0. Their methods are similar. Our approach is a generalization and
refinement of Motohashi’s method [13]. The first key of this method is to construct
a contour MT (see Section 2 below for its precise definition) in the critical strip such
that for any ε > 0 we have

(1.12) (|τ |+ 1)−ε(1−σ) �ε |ζ(s)| �ε (|τ |+ 1)ε(1−σ)

for s ∈ MT . The second key is a very good bound for the density of “small value
points” (i.e. satisfying (2.6) below), which was established by adapting Montgomery’s
new method to study the zero-densities of the Riemann ζ-function and of the Dirichlet
L-functions [12]. With these two nice ideas and Huxley’s zero density estimation, we
establish a general asymptotic formula for the summatory function (1.5), see Theorem
1.1 below. It is worthy to point out that our Theorem 1.1 allows us to unify the
treatment of (1.9) and (1.10); indeed the latter is a particular case of the former.

In order to state our main result, it is necessary to introduce some more nota-
tion. From [20, Theorem II.5.1], the function∗ Z(s; z) := {(s − 1)ζ(s)}z (z ∈ C) is
holomorphic in the disc |s − 1| < 1, and admits, in the same disc, the Taylor series
expansion

Z(s; z) =
∞∑
j=0

γj(z)

j!
(s− 1)j,

where the γj(z)’s are entire functions of z satisfying the estimate

(1.13)
γj(z)

j!
�B,ε (1 + ε)j (j > 0, |z| 6 B)

for all B > 0 and ε > 0. Under our hypothesis, the function G(s; z, w)ζ(2s)wZ(s; z)
is holomorphic in the disc |s− 1| < 1

2
and

(1.14) |G(s; z, w)ζ(2s)wZ(s; z)| �A,B,C,δ,ε M

for |s− 1| 6 1
2
− ε, |z| 6 B and |w| 6 C. Thus for |s− 1| < 1

2
, we can write

(1.15) G(s; z, w)ζ(2s)wZ(s; z) =
∞∑
`=0

g`(z, w)(s− 1)`,

where

(1.16) g`(z, w) :=
1

`!

∑̀
j=0

(
`

j

)
∂`−j(G(s; z, w)ζ(2s)w)

∂s`−j

∣∣∣∣
s=1

γj(z).

The main result of this paper is as follows.

∗In [20], Z(s; z) is defined as s−1{(s − 1)ζ(s)}z but obviously the argument of the proof there
works for our Z(s; z).
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Theorem 1.1. Let z ∈ C, w ∈ C, α > 0, δ > 0, A > 0, B > 0, C > 0, M > 0 be
some constants. Suppose that the Dirichlet series

F(s) :=
∞∑
n=1

f(n)n−s

is of type P(z, w, α, δ, A,B,C,M). Then for any ε > 0, we have

(1.17)
∑

x<n6x+y

f(n) = y(log x)z−1

{ N∑
`=0

λ`(z, w)

(log x)`
+O

(
MRN(x, y)

)}
uniformly for x > 3, x1−1/(ψ+δ)+ε 6 y 6 x, N > 0, |z| 6 B and |w| 6 C, where
λ`(z, w) := g`(z, w)/Γ(z − `) and

(1.18) RN(x, y) :=
(c1N + 1)N+1

(log x)N+1 + ec2(log x)1/3(log2 x)−1/3

for some constants c1 > 0 and c2 > 0 depending only on B, C, δ and ε. The implied
constant in the O-term depends only on A,B,C, α, δ and ε. In particular ψ = 12

5
is

admissible.

The admissible length of short intervals in Theorem 1.1 depends only on the zero
density constant ψ of ζ(s) and δ in (1.4) (for which we take δ = 0 in most appli-
cations). Its independence from the power z of ζ(s) in the representation of F(s)
seems interesting. Theorem 1.1 generalizes and improves [1, Theorem 1] to the case
of complex powers and intervals of shorter length.

Taking N = 0 in Theorem 1.1, we obtain readily the following corollary.

Corollary 1.2. Under the conditions of Theorem 1.1, for any ε > 0, we have

(1.19)
∑

x<n6x+y

f(n) = y(log x)z−1

{
λ0(z, w) +O

(
M

log x

)}
uniformly for x > 2, x1−1/(ψ+δ)+ε 6 y 6 x, |z| 6 B and |w| 6 C, where

λ0(z, w) :=
G(1; z, w)ζ(2)w

Γ(z)

and the implied constant in the O-term depends only on A,B, α, δ and ε. Note that
ψ = 12

5
is admissible.

Taking f(n) = µ(n) in Theorem 1.1, we have z = −1, w = 0 and G(s; z, w) ≡ 1,
δ = 0, ψ = 12

5
, λ(−1, `) = 0 for all integers ` > 0. Thus we can choose N =

[c′(log x)1/3(log2 x)−4/3] with some small constantc′ > 0 to obtain an improvement of
Motohashi’s result (1.10): For any θ > 7

12
, we have∑

x<n6x+y

µ(n)� y e−c(log x)1/3(log2 x)−1/3

uniformly for x > 2 and xθ 6 y 6 x, where c > 0 is a constant depending on θ.
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1.2. Integers having a fixed number of prime factors.

Denote by ω(n) (resp. Ω(n)) the number of distinct (resp. all) prime factors of n.
For each positive integer k > 1, consider

πk(x) := |{n 6 x : ω(n) = k}|(1.20)

Nk(x) := |{n 6 x : Ω(n) = k}|.(1.21)

In 1909, Landau [11] proved by induction that for each fixed positive integer k, the
following asymptotic formulas

πk(x), Nk(x) ∼ x

log x

(log2 x)k−1

(k − 1)!
(x→∞)

hold, where log` denotes the `-fold iterated logarithm. However, if we allow k to
grow with x, the method by induction will become too technical (see [17, 18]). In
[19], Selberg proposed a new and very elegant approach to attack this problem –
identifying πk(x) with the coefficient of zk in the expression

∑
n6x z

ω(n) and then
applying Cauchy’s integral formula. Through a detailed study of the sum over z, he
proved that for any fixed constant B > 0 the asymptotic formula

(1.22) πk(x) =
x

log x

(log2 x)k−1

(k − 1)!

{
λ

(
k − 1

log2 x

)
+OB

(
k

(log2 x)2

)}
holds uniformly for x > 3 and 1 6 k 6 B log2 x, where

(1.23) λ(z) :=
1

Γ(z + 1)

∏
p

(
1 +

z

p− 1

)(
1− 1

p

)z
and the implied constant depends only on B. In the same fashion, Selberg also proved
that for any δ ∈ (0, 1), the asymptotic formula

(1.24) Nk(x) =
x

log x

(log2 x)k−1

(k − 1)!

{
ν

(
k − 1

log2 x

)
+Oδ

(
k

(log2 x)2

)}
holds uniformly for x > 3 and 1 6 k 6 (2− δ) log2 x, where

(1.25) ν(z) :=
1

Γ(z + 1)

∏
p

(
1− z

p

)−1(
1− 1

p

)z
and the implied constant depends only on δ.

As the first application of Theorem 1.1, we shall generalize Selberg’s results (1.22)
and (1.24) to the short interval case.

