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THE SELBERG-DELANGE METHOD IN SHORT INTERVALS
WITH SOME APPLICATIONS

Z. CUL G.-S. LU & J. WU

ABSTRACT. In this paper, we establish a quite general mean value result of arith-
metic functions over short intervals with the Selberg-Delange method and give some
applications. In particular, we generalize Selberg’s result on the distribution of in-
tegers with a given number of prime factors and Deshouillers-Dress-Tenenbaum’s
arcsin law on divisors to the short interval case.

1. INTRODUCTION

This is the second paper of our series on the Selberg-Delange method for short
intervals [1]. The method was initially introduced by Selberg [19] to study the distri-
bution of integers having a given number of prime factors, and subsequently further
developed by Delange [2, 3]. Roughly speaking it applies to evaluate mean values of
arithmetic functions whose associated Dirichlet series are close to complexr powers of
the Riemann (-function. An excellent exposition of the theory and applications can be
found in [20, Chapters I1.5 and I1.6]. Recently Cui & Wu [1] generalized this method
to short interval when the power is positive real. In this paper we shall consider the
complex power case which cannot be plainly treated with the method in [1]. Our
aim is two-fold. First, we establish a quite general mean value result of arithmetic
functions over short intervals, which generalize and improve the main result of [1].
Second, we provide five arithmetic applications of our mean value result on :

e Distribution of integers having a given number of prime factors in short intervals,

e Deshouillers-Dress-Tenenbaum arcsin law on divisors in short intervals,

e Divisor problem for 7;(n) in short intervals.

e Mean values of 1/7,(n) over short intervals.

We shall proceed along the same line of argument as in [1]. Its origin can be found in
20, Chapters I1.5 and I1.6].

1.1. Statement of main results.
Let f(n) be an arithmetic function and let its Dirichlet series be defined by

(1.1) F(s):= Zf(n)n’s.

Let z¢e C,weC,a>0,0>0,A>0,B>0,C >0, M >0 be some constants. A
Dirichlet series F(s) defined as in (1.1) is said to be of type P(z,w,«,d, A, B,C, M)
if the following conditions are verified:
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2 Z.CUL G.-S. LU & J. WU

(a) for any £ > 0 we have

(1.2) [f(n)] <c Mn®  (n>1),
where the implied constant depends only on ¢;
(b) we have

YT < Mo -1 (0> 1);

(c) the Dirichlet series
(1.3) G(s;2,w) = F(s)C(s)7C(25)

can be analytically continued to a holomorphic function in (some open set containing)
o= % and, in this region, G(s; z, w) satisfies the bound

(1.4) 1G(s: 2 w)| < M (|| + 1) O F ogh(|7| + 1)

uniformly for |z| < B and |w| < C, where and in the sequel we implicitly define the
real numbers ¢ and 7 by the relation s = ¢ + i7 and choose the principal value of the
complex logarithm.

Our first aim of this paper is to establish, under the previous assumptions, an
asymptotic formula of

(1.5) > fn)

r<n<e+axf

with 6 € (0, 1] as small as possible. In view of the zero-free region of Vinogradov for
((s) (see [20, page 161]), it seems rather difficult to prove such a result. One of our
principal tools is Huxley’s estimation on the zero density of the Riemann (-function.
As usual, we denote by N(o,T) the number of zeros of ((s) in the region Res > o
and |[Sms| < T. It is well known that there are two constants ¢ and 7 such that

(1.6) N(o,T) < T*1=9) (log T)"
for % <o <1and T > 2. Huxley [7] showed that

(1.7) =2 and n=9
are admissible. The zero density hypothesis is stated as
(1.8) v = 2.

Combining (1.7) with the explicit formula (see [20, page 177]), Huxley derived his well
known prime number theorem in short intervals [7] : for any € (5, 1] and y = 27,
the asymptotic formula

Y
1.9 1~
(1.9) Z log

r<pKT+yY

holds as © — oco. Corresponding to (1.9), Motohashi [13] proved the following result
for the M&bius function p(n) : For any 6 > % and y = 2%, the inequality

(1.10) > u(n) =oly)

r<n<T+y
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holds as * — oco. Independently Ramachandra [14] obtained a better result :

(1.11) S n) €ap

A
r<n<r+y (log l’)

For each A > 0. Their methods are similar. Our approach is a generalization and
refinement of Motohashi’s method [13]. The first key of this method is to construct
a contour .y (see Section 2 below for its precise definition) in the critical strip such
that for any € > 0 we have

(1.12) (Il + 170 < [¢(s)] < (7] + 1)

for s € .#r. The second key is a very good bound for the density of “small value
points” (i.e. satisfying (2.6) below), which was established by adapting Montgomery’s
new method to study the zero-densities of the Riemann (-function and of the Dirichlet
L-functions [12]. With these two nice ideas and Huxley’s zero density estimation, we
establish a general asymptotic formula for the summatory function (1.5), see Theorem
1.1 below. It is worthy to point out that our Theorem 1.1 allows us to unify the
treatment of (1.9) and (1.10); indeed the latter is a particular case of the former.

In order to state our main result, it is necessary to introduce some more nota-
tion. From [20, Theorem II.5.1], the function® Z(s;2) := {(s — 1)((s)}* (¢ € C) is
holomorphic in the disc |s — 1| < 1, and admits, in the same disc, the Taylor series
expansion

Z(s;z) = Zvl('z)(s— 1),

J

where the 7;(z)’s are entire functions of z satisfying the estimate

(1.13) %j )y (lbey (720, |1 < B)

for all B > 0 and € > 0. Under our hypothesis, the function G(s; z, w)((2s)*Z(s; z)
is holomorphic in the disc |s — 1| < 3 and

(1.14) |G (53 2,w)¢(25)" Z(s; 2)| Kapse M

for |s —1| < 3 —¢, |2| < B and |w| < C. Thus for |s — 1| < 3, we can write
(1.15) G(s;z,w)((28)°Z(s; z) Zgg z,w)(s — 1),

where

v3(2)-

s=1

(1.16) i —%Z()a Gloi =, 1)G2)")

The main result of this paper is as follows.