Theorem 1.3. Let B > 0. There exist positive constants c1 = c1(B) and c2 = c2(B)
such that for any ε > 0, we have

(1.26) πk(x+ y)− πk(x) =
y

log x

{ N∑
j=0

Pj,k(log2 x)

(log x)j
+OB,ε

(
(log2 x)k

k!
RN(x, y)

)}
uniformly for x > 3, x1−1/ψ+ε 6 y 6 x and 1 6 k 6 B log2 x, where Pj,k(X) is a
polynomial of degree at most k − 1 and RN(x, y) is defined as in (1.18). Here c1, c2
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in the definition of RN(x, y) and the implied constant depend on B and ε only. In
particular, we have

P0,k(X) =
∑

m+`=k−1

λ(m)(0)

`!m!
X`.

Moreover, under the same conditions, we have

(1.27) πk(x+ y)− πk(x) =
y

log x

(log2 x)k−1

(k − 1)!

{
λ

(
k − 1

log2 x

)
+O

(
k

(log2 x)2

)}
.

In particular ψ = 12
5

is admissible in both assertions (1.26) and (1.27).

Theorem 1.4. There exist absolute positive constants c1 and c2 such that for any
ε > 0, we have

(1.28) Nk(x+ y)−Nk(x) =
y

log x

{ N∑
j=0

Qj,k(log2 x)

(log x)j
+OB,ε

(
(log2 x)k

k!
RN(x, y)

)}
uniformly for x > 3, x1−1/ψ+ε 6 y 6 x and 1 6 k 6 log2 x, where Qj,k(X) is a
polynomial of degree at most k− 1 and RN(x, y) is defined as in (1.18). Here c1, c2 in
the definition of RN(x, y) and the implied constant depend on ε only. In particular,
we have

Q0,k(X) =
∑

m+`=k−1

ν(m)(0)

`!m!
X`.

Moreover, under the same conditions, we have

(1.29) Nk(x+ y)−Nk(x) =
y

log x

(log2 x)k−1

(k − 1)!

{
ν

(
k − 1

log2 x

)
+O

(
k

(log2 x)2

)}
.

In particular ψ = 12
5

is admissible in both assertions (1.28) and (1.29).

Remark 1. Kátai [9] applied Ramachandra’s theorem [14] to obtain

πk(x+ y)− πk(x) = {1 + o(1)} y

log x

(log2)k−1

(k − 1)!

uniformly for any k 6 log2 x + cx
√

log2 x, where cx → ∞ sufficiently slowly, and

y > x1−1/ψ+ε. Clearly Theorem 1.3 improves Kátai’s result in two directions: get a
more precise asymptotic formula and extend domain of k.

Taking k = 1, we obtain Huxley’s well known prime number theorem in short
intervals (1.9).

1.3. The Deshouillers-Dress-Tenenbaum arcsin law on divisors.

For each positive integer n, denote by τ(n) the number of divisors of n and define
the random variable Dn which takes the value (log d)/ log n, as d runs through the
set of the τ(n) divisors of n, with the uniform probability 1/τ(n). The distribution
function Fn of Dn is given by

Fn(t) = Prob(Dn 6 t) =
1

τ(n)

∑
d|n, d6nt

1 (0 6 t 6 1).
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It is clear that the sequence {Fn}n>1 does not converge pointwisely on [0, 1]. However
Deshouillers, Dress & Tenenbaum ([4] or [20, Theorem II.6.7]) proved that its Cesàro
mean converges uniformly to the arcsin law. More precisely, they showed that the
asymptotic formula

1

x

∑
n6x

Fn(t) =
2

π
arcsin

√
t+O

(
1√

log x

)
holds uniformly for x > 2 and 0 6 t 6 1, and that the error term is optimal. Very
recently Cui & Wu [1, Theorem 2] established a short interval version of this result:
For ε > 0, we have

(1.30)
1

y

∑
x<n6x+y

Fn(t) =
2

π
arcsin

√
t+Oε

(
1√

log x

)
uniformly for 0 6 t 6 1, x > 2 and x62/77+ε 6 y 6 x, where the implied constant
depends only on ε.

Our third application of Theorem 1.1 is to improve the exponent in (1.30).

Theorem 1.5. For any ε > 0, the asymptotic formula (1.30) holds uniformly for
0 6 t 6 1, x > 2 and x19/24+ε 6 y 6 x, where the implied constant depends on ε only.

For comparison, we have 62
77

= 0.805 . . . and 19
24

= 0.791 . . . .

1.4. Divisor problem for τk(n) on short intervals.

As usual, denote by ∆k(x) the error term in the asymptotic formula for the k-
dimension divisor problem:

Dk(x) :=
∑
n6x

τk(n) = xPk−1(log x) + ∆k(x),

where Pk−1(t) is a polynomial of degree k− 1 with leading coefficient 1/(k− 1)!. The
best known result for ∆k(x) for k > 4 is as follows :

(1.31) ∆4(x)� x1/2(log x)5, ∆k(x)�k,ε x
θk+ε (k > 5)

with θk = 3
4
− 1

k
(5 6 k 6 8), θ9 = 35

54
, θ10 = 41

60
, θ11 = 7

10
, θk = k−1

k+2
(12 6 k 6 25),

θk = k−1
k+4

(26 6 k 6 50), θk = 31k−98
32k

(51 6 k 6 57), θk = 7k−34
7k

(k > 58), where ε is
an arbitrarily small positive number (see [5, (1.3)] for k = 4 and [8, Theorem 12.3]
for k > 5.) In 2006, Garaev, Luca and Nowak [5] considered the divisor problem for
τ4(n) in short intervals and proved that∑

x<n6x+y

τ4(n) =
1

6
y(log x)3

{
1 +O

((√x log x

y

)2/3
)}

for x > 3 and x1/2 log x 6 y 6 x1/2(log x)5/2. They also emphasized that for no other
dimension k 6= 4 short interval results are known for the sum over τk(n) that are
sharper than what is immediate from the (“long interval”) asymptotics for Dk(x) (see
[5, Remark]). The next theorem gives a such result for all integers k > 7.
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Theorem 1.6. Let k > 7 be a positive integer and ε > 0 be an arbitrarily small
positive number. Then there is a positive constant c depending on k and ε such that
the asymptotic formula∑

x<n6x+y

τk(n) = yQk−1(log x)
{

1 +Ok,ε

(
e−c(log x)1/3(log2 x)−1/3)}

holds uniformly for x > 2 and x1−1/ψ+ε 6 y 6 x, where Qk−1(t) is a polynomial of
degree k − 1 with leading coefficient 1/(k − 1)! and the implied constant depends only
on k and ε. In particular ψ = 12

5
is admissible.

It is interesting to note that the exponent (1.31) tends to 1 as k → ∞, and that
the length of short intervals in Theorem 1.6 is independent of k.