“In [20], Z(s;2) is defined as s~'{(s — 1){(s)}* but obviously the argument of the proof there
works for our Z(s; z).
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Theorem 1.1. Let 2 € C,w e C,a>0,6>20, A>0,B>0,C>0, M >0 be
some constants. Suppose that the Dirichlet series

= fn~

is of type P(z,w,«, 6, A, B,C, M). Then for any € > 0, we have

(1.17) > f(n) = y(logx)? 1{ > W""Q + O(MRN(:c,y))}

r<n<z+y =0 (IOg I)

uniformly for x > 3, 'YWt <y <, N >0, |2| < B and |w| < C, where
Me(z,w) == go(z,w) /T (2 — £) and

(ClN + 1)N+1
(lOg x)N-i—l +ecg(logx)1/3(log2 x)—1/3

(1.18) Ry(w,y) =

for some constants ¢; > 0 and co > 0 depending only on B, C', § and €. The implied
constant in the O-term depends only on A, B,C,«a, and €. In particular 1 = % 15
admissible.

The admissible length of short intervals in Theorem 1.1 depends only on the zero
density constant ¢ of ((s) and ¢ in (1.4) (for which we take 6 = 0 in most appli-
cations). Its independence from the power z of ((s) in the representation of F(s)
seems interesting. Theorem 1.1 generalizes and improves [1, Theorem 1] to the case
of complex powers and intervals of shorter length.

Taking N = 0 in Theorem 1.1, we obtain readily the following corollary.

Corollary 1.2. Under the conditions of Theorem 1.1, for any ¢ > 0, we have

(1.19) Z f(n) = y(logz)*~ {Ao(z,w)+o(l(j\§x>}

r<n<r+y

uniformly for x > 2, 2!~V Ly <, 2| < B and |w| < C, where

G(1;z,w)¢(2)"
['(2)

and the implied constant in the O-term depends only on A, B,a,d and €. Note that

Y= % 15 admaissible.

Aoz, w) :=

Taking f(n) = u(n) in Theorem 1.1, we have z = —1, w = 0 and G(s;2z,w) = 1,
0 =0, ¢ = %, A(—1,¢) = 0 for all integers ¢ > 0. Thus we can choose N =
[ (log 2)'/3(log, x)~*/3] with some small constantd > 0 to obtain an improvement of

Motohashi’s result (1.10): For any 6 > 12, we have

Z H(n) < ye—c(logm)l/S(logQ z)~1/3

r<n<T+y

uniformly for x > 2 and 2% < y < , where ¢ > 0 is a constant depending on 6.
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1.2. Integers having a fixed number of prime factors.

Denote by w(n) (resp. ©(n)) the number of distinct (resp. all) prime factors of n.
For each positive integer k > 1, consider

(1.20) m(z) = {n <z :w(n) =k}

(1.21) Ni(z) = {n <z :Q(n) =k}

In 1909, Landau [11] proved by induction that for each fized positive integer k, the
following asymptotic formulas

v (logy z)*!

logz (k—1)!
hold, where log, denotes the (-fold iterated logarithm. However, if we allow £ to
grow with z, the method by induction will become too technical (see [17, 18]). In
[19], Selberg proposed a new and very elegant approach to attack this problem —
identifying m(z) with the coefficient of z* in the expression Y, _ 2%(" and then
applying Cauchy’s integral formula. Through a detailed study of the sum over z, he
proved that for any fixed constant B > 0 the asymptotic formula

(1.22) me(x) = lozx a?;?_xiéy_l {)\(l]f)g; 31:) +0s (ﬁ) }

holds uniformly for > 3 and 1 < k < Blog, x, where

(1.23) A(2) rZﬁg(Hpil)(l_%)z

and the implied constant depends only on B. In the same fashion, Selberg also proved
that for any ¢ € (0, 1), the asymptotic formula

(1.24) Nii(w) = 102:5 (1?52_:511;—1 {” ({Zg;?i) O ((log%) }

holds uniformly for z > 3 and 1 < k < (2 — 0) log, =, where

(1.25) v(2) = ﬁ 1;[ (1 - %) i (1 - 119)

and the implied constant depends only on §.
As the first application of Theorem 1.1, we shall generalize Selberg’s results (1.22)
and (1.24) to the short interval case.

mi(x), Ng(z) ~ (x — 00)

Theorem 1.3. Let B > 0. There ezist positive constants ¢; = ¢1(B) and ¢y = co( B)
such that for any € > 0, we have

(1.26) mp(zx +y) — mp(z) = @{ Z % + Op, (%RN(% y)> }

uniformly for x > 3, oY% <y < 2 and 1 < k < Blog,x, where P;y(X) is a
polynomial of degree at most k — 1 and Ry(x,y) is defined as in (1.18). Here c1,co
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in the definition of Ry(z,y) and the implied constant depend on B and € only. In
particular, we have

)\(m)(())
Por(X) = Z Nl X"
m+l=k—1 o

Moreover, under the same conditions, we have

(127)  mlz+y) —m(x) = 10255 (1?52_:6{;11 {A({Zg_g i:) o (@) }

In particular ¢ = 2 is admissible in both assertions (1.26) and (1.27).

Theorem 1.4. There exist absolute positive constants c¢; and co such that for any
e > 0, we have

Q] k(log, ) (log, )"
(128) Nylx +y) ~ Nylz 1ogx{2 08 4 0 (2 R(ong)

uniformly for x > 3, x17VY¥* <y <z and 1 < k < logyx, where Q;1(X) is a
polynomial of degree at most k — 1 and Ry(x,y) is defined as in (1.18). Here c1, ¢y in
the definition of Ry(x,y) and the implied constant depend on e only. In particular,

we have o
vm(0)
QuiX)= ), Tt
mA4L=k—1
Moreover, under the same conditions, we have

(1.29)  Np(x+y) — Ni(z) = 10233 (l?lfixil;!l {V<1kmg;2i:> o (ﬁ) }

In particular ¢ = 2 is admissible in both assertions (1.28) and (1.29).

Remark 1. Kétai [9] applied Ramachandra’s theorem [14] to obtain

lo k—1
a4 ) = mle) = {1+ o)
uniformly for any k£ < log,z + c;\/log, z, where ¢, — oo sufficiently slowly, and
y > x'71/¥*¢ Clearly Theorem 1.3 improves Kétai’s result in two directions: get a
more precise asymptotic formula and extend domain of k.
Taking £ = 1, we obtain Huxley’s well known prime number theorem in short
intervals (1.9).

1.3. The Deshouillers-Dress-Tenenbaum arcsin law on divisors.

For each positive integer n, denote by 7(n) the number of divisors of n and define
the random variable D,, which takes the value (logd)/logn, as d runs through the
set of the 7(n) divisors of n, with the uniform probability 1/7(n). The distribution
function F), of D, is given by

F,(t) = Prob(D, < Z 1 (0<t<1).

d\n d<nt
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It is clear that the sequence { F},},>1 does not converge pointwisely on [0, 1]. However
Deshouillers, Dress & Tenenbaum ([4] or [20, Theorem I1.6.7]) proved that its Cesaro
mean converges uniformly to the arcsin law. More precisely, they showed that the
asymptotic formula

—ZF :—arcsm\/_—i—O(

n<x

o)

holds uniformly for x > 2 and 0 < ¢ < 1, and that the error term is optimal. Very
recently Cui & Wu [1, Theorem 2| established a short interval version of this result:
For € > 0, we have

(1.30)

1 2 1
- Z F,(t) = = arcsin v/t + O, ( _)
Yy r<n<T+y T log L

uniformly for 0 < t < 1, z > 2 and 2%/77*¢ < y < z, where the implied constant
depends only on ¢.
Our third application of Theorem 1.1 is to improve the exponent in (1.30).

Theorem 1.5. For any ¢ > 0, the asymptotic formula (1.30) holds uniformly for
0<t<1, x>2and x"?** <y < x, where the implied constant depends on € only.

For comparison, we have 62 =0.805... and % =0.791....

1.4. Divisor problem for 7,(n) on short intervals.

As usual, denote by Ag(z) the error term in the asymptotic formula for the k-
dimension divisor problem:

Dy(x) ==Y 7i(n) = 2Py (logx) + Ay(w),

where P,_1(t) is a polynomial of degree k — 1 with leading coefficient 1/(k — 1)!. The
best known result for Ay (z) for & > 4 is as follows :

(1.31) Ay(z) < 22 (log x)°, Ap(r) <pe 2%%° (k= 5)
with Hk T % (5 < k 8) 99 = 54, 910 = é—(l), 911 = 10, Hk k:+2 (12 k < 25),
O = 153 (26 k < 50), 6, = 3298 (51 < k < 57), 6, = ™22 (k > 58), where ¢ is

an arbitrarily small positive number (see [5, (1.3)] for k = 4 and [8, Theorem 12.3]
for k > 5.) In 2006, Garaev, Luca and Nowak [5] considered the divisor problem for
74(n) in short intervals and proved that

S ) = éy(log x)3{1 + O«@)”) }

r<n<r+y

for z > 3 and 2'/?logz < y < 2'/?(log x)*/?. They also emphasized that for no other

dimension k # 4 short interval results are known for the sum over 7,(n) that are
sharper than what is immediate from the (“long interval”) asymptotics for Dy (z) (see
[5, Remark]). The next theorem gives a such result for all integers k > 7.
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Theorem 1.6. Let k > 7 be a positive integer and € > 0 be an arbitrarily small
positive number. Then there is a positive constant ¢ depending on k and € such that
the asymptotic formula

Z Tr(n) = yQr_1(log x){l + Ope (e—c(logx)1/3(10g2 I)—I/S)}

r<n<T+y

holds uniformly for x > 2 and x'~V/¥* <y < x, where Q_1(t) is a polynomial of
degree k — 1 with leading coefficient 1/(k — 1)! and the implied constant depends only
12

on k and e. In particular ¢ = =% is admissible.

It is interesting to note that the exponent (1.31) tends to 1 as kK — oo, and that
the length of short intervals in Theorem 1.6 is independent of k.

1.5. The mean value of 1/7,(n) on short intervals.

Recently Sedunova [16] considered mean values of the following arithmetic functions
over short intervals: 74(n)~", o(n)/7(n), r(n)~!, where 74(n) := 3°,, To-1(d), o(n) :=
> g d and r(n) := [{(n1,n2) € Z* : ni +n3 = n}|. In particular she proved that for
any fixed integer N > 0 the asymptotic formula

r<n<r+y =0

holds uniformly for = > 3 and z*+5)/B6k+5)alos)™" < < 2 where the ay(k) are
some constants depending on & (see [16, Theorem 1]).
The fourth application of Theorem 1.1 is the following result.

Theorem 1.7. For any ¢ > 0, the asymptotic formula (1.32) holds uniformly for
x> 2 and 7/ Ly < x, where the implied constant depends only on k, N and .

Since % — 5 decreasingly as k — oo, Theorem 1.7 improves Sedunova’s (1.32)

for all k. Tt is worthy to note that our exponent is independent of k. Clearly the other
results in [16, Theorems 2-7] can also be improved by Theorem 1.1 or its method of
proof.

Acknowledgements. The first author is supported by the National Natural Sci-
ence Foundation of China (Grant No. 11271249) and the Specialized Research Fund
for the Doctoral Program of Higher Education (No. 20120073110059). The second
and third authors are supported in part by IRT1264. Finally we are grateful to Y.-K.
Lau for his help during the preparation of this paper.

2. MOTOHASHI METHOD

This section is devoted to depict Motohashi’s method [13]. His original presentation
is rather sketchy. Some key estimations (see Lemma 2.1 and Proposition 2.4 below)
are outlined without many details. Here we would give a complete and detailed
presentation for the sake of readers’ convenience and the importance of this method.
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2.1. Hooley-Huxley-Motohashi’s contour ..

Let € be an arbitrarily small positive constant and let Ty = Ty(g) be a large constant
depending on ¢ only. As in [13], for T > Ty, put

(2.1) o == Co(log T)~**(log, T)~V/3,
where Cj is a suitable positive constant such that
(2.2) (log [7]) 7% (log, |7]) ™% < ¢(s)| < (log |7])**(logy |7])"/*

for 0 > 1 — 10007 and 1 < |7| < 1007 (see [20, page 162]).
For T' > Tj, write

(2.3) Jr = [(3 — or)logT] and Ky :=[T(logT)™"].
For each pair of integers (7, k) with 0 < j < Jr and |k| < K7, we define
(2.4) Ajp={s=o0c+ir:0; <0 <041 and 7, < 7 < Tp41},
where

(2.5) oj:=3+j(logT)™" and T, = klogT.