1.5. The mean value of 1/τk(n) on short intervals.

Recently Sedunova [16] considered mean values of the following arithmetic functions
over short intervals: τk(n)−1, σ(n)/τ(n), r(n)−1, where τk(n) :=

∑
d|n τk−1(d), σ(n) :=∑

d|n d and r(n) := |{(n1, n2) ∈ Z2 : n2
1 + n2

2 = n}|. In particular she proved that for
any fixed integer N > 0 the asymptotic formula

(1.32)
∑

x<n6x+y

1

τk(n)
=

y√
log x

{ N∑
`=0

a`(k)

(log x)`
+Ok,N

(
1

(log x)N+1

)}
holds uniformly for x > 3 and x(21k+5)/(36k+5)e(log x)0.1 6 y 6 x, where the a`(k) are
some constants depending on k (see [16, Theorem 1]).

The fourth application of Theorem 1.1 is the following result.

Theorem 1.7. For any ε > 0, the asymptotic formula (1.32) holds uniformly for
x > 2 and x7/12+ε 6 y 6 x, where the implied constant depends only on k, N and ε.

Since 287k+64
492k+64

→ 7
12

decreasingly as k →∞, Theorem 1.7 improves Sedunova’s (1.32)
for all k. It is worthy to note that our exponent is independent of k. Clearly the other
results in [16, Theorems 2-7] can also be improved by Theorem 1.1 or its method of
proof.

Acknowledgements. The first author is supported by the National Natural Sci-
ence Foundation of China (Grant No. 11271249) and the Specialized Research Fund
for the Doctoral Program of Higher Education (No. 20120073110059). The second
and third authors are supported in part by IRT1264. Finally we are grateful to Y.-K.
Lau for his help during the preparation of this paper.

2. Motohashi method

This section is devoted to depict Motohashi’s method [13]. His original presentation
is rather sketchy. Some key estimations (see Lemma 2.1 and Proposition 2.4 below)
are outlined without many details. Here we would give a complete and detailed
presentation for the sake of readers’ convenience and the importance of this method.
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2.1. Hooley-Huxley-Motohashi’s contour MT .

Let ε be an arbitrarily small positive constant and let T0 = T0(ε) be a large constant
depending on ε only. As in [13], for T > T0, put

(2.1) δT := C0(log T )−2/3(log2 T )−1/3,

where C0 is a suitable positive constant such that

(2.2) (log |τ |)−2/3(log2 |τ |)−1/3 � |ζ(s)| � (log |τ |)2/3(log2 |τ |)1/3

for σ > 1− 100δT and 1 6 |τ | 6 100T (see [20, page 162]).

For T > T0, write

(2.3) JT := [(1
2
− δT ) log T ] and KT := [T (log T )−1].

For each pair of integers (j, k) with 0 6 j 6 JT and |k| 6 KT , we define

(2.4) ∆j,k := {s = σ + iτ : σj 6 σ < σj+1 and τk 6 τ < τk+1},

where

(2.5) σj := 1
2

+ j(log T )−1 and τk := k log T.

We divide ∆j,k into two classes (W ) and (Y ) as follows.
• σj 6 1 − ε: Then ∆j,k ∈ (W ) if ∆j,k contains at least one zero of ζ(s), and

∆j,k ∈ (Y ) otherwise;

• 1− ε < σj 6 1− δT : ∆j,k ∈ (W ) if and only if ∃ at least one s ∈ ∆j,k such that

(2.6) |ζ(s)MNj(s)| < 1
2

with

(2.7)


A′ := a fix large integer

Nj :=
(
A′(log T )5 max

σ>4σj−3, 16|τ |64T
|ζ(s)|

)1/2(1−σj)

MNj(s) :=
∑

n6Nj
µ(n)n−s

and ∆j,k ∈ (Y ) if and only if for all s ∈ ∆j,k

(2.8) |ζ(s)MNj(s)| > 1
2
·

For each k, we define

jk :=

 max
∆j,k∈(W )

j if ∃ j such that ∆j,k ∈ (W ),

0 otherwise.

Put

(2.9) D ′ := ∪
06k6KT

∪
06j6jk

∆j,k, D0 := ∪
06k6KT

∪
jk<j6jT

∆j,k

Clearly D0 consists of ∆j,k of type (Y ) only.
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Hooley-Huxley-Motohashi’s contour MT is symmetric about the real axis. Its up-
per part is the path in D0 consisting of horizontal and vertical line segments whose
distances away from D ′ are respectively dh and dv, given by

(2.10) dh := log2 T, dv :=

{
ε2 if σ 6 1− ε,
(log T )−1 if 1− ε < σ < 1− δT .

T

∆j,k

σj σj+1

τk

τk+1

∆j0,0

∆jk,k

∆jK ,K

MT

r

dv

dh

D ′ D0

1− δT1− ε1
2

b1 σ

τ

O

Figure 1 – Superieur part of the contour MT
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2.2. Lower and upper bounds of ζ(s) on MT .

In this subsection we give bounds to ζ(s) on MT . The next two lemmas are essen-
tially due to Motohashi [13, page 478, lines 21–28]. For completeness we shall provide
proofs.

Lemma 2.1. Under the previous notation, we have

(2.11) e−(log T )1−ε
2

� |ζ(s)| � e(log T )1−ε
2

for s ∈ MT with σ 6 1 − ε, or s (with 1 − ε < σ 6 1 − ε + ε2) on the horizontal
segments in MT that intersect the vertical line <e s = 1−ε. Here the implied constant
depends only on ε.

Proof. Let s = σ+ iτ satisfy the conditions in this lemma. Without loss of generality,
we can suppose that τ > T0(ε). Let us consider the four circles C1, C2, C3 and C4, all
centered at s0 = log2 τ + iτ , with radii

r1 := log2 τ − 1− η,
r2 := log2 τ − σ,
r3 := log2 τ − σ + 1

2
ε2,

r4 := log2 τ − σ + ε2,

respectively. Here η > 0 is a parameter to be chosen later. We note that these four
circles pass through the points 1+η+iτ , σ+iτ , σ− 1

2
ε2+iτ and σ−ε2+iτ , respectively.

Clearly ζ(s) 6= 0 in a region containing the disc |s− s0| 6 r4. Thus we can unam-
biguously define log ζ(s) in this region. We fix a branch of the logarithm throughout
the remaining discussion.

Let Mi denote the maximum of | log ζ(s)| on Ci relative to this branch. By using
Hadamard’s three circle theorem and the fact that s = σ + iτ is on C2, we have

(2.12) | log ζ(s)| 6M2 6M1−a
1 Ma

3 ,

where

a =
log(r2/r1)

log(r3/r1)

=
log(1 + (1 + η − σ)/(log2 τ − 1− η))

log(1 + (1 + η − σ + 1
2
ε2)/(log2 τ − 1− η))

=
1 + η − σ

1 + η − σ + 1
2
ε2

+O
(
(log2 τ)−1

)
.

On taking η = σ − 1
2
− 1

2
ε2 − ε3

2(1+ε3)
(η > 1

4
ε2, since σ > 1

2
+ ε2), we have

(2.13) a = 1− ε2 − ε5 +O
(
(log2 τ)−1

)
.

On the circle C1, we have

(2.14) M1 6 max
<e s>1+η

∞∑
n=2

∣∣∣∣ Λ(n)

ns log n

∣∣∣∣ 6 ∞∑
n=2

1

n1+η
� 1

η
,

where Λ(n) is the von Mangoldt function.
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In order to bound M3, we shall apply the Borel-Carathéodory theorem to the func-
tion log ζ(s) on the circles C3, C4. On the circle C4, it is well known that

<e (log ζ(s)) = log |ζ(s)| � log τ.

Hence the Borel-Carathéodory theorem gives

(2.15)

M3 6
2r3

r4 − r3

max
|s−s0|6r4

log |ζ(s)|+ r4 + r3

r4 − r3

| log ζ(s0)|

�
2(log2 τ − σ + 1

2
ε2)

1
2
ε2

log τ +
2 log2 τ − 2σ + 1

2
ε2

1
2
ε2

| log ζ(2 + iτ)|

� (log2 τ) log τ.

From (2.12), (2.13), (2.14) and (2.15), we deduce that

| log ζ(s)| � (η−1)1−a(log2 τ log τ)a

�ε (log2 τ log τ)1−ε2−ε5

6 (log τ)1−ε2 .

This leads to the required estimates. �

Lemma 2.2. Under the previous notation, we have

(2.16) T−400(1−σj)3/2(log T )−4 � |ζ(s)| � T 100(1−σj)3/2(log T )4

for s ∈MT with 1− ε < σj 6 σ < σj+1. Here the implied constants are absolute. In
particular we have

(2.17) T−400
√
ε(1−σj)(log T )−4 � |ζ(s)| � T 100

√
ε(1−σj)(log T )4

for s ∈MT with 1− ε < σj 6 σ < σj+1. All the implied constants are absolute.

Proof. According to [15, page 98], we have

(2.18) |ζ(s)| � τ 100(1−σ)3/2(log τ)2/3 (1
2
6 σ 6 1, τ > 2).

This immediately implies the upper bound of (2.16) and

(2.19)

N
1−σj
j =

(
A′(log T )5 max

σ>4σj−3
16|τ |64T

|ζ(s)|
)1/2

� T 400(1−σj)3/2(log T )3.

Next we consider the lower bound. Let s ∈MT with 1− ε < σj 6 σ < σj+1. Then
there is an integer k such that s ∈ ∆j,k. According to the definition of MT , this ∆j,k

must be in (Y ) and (2.8) holds for all s of this ∆j,k. On the other hand, (2.19) allows
us to deduce that for σj 6 σ < σj+1

|MNj(s)| 6
∑
n6Nj

n−σj � (1− σj)−1N
1−σj
j

� T 400(1−σj)3/2(log T )4.

Combining this with (2.8) immediately yields

|ζ(s)| > (2|MNj(s)|)−1 � T−400(1−σj)3/2(log T )−4
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for s ∈MT with 1− ε < σj 6 σ < σj+1.
Finally we note (2.17) is a simple consequence of (2.16) since 1 − ε < σj implies

that (1− σj)1/2 6
√
ε. �

Proposition 2.3. Under the previous notation, we have

(2.20) T−400
√
ε(1−σ)(log T )−4 � |ζ(s)| � T 400

√
ε(1−σ)(log T )4.

for all s ∈MT , where the implied constants depend only on ε.

Proof. Let s ∈MT . Then there is a j such that σj 6 σ < σj+1. We consider the three
possibilities.

• The case of 1− ε < σj.

The inequality (2.20) follows immediately from (2.17) of Lemma 2.2.

• The case of σj 6 σ 6 1− ε.
In this case, the first part of Lemma 2.1 shows that (2.20) holds again since

√
ε(1−

σ) > ε3/2 > (log T )−ε
2

for T > T0(ε).

• The case of σj 6 1− ε < σ.

In this case, s must be on the horizontal segment in MT , because the vertical
segment keeps the distance ε2 from the line <e s = σj and σj < σ < σj+1. Thus we
can apply the second part of Lemma 2.1 to get (2.20) as before. �

2.3. Montgomery’s method and Huxley’s zero-density estimation.

In [12], Montgomery developed a new method for studying zero-densities of the
Riemann ζ-function and of the Dirichlet L-functions. Subsequently by modifying this
method, Huxley [7] established his zero-density estimation (1.7) (see (2.21) below).
In [13], Motohashi noted that Montgomery’s method can be adapted to estimate the
density of “small value points” (characterized by (2.6)). The estimation (2.22) below
is due to Motohashi [13, (5)].

Proposition 2.4. Under the previous notation, for j = 0, 1, . . . , JT we have

(2.21)
∣∣{k 6 KT : ∆j,k ∈ (W )

}∣∣� Tψ(1−σj)(log T )η

if σj 6 1− ε; and

(2.22)
∣∣{k 6 KT : ∆j,k ∈ (W )

}∣∣� T 170(1−σj)3/2(log T )13

if 1− ε 6 σj 6 1− δT . Here (ψ, η) = (12
5
, 9) is admissible.

Proof. The case of σj 6 1 − ε is very simple, because the number of (W ) does not
exceed the number of non-trivial zeros of ζ(s).

Next we suppose 1− ε 6 σj 6 1− δT .

Let Kj(T ) be a subset of the set{
log T 6 k 6 KT : ∆j,k ∈ (W )

}
such that the difference of two distinct integers of Kj(T ) is at least 3A′, where A′ is
the large integer specified in (2.7). Obviously∣∣{(log T )2 6 k 6 KT : ∆j,k ∈ (W )

}∣∣ 6 3A′|Kj(T )|.
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Therefore it suffices to show that

(2.23) |Kj(T )| �ε T
170(1−σj)3/2(log T )13

for T > T0(ε), where the implied constant and the constant T0(ε) depend only on ε.
Let Mx(s) be defined as in (2.7) and let an,x be the nth coefficient of the Dirichlet

series ζ(s)Mx(s). Then

(2.24) an,x =
∑

d|n, d6x

µ(d).

By the Perron formula [22, Lemma, page 151], we can write∑
n>1

an,x
ns

e−n/y =
1

2πi

∫ 2+i∞

2−i∞
ζ(w + s)Mx(w + s)Γ(w)yw dw

for y > x > 3 and s = σ + iτ ∈ C with 1
2
< σ < 1. We take the contour to the line

<ew = α − σ < 0 with α := 4σj − 3 > 1 − 4ε, and in doing so we pass two simple
poles at w = 0 and w = 1− s. Our equation becomes∑

n>1

an,x
ns

e−n/y = ζ(s)Mx(s) +Mx(1)Γ(1− s)y1−s + I(s;x, y),

where

I(s;x, y) :=
1

2π

∫ +∞

−∞
ζ(α + iτ + iu)Mx(α + iτ + iu)Γ(α− σ + iu)yα−σ+iu du.

Obviously the formula (2.24) implies that a1,x = 1, an,x = 0 for 2 6 n 6 x and
|an,x| 6 τ(n) for n > x. With the classical estimate

∑
n6t τ(n)� t log t and a simple

partial integration, we obtain∣∣∣ ∑
n>y2

an,x
ns

e−n/y
∣∣∣ 6 ∫ ∞

y2
t−σe−t/y d

(∑
n6t

τ(n)
)

� e−yy2−2σ log y + y−1

∫ ∞
y2

e−t/yt1−σ(log t) dt

� e−y/2

for σ > 1
2
. Inserting it into the precedent relation, we find that

(2.25)
e−1/y +

∑
x<n6y2

an,x
ns

e−n/y +O(e−y/2)

= ζ(s)Mx(s) +Mx(1)Γ(1− s)y1−s + I(s;x, y)

for s ∈ C with 1
2
< σ < 1 and y > x > 3.