We divide A, into two classes (W) and (V') as follows.

o0, < 1—¢ Then A, € (W) if A;j contains at least one zero of ((s), and
Aj i € (Y) otherwise;

ol —c<o; <1—0r: Aji € (W) if and only if 3 at least one s € A, such that

(2.6) C(s) M, (s)] < 3
with
A’ := a fix large integer

(2.7) N = (A(logT)>  max [¢(s)) /2077

o>40;—3, 1<|7|<4T
My, (5) 1= ¥, )
and A, € (Y) if and only if for all s € A
(2.8) C(s) M, (s)] = 3-
For each k, we define

max j if 37 such that A;, € (W),

= Ajre(W)
0 otherwise.
Put
(2.9) 2= U U Ny, Qo= U U Ay
0<k<Kr 0<i<Jg 0<k< KT jr<J<Jr

Clearly %, consists of A, of type (Y) only.
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Hooley-Huxley-Motohashi’s contour .t is symmetric about the real axis. Its up-
per part is the path in %, consisting of horizontal and vertical line segments whose
distances away from &’ are respectively d;, and d,, given by

g2 if co<1l—¢
2.10 dy :=log, T, d, == ’
(2.10) " &2 {(logT)1 if l—e<o<1-—0r.
T,
T i ] T
3 AJ’K,K 3
L g | D
| ///{T |
3 d
| .
Th+1 :r o l *:
1 N |
| Aj,@\ L Byt |
- 1 Lo L —
3 Ajs, 3
i | AN
0 1 0j0j+1 1—¢ 1—6r1 b O

Figure 1 — Superieur part of the contour .y
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2.2. Lower and upper bounds of ((s) on ..

In this subsection we give bounds to ((s) on .#7. The next two lemmas are essen-
tially due to Motohashi [13, page 478, lines 21-28]. For completeness we shall provide
proofs.

Lemma 2.1. Under the previous notation, we have

_e2 —&
(2.11) e 108D« |¢(s)| < elosD)!

for s € My witho < 1—c¢, ors (with1l —e <o <1—¢e+&?) on the horizontal
segments in Mt that intersect the vertical line e s = 1 —¢e. Here the implied constant
depends only on €.

Proof. Let s = o + it satisfy the conditions in this lemma. Without loss of generality,
we can suppose that 7 > Ty(¢). Let us consider the four circles 67, €5, €5 and %4, all
centered at so = log, 7 + iT, with radii

ry:=log,T—1—mn,

ro :=log, T — 0o,

r3:=log, T — 0o + %82,

ryi=log, T — 0 + &2,
respectively. Here n > 0 is a parameter to be chosen later. We note that these four
circles pass through the points 1+n+ir, o4ir, 0 — %52—1—# and o —e2+1ir, respectively.

Clearly ((s) # 0 in a region containing the disc |s — so| < r4. Thus we can unam-

biguously define log ((s) in this region. We fix a branch of the logarithm throughout
the remaining discussion.

Let M; denote the maximum of |log((s)| on €; relative to this branch. By using
Hadamard’s three circle theorem and the fact that s = o 4 i7 is on %3, we have

(2.12) [log C(s)] < My < MM,
where
_ log(ra/71)
10%(7”3/7”1)

_ log(1+(1+n—0)/(logy7—1—n))
log(1+ (1471 —0+ 3¢2)/(logyT — 1 — 1))

l1+n—-o 1
= + O((logy T .
1+n— 0+ & ((tog, 7))

Ontakingnza—%—%ez—%f—jeg) (n > 1£%, since 0 > 1 + &%), we have
(2.13) a=1-¢e*—¢&+0((logy)™").
On the circle %7, we have
| A(n) =1 1
2.14 M, < < -
(2.14) ! %gslgl)in “~ |n*logn ; nl+n < n

where A(n) is the von Mangoldt function.
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In order to bound Mj3, we shall apply the Borel-Carathéodory theorem to the func-
tion log ((s) on the circles 63, €. On the circle 64, it is well known that
Re (log ((s)) = log [((s)| < log .

Hence the Borel-Carathéodory theorem gives

2r ry+T
Ms < ——— max log|((s)| + ———|log {(s0)|
T4 — T3 |s—so|<rs Ty — T3
2(log, T — 0 + 2&? 2log, T — 20 + 1g?
(2.15) < (logy TS 2 >log7'+ S2 T 2= 1log ((2 +iT)|
2e se
2 2
< (logy 7) log 7.
From (2.12), (2.13), (2.14) and (2.15), we deduce that
[log ((s)| < (") ~"(logy T log 7)°
&, (logy 7log 7)1_52_55
< (log 7).
This leads to the required estimates. O

Lemma 2.2. Under the previous notation, we have
(2.16) 71000902 (1og T)~* < |¢(5)] < T (1og T)*

for s € My withl —e < 0; < 0 < 0j1. Here the implied constants are absolute. In
particular we have

(2.17) T—400VEA=o) (Jog T) ™ < |¢(s)| < THOOVEI=90) (log T')*

for s € My with1l —e < 0; <0 < o0jp1. All the implied constants are absolute.
Proof. According to [15, page 98], we have

(2.18) ()| < 710 (log )25 (<o <1, T >2).

This immediately implies the upper bound of (2.16) and

N; 7 = (A(log T)° max <))
(2.19) 1<|7|<AT
& T1000-e;)*2 (log T)?.

Next we consider the lower bound. Let s € .#p with 1 —¢ < 0; <0 < 0j41. Then
there is an integer k such that s € A ;. According to the definition of .#7, this A,
must be in (Y') and (2.8) holds for all s of this A; ;. On the other hand, (2.19) allows
us to deduce that for 0; <o < 0j41

My () < 32w < (1 - o) N
ngNj
< T400(1_"j)3/2(10g T)*.
Combining this with (2.8) immediately yields
C()] = @M, (s)))7" > T4 log T)~*
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for s € Mr with1l —e <o0; <0 <0jq1.
Finally we note (2.17) is a simple consequence of (2.16) since 1 — ¢ < ¢, implies
that (1 —0;)/2 < /e O

Proposition 2.3. Under the previous notation, we have
(2.20) TA00VEI=9) (Jog T) ™ < |((s)| < TOOVEI=) (log T)*.
for all s € M, where the implied constants depend only on ¢.

Proof. Let s € 7. Then there is a j such that 0; < o < ;1. We consider the three
possibilities.

e The case of 1 — ¢ < o;.

The inequality (2.20) follows immediately from (2.17) of Lemma 2.2.

e The case of 0; <o <1 —c¢.