If k ∈ Kj(T ), then there is at least an sk := vk + itk ∈ ∆j,k such that

(2.26) |ζ(sk)MNj(sk)| 6 1
2
,

where MNj(s) = M(s,Nj) is defined as in (2.7). By the definition of Kj(T ), we have

σj 6 vk 6 σj+1, (log T )2 6 tk 6 T and |tk1 − tk2| > 3A′ log T (k1 6= k2).
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By the Stirling formula [21, page 151], we have

(2.27) |Γ(s)| =
√

2π e−(π/2)|τ ||τ |σ−1/2

{
1 +O

( | tan(ϑ
2
)|

|τ |
+
|a|2 + |b|2

|τ |2
+
|a|3 + |b|3

|τ |3

)}
uniformly for a, b ∈ R with a < b, a 6 σ 6 b and |τ | > 1, where ϑ := arg s and the
implied O-constant is absolute.

Since |tk| > (log T )2, the Stirling formula allows us to deduce

(2.28) |Mx(1)Γ(1− sk)y1−sk | � (log x)y1−vke−(π/2)|tk||tk|1/2−vk 6 1
10

for all 3 6 x 6 y 6 T 100.
Similarly, using the estimates

ζ(α + itk + iu)� T + |u|,
Mx(α + itk + iu)� x1−α log x� T,

and the Stirling formula (2.27), we derive that

(2.29)

∫
|u|>A′ log T

∣∣ζ(α + itk + iu)Mx(α + itk + iu)Γ(α− vk + iu)
∣∣yα−vk du 6 1

10

for all 3 6 x 6 y 6 T 100.
Taking (s, x) = (sk, Nj) in (2.25) and combining with (2.26), (2.28) and (2.29), we

easily see that

(2.30)

∣∣∣∣ ∑
Nj<n6y2

an,Nj
nsk

e−n/y
∣∣∣∣ > 1

6

or

(2.31)

∣∣∣∣ ∫ A′ log T

−A′ log T

ζ(α + itk + iu)MNj(α + itk + iu)Γ(α− vk + iu)yα−vk+iu du

∣∣∣∣ > 1
6

or both.
Let K′j(T ) and K′′j (T ) be the subsets of Kj(T ) for which (2.30) and (2.31) hold

respectively. Then

(2.32) |Kj(T )| 6 |K′j(T )|+ |K′′j (T )|.

First we bound |K′j(T )|. By a dyadic argument, there is a U ∈ [Nj, y
2] such that

(2.33)

∣∣∣∣ ∑
U<n62U

an,Nj
nsk

e−n/y
∣∣∣∣ > (18 log y)−1

holds for � |K′j(T )|(log y)−1 integers k ∈ K′j(T ). Let S ′ be the set of corresponding
points sk. Using [12, Theorem 8.4] with θ = α := 4σj − 3 and the bound∑

U<n62U

τ(n)2

n2σj
e−2n/y � U1−2σj(log T )3e−2U/y,
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it follows that

(2.34)

∑
sk∈S′

∣∣∣∣ ∑
U<n62U

an,Nj
nsk

e−n/y
∣∣∣∣2

�
(
U + |S ′| max

σ>α
16|τ |64T

|ζ(s)|Uα
)
U1−2σj(log T )3e−2U/y

� U2(1−σj)(log T )3e−2U/y + |S ′| max
σ>α

16|τ |64T

|ζ(s)|U−2(1−σj)(log T )3e−2U/y.

Since U > Nj, we have

max
σ>α

16|τ |64T

|ζ(s)|U−2(1−σj)(log T )3 6 A′−1(log T )−2.

On the other hand, the inequality (2.33) implies that the member on the left-hand
side of (2.34) is

> |S ′|(18 log y)−2 > |S ′|(1800 log T )−2.

Since A′ is a fixed large integer, the last term on the right-hand side of (2.34) is
smaller than this lower bound. Thus it can be simplified as

|S ′|(log T )−2 � U2(1−σj)(log T )3e−2U/y

for all Nj 6 y 6 T 100 and some U ∈ [Nj, y
2]. Noticing that

|S ′| � |K′j(T )|(log T )−1,

we obtain

(2.35) |K′j(T )| � y2(1−σj)(log T )6

for all Nj 6 y 6 T 100.

Next we bound |K′′j (T )|. Let uk ∈ [−A′ log T,A′ log T ] such that

ζ(s′k)MNj(s
′
k) = max

|u|6A log T
|ζ(α + itk + iu)MNj(α + itk + iu)|

where s′k := α + it′k and t′k := tk + uk. Thus from (2.31) we deduce that

1

6
6

∣∣∣∣ ∫ A′ log T

−A′ log T

ζ(α + itk + iu)MNj(α + itk + iu)Γ(α− vk + iu)yα−vk+iu du

∣∣∣∣
6 yα−vk

∣∣ζ(s′k)MNj(s
′
k)
∣∣ ∫ A′ log T

−A′ log T

∣∣Γ(α− vk + iu)
∣∣ du.

Since Γ(s) has a simple pole at s = 0 and |α − vk| � (log T )−1, we can derive, via
(2.27), that ∫ A′ log T

−A′ log T

∣∣Γ(α− vk + iu)
∣∣ du� log T

and thus

1� yα−σj
∣∣MNj(s

′
k)
∣∣ max

σ>α
16|τ |68T

|ζ(s)| log T,
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or equivalently ∣∣MNj(s
′
k)
∣∣� yσj−α

(
max
σ>α

16|τ |68T

|ζ(s)| log T
)−1

.

Hence there is a V ∈ [1, Nj] such that∣∣∣ ∑
V <n62V

µ(n)n−s
′
k

∣∣∣� yσj−α
(

max
σ>α

16|τ |68T

|ζ(s)|
)−1

(log T )−2

holds for � |K′′j (T )|(log T )−1 integers k ∈ K′′j (T ). Let S ′′ be the corresponding set of
points s′k. We note |t′k| 6 2T and

|t′k1 − t
′
k2
| > |tk1 − tk2| − |uk1 − uk2| > A′ log T.

Using [12, Theorem 8.4] with θ = α = 4σj − 3 and the bound∑
V <n62V

n−2α � V 1−2α � V 7−8σj ,

it follows that

(2.36)

∑
s′k∈S′′

∣∣∣ ∑
V <n62V

µ(n)n−s
′
k

∣∣∣2 � (
V + |S ′′| max

σ>α
16|τ |68T

|ζ(s)|V 4σj−3
)
V 7−8σj

� V 8(1−σj) + |S ′′| max
σ>α

16|τ |68T

|ζ(s)|V 4(1−σj).

Take y such that

(2.37) y2(σj−α) = A′N
4(1−σj)
j

(
max
σ>α

16|τ |68T

|ζ(s)|
)3

(log T )4.

The left-hand side of (2.36) is

> |S ′′|y2(σj−α)
(

max
σ>α

16|τ |68T

|ζ(s)|
)−2

(log T )−4.

Hence the inequality (2.36) can be simplified as

|S ′′|y2(σj−α)
(

max
σ>α

16|τ |68T

|ζ(s)|
)−2

(log T )−4 � N
8(1−σj)
j .

With

|S ′′| � |K′′j (T )|(log T )−1,

we deduce that

(2.38) |K′′j (T )| � N
8(1−σj)
j y2(α−σj)

(
max
σ>α

16|τ |68T

|ζ(s)|
)2

(log T )5.

On combining (2.32), (2.35), (2.38) and (2.37), it follows that

|Kj(T )| � N
(10/3)(1−σj)
j (log T )3.

Now the required inequality follows from (2.19). This completes the proof. �
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3. Proof of Theorem 1.1

We shall conserve the notation of Section 2. First we prove a lemma.

Lemma 3.1. Let z ∈ C, w ∈ C, α > 0, δ > 0, A > 0, B > 0, C > 0, M > 0 be some
constants. Suppose that the Dirichlet series

F(s) :=
∞∑
n=1

f(n)n−s

is of type P(z, w, α, δ, A,B,C,M). Then there is an absolute positive constant D such
that we have

(3.1) F(s)�MDBT (100B
√
ε+δ)(1−σ)(log T )A+4B

for all s ∈MT , where the implied constant depends only on ε.

Proof. Since we have chosen the principal value of complex logarithm, we can write

(3.2) |ζ(s)z| = |ζ(s)|<e ze−(=mz) arg ζ(s) 6 eπB|ζ(s)|<e z

for all s ∈ C such that ζ(s) 6= 0.
Invoking Proposition 2.3, we see that there is a suitable absolute constant D such

that

(3.3) |ζ(s)z| �ε D
BT 100B

√
ε(1−σ)(log T )4B

for all s ∈MT , where the implied constant depends only on ε.
Finally the required bound (3.1) follows from (3.3), the hypothesis (1.4) and the

trivial bound |ζ(2s)| � 1 for s ∈MT . �

Now we are ready to prove Theorem 1.1.
Since the Dirichlet series F(s) is of type P(z, w, α, δ, A,B,C,M), we can apply

Corollary II.2.2.1 of [20] with the choice of parameters σa = 1, α = α, σ = 0 to write∑
x<n6x+y

f(n) =
1

2πi

∫ b+iT ′

b−iT ′
F(s)

(x+ y)s − xs

s
ds+Oε

(
M
x1+ε

T

)
,

where b = 1 + 1/ log x, e
√

log x 6 T 6 x is a parameter to be chosen later and
T ′ = KT log T ∼ T .

Denote by ΓT the path formed from the circle |s − 1| = r := 1/(2 log x) excluding
the point s = 1 − r, together with the segment [1 − δT , 1 − r] traced out twice with
respective arguments +π and −π. By the residue theorem, the path [b− iT ′, b+ iT ′]
is deformed into

ΓT ∪ [1− δT − iT ′, 1− δT + iT ′] ∪ [1− δT ± iT ′, b± iT ′].

In view of (2.2) and the hypothesis (1.4), the function F(s) is analytic in the interior
of this contour and in the same domain

(3.4) F(s)�MDCTmax{δ(1−σ), 0}(log T )A+B,
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where the implied constant and the constant D are absolute. The integral over the
horizontal segments [1− δT ± iT ′, b± iT ′] is∫ b±iT ′

1−δT±iT ′
F(s)

(x+ y)s − xs

s
ds� MDC(log T )A+B

T

∫ b

1−δT
Tmax{δ(1−σ), 0}xσ dσ

�MDC x

T
(log T )A+B

(∫ 1

1−δT

( x
T δ

)σ−1

dσ + 1

)
�MDC x

T
(log T )A+B−1.

Thus

(3.5)
∑

x<n6x+y

f(n) = I +O

(
MDC x

1+ε

T

)
,

where the implied constant depends on ε only and

I :=
1

2πi

∫
ΓT∪[1−δT−iT ′, 1−δT+iT ′]

F(s)
(x+ y)s − xs

s
ds.

Let MT be the Motohashi contour defined as in Section 2. Consider the two sym-
metric simply connected regions bounded by MT , the segment [1−δT−iT ′, 1−δT+iT ′]
and the two line segments [σj0+1 + dv, 1− δT ] with respective arguments +π and −π
measured from the real axis on the right of 1 − δT . It is clear that F(s) is analytic
in these two simply connected regions. Denote by Γ∗T the path joining (the two end-
points of) ΓT with the two line segments [σj0+1 + dv, 1− δT ] of the symmetric regions.
Thanks to the residue theorem, we can write

(3.6) I = I1 + I2,

with

I1 :=
1

2πi

∫
Γ∗T

F(s)
(x+ y)s − xs

s
ds,

I2 :=
1

2πi

∫
MT

F(s)
(x+ y)s − xs

s
ds.

A. Evaluation of I1

According to our hypothesis, G(s;κ,w)ζ(2s)wZ(s;κ) is holomorphic and O(M) in
the disc |s− 1| 6 1

2
− ε3 =: c; the Cauchy integral formula implies that

(3.7) g`(κ,w)�Mc−` (` > 0, |z| 6 B, |w| 6 C),

where g`(κ,w) is defined as in (1.16). From this and (1.15), we deduce that for any
integer N > 0 and |s− 1| 6 1

2
− ε2,

G(s;κ,w)ζ(2s)wZ(s;κ) =
N∑
`=0

g`(κ,w)(s− 1)` +O
(
M(|s− 1|/c)N+1

)
.
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Thus we have

(3.8) I1 =
N∑
`=0

g`(κ,w)M`(x, y) +O
(
Mc−NEN(x, y)

)
,

where

M`(x, y) :=
1

2πi

∫
Γ∗T

(s− 1)`−z
(x+ y)s − xs

s
ds,

EN(x, y) :=

∫
Γ∗T

∣∣∣∣(s− 1)N+1−z (x+ y)s − xs

s

∣∣∣∣| ds|.
Firstly we evaluate M`(x, y). Using the formula

(3.9)
(x+ y)s − xs

s
=

∫ x+y

x

ts−1 dt

and Corollary II.5.2.1 of [20], we write

M`(x, y) =

∫ x+y

x

(
1

2πi

∫
Γ∗T

(s− 1)`−zts−1 ds

)
dt

=

∫ x+y

x

(log t)z−1−`
{

1

Γ(κ− `)
+O

(
(c1`+ 1)`

tδT /2

)}
dt,

where we have used the following inequality

47|z−`|Γ(1 + |z − `|)�B (c1`+ 1)` (` > 0, |z| 6 B).

The constant c1 and the implied constant depend at most on B. Besides for |z| 6 B,∫ x+y

x

(log t)z−1−` dt =

∫ y

0

logz−1−`(x+ t) dt

= y(log x)z−1−`
{

1 +OB

(
(`+ 1)y

x log x

)}
.