In this case, the first part of Lemma 2.1 shows that (2.20) holds again since /(1 —
o) = e¥? > (logT)~=" for T > Ty(e).

o The case of 0; <1 —¢ < 0.

In this case, s must be on the horizontal segment in .#r, because the vertical
segment keeps the distance £ from the line Res = 0; and 0; < 0 < 0;41. Thus we
can apply the second part of Lemma 2.1 to get (2.20) as before. O

2.3. Montgomery’s method and Huxley’s zero-density estimation.

In [12], Montgomery developed a new method for studying zero-densities of the
Riemann (-function and of the Dirichlet L-functions. Subsequently by modifying this
method, Huxley [7] established his zero-density estimation (1.7) (see (2.21) below).
In [13], Motohashi noted that Montgomery’s method can be adapted to estimate the
density of “small value points” (characterized by (2.6)). The estimation (2.22) below
is due to Motohashi [13, (5)].

Proposition 2.4. Under the previous notation, for j = 0,1,..., Jr we have
(2.21) {k < Kr:Ajpe (W)} < T ) (log T)"

if 0j <1—¢; and

(2.22) {k < Kp: Ay € (W)Y < 770020 (Iog T)13

if 1 —e<o0; <1—0r. Here (¢,n) = (2,9) is admissible.

Proof. The case of 0; < 1 — ¢ is very simple, because the number of (W) does not
exceed the number of non-trivial zeros of ((s).

Next we suppose 1 —¢ < 0; < 1 — 07.

Let K;(T") be a subset of the set

{logT < k< Kr:Aj € (W)}

such that the difference of two distinct integers of IC;(T') is at least 3A’, where A’ is
the large integer specified in (2.7). Obviously

[{(og T)* < k < Kr: Ajy € (W) }| < 3A|K(T)].
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Therefore it suffices to show that
(223) |IC] (T)‘ <<5 T170(1fa'j)3/2 (log T>13

for T' > Ty(e), where the implied constant and the constant 7y(¢) depend only on ¢.
Let M,(s) be defined as in (2.7) and let a,, be the nth coeflicient of the Dirichlet
series ((s)My(s). Then

(2.24) o= Y p(d).

d|n,d<z

By the Perron formula [22, Lemma, page 151], we can write
a 1 2+ioco
SoEme— — [ (w5 Ma(w + 5 (w)y du
ns 211 Jo_ino
n>1
fory>xr>3and s=o0+ir € C Wlth < 0 < 1. We take the contour to the line
Rew = a—0 <0 with a :=40; =3 > 1 4e, and in doing so we pass two simple

poles at w =0 and w = 1 — s. Our equation becomes

3 In =n/y — ¢(5)M,(s) + My(1)D(1 — 8)y'~° + I(s; 7, 1),

S
n=1
where

1 [t _
I(s;z,y) == o / C(a+ i1 + iu) My (a + it + iu)(a — o + iu)y® 7 du.

—00

Obviously the formula (2.24) implies that a1, = 1, a,, = 0 for 2 < n < z and
|| < 7(n) for n > x. With the classical estimate ) _, 7(n) < tlogt and a simple
partial integration, we obtain

|3 et < [ e r)

n>y?2 n<t

<L e Yy logy +y ! / e V=7 (log t) dt
yQ

< 6*9/2
for o > % Inserting it into the precedent relation, we find that

e My 4 Z Ine fn/y_i_o(e v/2)
(2.25) z<n<y?

= C(8)Ma(s) + Mo()T(1 = s)y' " + I(sy2,y)

forSE(CWith%<a<1andy>x>3.
If k € IC;(T), then there is at least an sg := vy, + ity € A; such that

(2.26) |C(s) M, (si)| < 3,
where My, (s) = M (s, N;) is defined as in (2.7). By the definition of /C;(T"), we have
0j < Vk < Oj+1, (1OgT)2 < tk < T and |t1€1 tk2| 314/ IOgT (lﬁ 7é k?g)
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By the Stirling formula [21, page 151], we have
[tan(5)|  al* + [b]* | af* + |b|3> }

7l |72 ik

(2.27) [T(s)| = \/_gﬂe—wz)h|T|U_1/2{1+O(

uniformly for a,b € R with a < b, a < o < band |7| > 1, where ¥ := arg s and the
implied O-constant is absolute.
Since |t = (logT)?, the Stirling formula allows us to deduce

(2.28) | M, (1)1 = s)y' | < (log z)y'~ ke /2Nl g 12700 <

forall 3 <o <y < T,
Similarly, using the estimates

Cla+ity +iu) < T + |ul,
M, (o +ity, +iu) < 2" *logz < T,

and the Stirling formula (2.27), we derive that

(2.29) / | (o + ity + iu) My (a + ity + iu)D (@ — v + iu) [y* " du < 55
|u|>A"log T

forall 3 <oz <y < T,

Taking (s,x) = (sg, V) in (2.25) and combining with (2.26), (2.28) and (2.29), we
easily see that

(2.30)

1
Z G

Z Sl e Y
nsk

Nj<n<y?

or
A'logT _
(2.31) ‘ /A - Ca+ ity + iu) My, (o + ity 4 iu)T (@ — vy, 4 iu)y® ™ du| > ¢
—A’log

or both.
Let K(T) and K7(T) be the subsets of KC;(7T') for which (2.30) and (2.31) hold

respectively. Then
(2.32) |IC;(T)| < [KH(T)] + K5 (T).
First we bound |[KC%(T)|. By a dyadic argument, there is a U € [N}, y?] such that

3 4n.Nj —n/y
nsk

U<n2U

(2.33) > (181logy) ™"

holds for > [K(T')|(logy)~" integers k € K}(T). Let " be the set of corresponding
points s;. Using [12, Theorem 8.4] with § = a := 40; — 3 and the bound

2
Z mefﬁz/y < U172o'j (log 7“:)3672U/y7

20
U<n<2U
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it follows that

2

2

nsk

spES ' U<n<2U
(234) < <U—|— ’Sl‘ m>3JX ‘C(S)’UQ) U1*20'j <lOgT>3672U/y
1<|7]<AT
< U179 (log T)?e 2V 4|8/ max 1C(5)|[U~20-73) (log T)3e~2V/v.

1<|7|<4T
Since U > N;, we have
max |¢(s)|[U217) (log T)® < A (log T) >

o>a
1<|7|<4T

On the other hand, the inequality (2.33) implies that the member on the left-hand
side of (2.34) is

> |8'](181og ) > |S'|(1800 log T) 2
Since A’ is a fixed large integer, the last term on the right-hand side of (2.34) is
smaller than this lower bound. Thus it can be simplified as

8" |(log T) ™2 < U1~ (log T)3e~2V/¥
for all N; <y < T and some U € [N, y?]. Noticing that

[S') > [KC5(T) | (log T) ™
we obtain
(2.35) ICH(T)| < y* =7 (log T)°
for all N; <y < T
Next we bound [K7(T')|. Let uy € [-A"logT, A'log T| such that

C(S;C)MN], (s},) = ‘ IgzlﬂXgT |C(a + ity 4 iu) My, (o + ity + iu)|

where 5; = a+ it} and t}, := t; + ug. Thus from (2.31) we deduce that

A’ logT '
‘ / Cla + ity 4 iu) My, (o + ity + iu) (o — vg + i)y o gy
AllogT
A’ logT
avk‘ Sk YMy,( 5k|/ Oz—vk—i—iu)‘du,
AllogT
Since I'(s) has a simple pole at s = 0 and |a — v;| > (logT)™!, we can derive, via
(2.27), that

A'logT
/ ‘F(a—vk+iu)|du<<logT
—AlogT

and thus
L <y My,(s},)| max [((s)|log T
1<|7|<8T
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or equivalently
gj—Q -1
| M, (st)| >y~ ( max [((s)[logT) .
1<|7]<8T
Hence there is a V' € [1, N,] such that
—s oi—a -1 —
Y u(mnH > ym e (max [((s)]) (log 7)™

V<n<2V 1<|7|<8T

holds for > [K/(T')|(log T')~" integers k € K7(T'). Let §” be the corresponding set of
points s;. We note [t;| < 27" and

‘t;ﬁ - t;ﬁgy 2 ‘tlﬂ - z€l€2| - ‘ukl - Uk2| 2 Al IOgT
Using [12, Theorem 8.4] with § = o = 40; — 3 and the bound
Z n72a < V172a < V7780j7

V<n<av
it follows that

12
Z] S un)n <<(v+ys"y max |<(s)\v40j—3)v7—80j
sLES! V<n<2V 1< ]8T

< V) 1 [S"] max [((s)| VA7),

1<|7|<8T

(2.36)

Take y such that
(2.37) 20 = AN (max [¢(s)])” (log T)™.

oz
1<|7|<8T
The left-hand side of (2.36) is
> |8y (‘max [¢(s)]) " (log T)~".

=

1<|7|<8T
Hence the inequality (2.36) can be simplified as
8"y (mae [C(s))) " (log 7)< N7
1<|7|<8T
With
[S”| > [K5(T)|(log T) ™,

we deduce that

8(1—o; a—o; 2
(2.38) (D) < N0 (max [¢(s)]) (log T)°.
1§\T/\<8T

On combining (2.32), (2.35), (2.38) and (2.37), it follows that
[16(T)] < NJ P (10g T
Now the required inequality follows from (2.19). This completes the proof. U
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3. PROOF OF THEOREM 1.1

We shall conserve the notation of Section 2. First we prove a lemma.

Lemma 3.1. Let ze C,weC,a>0,6>20,A>0,B>0,C >0, M >0 be some
constants. Suppose that the Dirichlet series

= fln)n~

is of type P(z,w, 0, A, B,C, M). Then there is an absolute positive constant D such
that we have

(3.1) F(s) < MDPTIOBVERIU=0) (Jog T)AH1E

for all s € My, where the implied constant depends only on .

Proof. Since we have chosen the principal value of complex logarithm, we can write
(3:2) [C(s)7| = [C(s)[ ™z B ecls) < e8| (s) |

for all s € C such that ((s) # 0.
Invoking Proposition 2.3, we see that there is a suitable absolute constant D such
that

(33) K(S)Z’ <. DBTlooBﬁ(lfa)(lOngB

for all s € .#7, where the implied constant depends only on ¢.
Finally the required bound (3.1) follows from (3.3), the hypothesis (1.4) and the
trivial bound |((2s)| < 1 for s € 7. O

Now we are ready to prove Theorem 1.1.
Since the Dirichlet series F(s) is of type P(z,w,«,d0, A, B,C, M), we can apply
Corollary 11.2.2.1 of [20] with the choice of parameters o, = 1, a = a, 0 = 0 to write

1 b+iT”’ (fL’ 4 y)s — 7S I1+£
> fn 27T1/b Fls)—"—— ds+OE(M = )

w<n<a+y i7"

where b = 1 + 1/logz, evlosr < T < s a parameter to be chosen later and
T =KplogT ~T.

Denote by 't the path formed from the circle |[s — 1| = r := 1/(2log z) excluding
the point s = 1 — r, together with the segment [1 — d7,1 — r] traced out twice with
respective arguments +7 and —7. By the residue theorem, the path [b — i7", b+ iT"]
is deformed into

Ty Ul —6p —iT", 1= 6p +iT| U1 — 67 £iT", b+ iT"].

In view of (2.2) and the hypothesis (1.4), the function F(s) is analytic in the interior
of this contour and in the same domain

(3.4) F(s) < MDETmax{60=0).0} (o0 T)A+E
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where the implied constant and the constant D are absolute. The integral over the
horizontal segments [1 — dr £ 17", b+ iT"] is

bEiT’ s s C A+B b

— M D% (logT

/ F(S) (l’ + y) z ds < ( 0g ) / Tmax{§(1 o) 0} 7 do
1—0p+iT" s 1 1-dr

1

N () 4o+ 1)

< MDZ = (log T)A+B ( /

< MDCZ = (log T)A+B-1

Thus
c l_l+€
(3.5) > fn) :I+O(MD = )
r<n<T+y
where the implied constant depends on € only and
1 S _ .8
- L Fo@EW =2
2mi CpU[L—6p—iT", 1—8p+iT"] S

Let .1 be the Motohashi contour defined as in Section 2. Consider the two sym-
metric simply connected regions bounded by .#7, the segment [1—07—iT", 1—3§r+iT"]
and the two line segments [0,41 + dy, 1 — d7] with respective arguments +m and —mn
measured from the real axis on the right of 1 — d7. It is clear that F(s) is analytic
in these two simply connected regions. Denote by I'}. the path joining (the two end-
points of) I'r with the two line segments [0j,1+1 + dy, 1 — d7] of the symmetric regions.
Thanks to the residue theorem, we can write

(3.6) I=1+1,
with
1 S _ .8
L L [ FelEte=o,
2mi T2, 5
1 S .8
L=t [ FeEEu =
271 J g s

A. Fvaluation of I

According to our hypothesis, G(s;k,w)((25)" Z(s; k) is holomorphic and O(M) in
the disc |s — 1| < 1 — &® =: ¢; the Cauchy integral formula implies that

(3.7) ge(ﬁ',w)<<Mc_f (620, |z < B, [w] <0O),

where g/(k,w) is defined as in (1. 16). From this and (1.15), we deduce that for any
integer N > 0 and |s — 1| < 1 —&?