Inserting this into the preceding formula, we obtain

(3.10) M`(x, y) = y(log x)z−1−`
{

1

Γ(z − `)
+OB

(
(`+ 1)y

Γ(z − `)x log x
+

(c1`+ 1)`

xδT /2

)}
for ` > 0 and |z| 6 B.

Next we estimate EN(x, y). In view of the trivial inequality

(3.11)

∣∣∣∣(x+ y)s − xs

s

∣∣∣∣� yxσ−1,

we deduce that

(3.12)

EN(x, y) �
∫ 1−1/ log x

1/2+ε2
(1− σ)N+1−<e zxσ−1y dσ +

y

(log x)N+2−<e z

� y

(log x)N+2−<e z

(∫ ∞
1

tN+1−<e ze−t dt+ 1

)
� y(log x)<e z−1

(
c1N + 1

log x

)N+1
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uniformly for x > y > 2, N > 0 and |z| 6 B, where the constant c1 > 0 and the
implied constant depends only on B.

Inserting (3.10) and (3.12) into (3.8) and using (3.7), we find that

(3.13) I1 = y(log x)z−1

{ N∑
`=0

λ`(z, w)

(log x)`
+OB

(
E∗N(x, y)

)}
,

where

E∗N(x, y) :=
y

x

N+1∑
`=1

`|λ`−1(z, w)|
(log x)`

+
(c1N + 1)N+1

xδT /2
+M

(
c1N + 1

log x

)N+1

.

B. Evaluation of I2

Let M ′
T be the union of those vertical line segments of MT whose real part is equal

to 1
2

+ ε2 (i.e. corresponding to those k such that jk = 0) and M ′′
T := MTrM ′

T .
Denote by I ′2 and I ′′2 the contribution of M ′

T and M ′′
T to I2, respectively. Using the

trivial inequality ∣∣∣∣(x+ y)s − xs

s

∣∣∣∣� x1/2+ε2

|τ |+ 1
(s ∈M ′

T )

and Lemma 3.1, we can deduce

(3.14)

I ′2 �MDBx1/2+ε2T (δ+100B
√
ε)(1/2−ε2)(log T )A+4B+1

�Mx1/2+δ/(2ψ+2δ)+
√
ε

�Mx1−1/(ψ+δ)+
√
ε

with the value of T given by (3.16) below and ψ > 2.
Next we bound I ′′2 . In view of (3.11), we can write that

(3.15)

I ′′2 � y

∫
M ′′
T

|F(s)|xσ−1| ds|

� y
∑

06j6JT

∑
06k6KT
∆j,k∈(W )

∫
MT (j,k)

|F(s)|xσ−1| ds|,

where MT (j, k) is the vertical line segment of M ′′
T around ∆j,k and the horizontal line

segments with σ 6 σj + dv. Clearly the length of MT (j, k) is � log T . Thus with the
help of Lemma 3.1, it is easy to see that∫

MT (j,k)

|F(s)|xσ−1| ds| �MDB(log T )A+4B+1T (δ+100B
√
ε)(1−σj−dv)xσj+dv−1

for all 0 6 k 6 KT . Inserting it into (3.15) and using Proposition 2.4, we can deduce,
with the notation JT,0 := [(1

2
− ε) log T ], that

I ′′2 �MDBy(log T )A+4B+18+η
(
I ′′2,∗ + I ′′2,†

)
,
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where

I ′′2,∗ :=
∑

06j6JT,0

T (δ+100B
√
ε)(1−σj−dv)xσj+dv−1 · Tψ(1−σj),

I ′′2,† :=
∑

JT,0<j6JT

T (δ+100B
√
ε)(1−σj−dv)xσj+dv−1 · T 100

√
ε(1−σj).

Taking

(3.16) T := x(1−
√
ε)/(ψ+δ+100B

√
ε)

and in view of (2.10), it is easy to check that

I ′′2,∗ � xε
2
∑

06j6JT,0

(
x/Tψ+δ+100B

√
ε
)−(1−σj)

log x� xε
2−ε3/2 log x� x−ε

2

and

I ′′2,† �
∑

JT,0<j6JT

(
x/T δ+100(B+1)

√
ε
)−(1−σj)

� e−2c2(log x)1/3(log2 x)−1/3

Inserting it into the preceding estimate for I ′′2 , we conclude that

(3.17) I ′′2 �B Mye−c2(log x)1/3(log2 x)−1/3

.

Now from (3.5), (3.6), (3.13), (3.14) and (3.17), we deduce that

∑
x<n6x+y

f(n) = y(log x)z−1

{ N∑
`=0

λ`(z, w)

(log x)`
+OA,B,C,α,δ,ε

(
R∗N(x, y)

)}
uniformly for x > 3, x1−1/(ψ+δ)+ε 6 y 6 x, N > 0, |z| 6 B and |w| 6 C, where

R∗N(x, y) :=
y

x

N+1∑
`=1

`|λ`−1(z, w)|
(log x)`

+M

{(
c1N + 1

log x

)N+1

+
(c1N + 1)N+1

ec2(log x)1/3(log2 x)−1/3

}
for some constants c1 > 0 and c2 > 0 depending only on B, C, δ and ε.

It remains to prove that the first term on the right-hand side can be absorbed by
the third. In view of (1.14), the Cauchy formula allows us to write

g`(z, w)�A,B,C,δ M3`

for |z| 6 B, |w| 6 C and ` > 1. Combining this with the Stirling formula, we easily
derive λ`(z, w)�A,B,C,δ M(9/`)` for |z| 6 B, |w| 6 C and ` > 1. This implies that

y

x

N+1∑
`=1

`|λ`−1(z, w)|
(log x)`

�A,B,C,δ M
y

x
�A,B,C,δ,ε

M(c1N + 1)N+1

ec2(log x)1/3(log2 x)−1/3

holds uniformly for x > 3, x1−1/(ψ+δ)+ε 6 y 6 x, N > 0, |z| 6 B and |w| 6 C. This
completes the proof.
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4. Proofs of Theorems 1.3 and 1.4

Since the proofs of Theorems 1.3 and 1.4 are very similar, we shall only prove the
former. For z ∈ C and σ > 1, we can write

F1(s; z) :=
∑
n>1

zω(n)n−s =
∏
p

(
1 + z(ps − 1)−1

)
= ζ(s)zζ(2s)z(1−z)/2G1

(
s; z, z(1−z)

2

)
,

where

G1

(
s; z, z(1−z)

2

)
:=
∏
p

(
1 +

z

ps − 1

)(
1− 1

ps

)z(
1− 1

p2s

)z(1−z)/2
.

We expand G1

(
s; z, z(1−z)

2

)
into the Dirichlet series

G1

(
s; z, z(1−z)

2

)
=
∑
n>1

b1z(n)n−s,

then b1z(n) is the multiplicative function whose values on prime powers are determined
by the identity

1 +
∑
ν>1

b1z(p
ν)ξν =

(
1 +

zξ

1− ξ

)
(1− ξ)z(1− ξ2)z(1−z)/2 (|ξ| < 1).