G(s;r,w)C(28)"Z(s de roaw)(s — 1)+ O(M(]s — 1] /c)N ).
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Thus we have
N

(3.8) L = Zgz(lﬁ, w)M(z,y) + O(Mc N En(z,y)),

(=0
where

My(z,y) = L/ (s — 1) Sety) oo ds,

En(z,y) = /}

Firstly we evaluate M(z,y). Using the formula

S .8 Tty
(3.9) L= e

and Corollary 11.5.2.1 of [20], we write

T4y 1
My(z,y) = / (T / (5 — 1)1 1ds) at
- ™ Jrs
ety L1 al+1)
:/ (logt)*~* Z{ +O< 1t6T/2 )} dt,

where we have used the following inequality
AT (1 4 |2 =€) < (al+1)" (£>0, 2| < B).

The constant ¢; and the implied constant depend at most on B. Besides for |z| < B

Tty Y
/ (1ogt)z—1—€dt:/ log® ' (x4 t)dt

0

s son (L))

Inserting this into the preceding formula, we obtain

c ¢

for ¢ >0 and |z| < B
Next we estimate Ey(x,y). In view of the trivial inequality

T +vy) —xf
(3.11) % <L yx L,
we deduce that
1-1/logx y
E ’ < 1— N+1-Rez, .0—-1 do +
N(’x y) /1/2+€2 ( 0_) x ydo <lOg x)N+2*§R€Z
(3.12) < (ng)%H_ §R( / (NHI-Rez ot gy +1)
1
N 41\ N+
< y(log x)%”_l (—1 >
log x
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uniformly for z > y > 2, N > 0 and |z| < B, where the constant ¢; > 0 and the
implied constant depends only on B.
Inserting (3.10) and (3.12) into (3.8) and using (3.7), we find that

N
_ )\g(Z,UJ)
3.13 I, = y(log z)? 1{ + Op(Ex(z,y }7
( ) 1 ( ) ; (lOgSL’)Z B( N( ))
where
B _Y NZH CA—1(z, w) + (e N 4 )N+ M aN + 1\ "
(log x)* x07/2 log = '

B. Fvaluation of I

Let .} be the union of those vertical line segments of .#7 whose real part is equal
to 3 + &2 (ie. corresponding to those k such that ji, = 0) and A#J = Mp~M.
Denote by I, and I the contribution of .Z; and .#} to I, respectively. Using the
trivial inequality
$1/2+e2

< € M
|7_| _|_1 (S T)

(z+y)° —

and Lemma 3.1, we can deduce
I} < M DPg!/>+e POHI0BVE(1/2-%) (150 ) A+4B+]
(3.14) < Mgl/2H6/(20+20)+E
< Mgt~V @W+o)+ve

with the value of T' given by (3.16) below and ¢ > 2
Next we bound 1. In view of (3.11), we can write that

I <y / F ()2 ds

3.15
. < Y Y [ el
0<j<Jr 0<k<Kp 7 AT(5k)
Ajke(W)

where .#r(j, k) is the vertical line segment of . around A, ; and the horizontal line
segments with o < 0; 4+ d,. Clearly the length of .#7(j, k) is < log T'. Thus with the
help of Lemma 3.1, it is easy to see that

/ |]:(S)|(L'J_1| d8| < MDB(IOg T)A+4B+1T(6+IOOB\/€)(1—0]-—d\,)xaj—i—dv—l
M1 (5,k)

for all 0 < k < Kr. Inserting it into (3.15) and using Proposition 2.4, we can deduce,
with the notation Jro := [(5 — ¢)log T}, that

I} < MDBy(log T)A+4B+18+n (15, + Ing),
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where
fél* = Z T(6+100B+/E)(1~0;—dv) .o +dy—1 | T¢(1_aj)7
0<j<JT,0
;’j = Z T (0+100BV/E) (1-0;—dy) y.oj+dv—1  100v/E(1~0;)
Jro0<j<Jr
Taking
(3.16) T — 2 (1=vE)/($+6+100BV)

and in view of (2.10), it is easy to check that
~(1-0y)
I, < Z (:c/qu’”“OOB‘/E) Togr < a7 logx < 2
0<i<JT,0
and

—(1-0;)

é/,T < Z (x/T5+100(B+1)\E) < e—202(logm)1/3(log2 z)~1/3

Jr,0<ji<Jr

Inserting it into the preceding estimate for I, we conclude that
(3.17) I <p Myec2(log )/ (logy 2) =112

Now from (3.5), (3.6), (3.13), (3.14) and (3.17), we deduce that

. N Ae(z,w) .
Z f(n) =y(logz)* {Z(logx)e +OA,B,C,a,5,s(RN(5Cay))}

r<n<r+y =0
uniformly for z > 3, !~V @+)+e <oy <oy N >0, |2| < B and |w| < O, where
Ry , y%a/\g 1(z, w) +M o N+ 1\ N (N + )N+t
log )t log x ec2(logz)!/3(logy x)~1/3

for some constants ¢; > 0 and ¢; > 0 depending only on B, C, § and €.
It remains to prove that the first term on the right-hand side can be absorbed by
the third. In view of (1.14), the Cauchy formula allows us to write

9(z,w) <apcos M3

for |z| < B, |Jw| < C and ¢ > 1. Combining this with the Stirling formula, we easily
derive A\¢(z,w) <4 505 M(9/€)Z for |z] < B, |w| < C and ¢ > 1. This implies that

N+1 N+1
y A (2, 0)] Y M(ciN + 1)
; logx <<A,B,C,6 ME <<A,B,C,5,E 662(10g1)1/3(log2 :1:)_1/3
holds uniformly for z > 3, 2!~V <y <o, N >0, |2| < B and |w| < C. This

completes the proof.
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4. PROOFS OF THEOREMS 1.3 AND 1.4

Since the proofs of Theorems 1.3 and 1.4 are very similar, we shall only prove the
former. For z € C and o > 1, we can write

Fi(s; 2) Zz = H (1+zpp°—1)7"

n=1 P

= ((5)°¢(25)"1 792Gy (512, 52,

2(1—2) z 1\~ 1 (1-2)/2
gl(S;Zﬂ 2 )::H<1+p5—1><1_1¥> (1_2§) .

p

We expand G (s; 2, z(12_ Z)) into the Dirichlet series

91(8 2, 1 Z) Zbu )

n=1

where

then by, (n) is the multiplicative function whose values on prime powers are determined
by the identity

L e = (1 1 )09 -0 (g <)

In particular blz(p) = b1.(p*) = 0 and the Cauchy integral formula gives
(")) < M(B)2? (v = 3,2 < B),

where

M(B) = sup
|2|<B, |¢]<1/V2
From these we deduce that for o > l

|1 (p")] 232 M (B) 1
ZZ pro ZZ o‘/\/_ Z a<pa_\/§) <B 30 —1

v>1 v>3

_S _A\2(1 . e2\2(1-2)/2
(1+ 125 Ja- o -eyen)

So the Dirichlet series Y"°7  2#Wn=% is of type Pz, 2(12_2),3,0,0, B,C(B),M(B)),
where C'(B) is a positive constant depending on B.
Define g,(z) by

Fi(s)(s — 1)7 = Z(s;2)¢(25)707/2G, (s; 2, 2072))

(4.1)
—Zgg )(s — 1) (Js =1 < 3).

Applying Theorem 1.1 to the Dirichlet series "7, 2*(Mn=3 we obtain the following
result.

Lemma 4.1. Let B > 0 be a constant. For any € > 0, we have
N

a2 Y = ytogn) X G 4 0n (R (o) |

r<n<T+y —0 (1Og [E)
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uniformly for
r>3,  wzyzTVT 2[<B, N20,

where A\(2) := go(2)/T(2 — £) and Rn(x,y) is defined as in (1.18). The constants
c1,02 in Ry(z,y) and the implied constant depends only on B and €.

Lemma 4.1 improves Theorem 3 of [10] in two directions: get a more precise as-
ymptotic formula and extend the domain z7/12*¢ < y < 22372 to 2712t <y < x.

The next lemma is a short interval version of the asymptotic formula (13) of [20,
Theorem I1.6.3]. We omit the proof as it is very similar.

Lemma 4.2. Let B > 0 and 0 < 0 < 1 be two positive constants. For each integer
n=>1, let

a,(n) = Z cr(n)2
k=0
be a holomorphic function for |z| < B. Let N > 0 be a non-negative integer. Suppose
that there exist N + 1 holomorphic functions ho(z),...,hy(2) for |z| < B and a

quantity Ry (x,y) independent of z such that

(13 S an) = y<log:c>“{ > )L 0o (R, y>)}

w<n<z+y (log x)
holds uniformly for x > 3, x >y > 2" and |z| < B. Then we have
N
y Bjk 10822 r (log, )k
4.4 _ \ o (o)t
( ) x<;+y 10g x { ; log x ) B0 ( k! N(za y)

uniformly for v >3, x >y > 2% and 1 < k < Blog, x, where

(m)
(4.5) Rip(X):= ) hfmilo)x

l+m=k—1
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and the implied constants depend only on B and 6.
If, in addition, we suppose that |hj(2)| < D (|z| < B), then we have

5 = o G o)+ Ome(Gogra + 5 e ) |

r<n<r+y

uniformly for x > 3, v >y > 2% and 1 < k < Blogyx. Here the implied constants
depend only on B and 6.

Now we are ready to finish the proof of Theorem 1.3. According to Lemma 4.1, the
condition (4.3) of Lemma 4.2 is satisfied with the following choices:

az(n) = 2™, zhe(2) = Ae(2), 0=1—-1/¢ +e,

Ae(z) and Ry (x,y) are defined as in Lemma 4.1, and ¢, (n) is the characteristic function
on the set of integers n such that w(n) = k. Thus the assertion (a) is an immediate
consequence of this lemma.
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5. PROOFS OF THEOREMS 1.5 AND 1.6

The proof of Theorem 1.5 will be proceeded exactly as in [1]. The only difference
is the use of Corollary 1.2 in place of [1, Theorem 1].

Since Y, o, Tk(n)n™* = ((s)* for ¢ > 1, we can apply Theorem 1.1 with z = &,
w=0,G(s;k,0) =1and A=§ = 0. Taking N = [/(log z)/*(log, x)~*/3] with some
small constant ¢ and noticing that A\y(k,0) = 0 for all £ > k, we obtain the result of
Theorem 1.6.

6. PROOF OF THEOREM 1.7

Since the function 74 (n) is multiplicative and

Tk(p”):<k+”_1> H0k+]

we can write, for o > 1,

ZTk(n)lnszg( +Z<k+u—1> - >

nz1 v>1
1 _ 263 +2k% 4ok 41
— ((a)hg(as) EIEEER g (1 i)
where
Szw::H(Z(+V > 7)(1__8) (1_§)'

P v>0 p P P
As before, we expand g?’( 55 Ilc’ %) as a Dirichlet series:

Ga(s; L, — A2 12kt1) Z bas(n

n=1

where bgx(n) is the multiplicative function for which the values on prime powers are
determined by the identity

k —1\ ! 1 263 12k2 12k 11
i = (X (M) ea- ot e

v>1 v=0

It is easy to see that the right-hand side is an analytic function in || < 1 and
b3k (p) = bar(p?) = 0. Again the Cauchy integral formula yields

s (p")] <k 2772 (v 2 3),  Gasyh, —EHEEAREL) 1 (0> 1),
This shows that the Dirichlet series associated to 7(n)~! is of type

1 2k342k242k+1 1
Pl —=F—10

L 1 2k3+2k2+2k+1 M(k)),

) ko

where M (k) is a positive constant depending on k. Therefore the required result
follows immediately from Theorem 1.1 with any fixed positive integer N.
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