In particular b1z(p) = b1z(p
2) = 0 and the Cauchy integral formula gives

|b1z(p
ν)| 6M(B)2ν/2 (ν > 3, |z| 6 B),

where

M(B) := sup
|z|6B, |ξ|61/

√
2

∣∣∣∣(1 +
zξ

1− ξ

)
(1− ξ)z(1− ξ2)z(1−z)/2

∣∣∣∣.
From these we deduce that for σ > 1

3
,∑

p

∑
ν>1

|b1z(p
ν)|

pνσ
6
∑
p

∑
ν>3

M(B)

(pσ/
√

2)ν
6
∑
p

23/2M(B)

p2σ(pσ −
√

2)
�B

1

3σ − 1
·

So the Dirichlet series
∑∞

n=1 z
ω(n)n−s is of type P(z, z(1−z)

2
, B, 0, 0, B, C(B),M(B)),

where C(B) is a positive constant depending on B.
Define g`(z) by

(4.1)

F1(s)(s− 1)z = Z(s; z)ζ(2s)z(1−z)/2G1

(
s; z, z(1−z)

2

)
=
∞∑
`=0

g`(z)(s− 1)` (|s− 1| < 1
6
).

Applying Theorem 1.1 to the Dirichlet series
∑∞

n=1 z
ω(n)n−s, we obtain the following

result.

Lemma 4.1. Let B > 0 be a constant. For any ε > 0, we have

(4.2)
∑

x<n6x+y

zω(n) = y(log x)z−1

{ N∑
`=0

λ`(z)

(log x)`
+OB,ε

(
MRN(x, y)

)}



24 Z. CUI, G.-S. LÜ & J. WU

uniformly for

x > 3, x > y > x1−1/ψ+ε, |z| 6 B, N > 0,

where λ`(z) := g`(z)/Γ(z − `) and RN(x, y) is defined as in (1.18). The constants
c1, c2 in RN(x, y) and the implied constant depends only on B and ε.

Lemma 4.1 improves Theorem 3 of [10] in two directions: get a more precise as-
ymptotic formula and extend the domain x7/12+ε 6 y 6 x2/3−ε to x7/12+ε 6 y 6 x.

The next lemma is a short interval version of the asymptotic formula (13) of [20,
Theorem II.6.3]. We omit the proof as it is very similar.

Lemma 4.2. Let B > 0 and 0 < θ 6 1 be two positive constants. For each integer
n > 1, let

az(n) =
∞∑
k=0

ck(n)zk

be a holomorphic function for |z| 6 B. Let N > 0 be a non-negative integer. Suppose
that there exist N + 1 holomorphic functions h0(z), . . . , hN(z) for |z| 6 B and a
quantity RN(x, y) independent of z such that

(4.3)
∑

x<n6x+y

az(n) = y(log x)z−1

{ N∑
`=0

zh`(z)

(log x)`
+OB,θ

(
RN(x, y)

)}
holds uniformly for x > 3, x > y > xθ and |z| 6 B. Then we have

(4.4)
∑

x<n6x+y

ck(n) =
y

log x

{ N∑
j=0

Rj,k(log2 x)

(log x)j
+OB,θ

(
(log2 x)k

k!
RN(x, y)

)}
uniformly for x > 3, x > y > xθ and 1 6 k 6 B log2 x, where

(4.5) Rj,k(X) :=
∑

`+m=k−1

h
(m)
j (0)

`!m!
X`

and the implied constants depend only on B and θ.
If, in addition, we suppose that |h′′0(z)| 6 D (|z| 6 B), then we have∑

x<n6x+y

ck(n) =
y

log x

(log2 x)k−1

(k − 1)!

{
h0

(
k − 1

log2 x

)
+OB,θ

(
D(k − 1)

(log2 x)2
+

log2 x

k
R0(x, y)

)}
uniformly for x > 3, x > y > xθ and 1 6 k 6 B log2 x. Here the implied constants
depend only on B and θ.

Now we are ready to finish the proof of Theorem 1.3. According to Lemma 4.1, the
condition (4.3) of Lemma 4.2 is satisfied with the following choices:

az(n) = zω(n), zh`(z) = λ`(z), θ = 1− 1/ψ + ε,

λ`(z) andRN(x, y) are defined as in Lemma 4.1, and ck(n) is the characteristic function
on the set of integers n such that ω(n) = k. Thus the assertion (a) is an immediate
consequence of this lemma.
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5. Proofs of Theorems 1.5 and 1.6

The proof of Theorem 1.5 will be proceeded exactly as in [1]. The only difference
is the use of Corollary 1.2 in place of [1, Theorem 1].

Since
∑

n>1 τk(n)n−s = ζ(s)k for σ > 1, we can apply Theorem 1.1 with z = k,

w = 0, G(s; k, 0) ≡ 1 and A = δ = 0. Taking N = [c′(log x)1/3(log2 x)−4/3] with some
small constant c′ and noticing that λ`(k, 0) = 0 for all ` > k, we obtain the result of
Theorem 1.6.

6. Proof of Theorem 1.7

Since the function τk(n) is multiplicative and

τk(p
ν) =

(
k + ν − 1

ν

)
=

1

ν!

ν−1∏
j=0

(k + j),

we can write, for σ > 1,∑
n>1

τk(n)−1n−s =
∏
p

(
1 +

∑
ν>1

(
k + ν − 1

ν

)−1

p−νs
)

= ζ(s)
1
k ζ(2s)−

2k3+2k2+2k+1

k2 G3

(
s; 1

k
,−2k3+2k2+2k+1

k2

)
,

where

G3(s; z, w) :=
∏
p

(∑
ν>0

(
k + ν − 1

ν

)−1
1

pνs

)(
1− 1

ps

)z(
1− 1

p2s

)w
.

As before, we expand G3

(
s; 1

k
,−2k3+2k2+2k+1

k2

)
as a Dirichlet series:

G3

(
s; 1

k
,−2k3+2k2+2k+1

k2

)
=
∑
n>1

b3k(n)n−s

where b3k(n) is the multiplicative function for which the values on prime powers are
determined by the identity

1 +
∑
ν>1

b3k(p
ν)ξν =

(∑
ν>0

(
k + ν − 1

ν

)−1

ξν
)

(1− ξ)
1
k (1− ξ2)−

2k3+2k2+2k+1

k2 .

It is easy to see that the right-hand side is an analytic function in |ξ| < 1 and
b3k(p) = b3k(p

2) = 0. Again the Cauchy integral formula yields

|b3k(p
ν)| �k 2ν/2 (ν > 3), G3

(
s; 1

k
,−2k3+2k2+2k+1

k2

)
�k,σ 1 (σ > 1

3
).

This shows that the Dirichlet series associated to τk(n)−1 is of type

P( 1
k
,−2k3+2k2+2k+1

k2
, 1
k
, 0, 1

k
, 2k3+2k2+2k+1

k2
,M(k)),

where M(k) is a positive constant depending on k. Therefore the required result
follows immediately from Theorem 1.1 with any fixed positive integer N .
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[9] I. Kátai, A remark on a paper of Ramachandra, in: Number Theory, Proc. Ootacamund, K.

Alliadi (Ed.), Lecture Notes in Math. 1122, Springer (1984), pp. 147–152.
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Vandœuvre-lès-Nancy, France

E-mail address: jie.wu@univ-lorraine.fr


