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The Selberg-Delange method in short intervals with some applications

Introduction

This is the second paper of our series on the Selberg-Delange method for short intervals [START_REF] Cui | The Selberg-Delange method in short intervals with an application[END_REF]. The method was initially introduced by Selberg [START_REF] Selberg | Note on the paper by L. G. Sathe[END_REF] to study the distribution of integers having a given number of prime factors, and subsequently further developed by Delange [START_REF] Delange | Sur les formules dues à Atle Selberg[END_REF][START_REF] Delange | Sur les formules de Atle Selberg[END_REF]. Roughly speaking it applies to evaluate mean values of arithmetic functions whose associated Dirichlet series are close to complex powers of the Riemann ζ-function. An excellent exposition of the theory and applications can be found in [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]Chapters II.5 and II.6]. Recently Cui & Wu [START_REF] Cui | The Selberg-Delange method in short intervals with an application[END_REF] generalized this method to short interval when the power is positive real. In this paper we shall consider the complex power case which cannot be plainly treated with the method in [START_REF] Cui | The Selberg-Delange method in short intervals with an application[END_REF]. Our aim is two-fold. First, we establish a quite general mean value result of arithmetic functions over short intervals, which generalize and improve the main result of [START_REF] Cui | The Selberg-Delange method in short intervals with an application[END_REF]. Second, we provide five arithmetic applications of our mean value result on :

• Distribution of integers having a given number of prime factors in short intervals,

• Deshouillers-Dress-Tenenbaum arcsin law on divisors in short intervals,

• Divisor problem for τ k (n) in short intervals.

• Mean values of 1/τ k (n) over short intervals. We shall proceed along the same line of argument as in [START_REF] Cui | The Selberg-Delange method in short intervals with an application[END_REF]. Its origin can be found in [20, Chapters II.5 and II.6].

Statement of main results.

Let f (n) be an arithmetic function and let its Dirichlet series be defined by

(1.1) F(s) := ∞ n=1 f (n)n -s .
Let z ∈ C, w ∈ C, α > 0, δ 0, A 0, B > 0, C > 0, M > 0 be some constants. A Dirichlet series F(s) defined as in (1.1) is said to be of type P(z, w, α, δ, A, B, C, M ) if the following conditions are verified: uniformly for |z| B and |w| C, where and in the sequel we implicitly define the real numbers σ and τ by the relation s = σ + iτ and choose the principal value of the complex logarithm.

Our first aim of this paper is to establish, under the previous assumptions, an asymptotic formula of (1.5) x<n x+x θ f (n) with θ ∈ (0, 1] as small as possible. In view of the zero-free region of Vinogradov for ζ(s) (see [20, page 161]), it seems rather difficult to prove such a result. One of our principal tools is Huxley's estimation on the zero density of the Riemann ζ-function.

As usual, we denote by N (σ, T ) the number of zeros of ζ(s) in the region e s σ and | m s| T . It is well known that there are two constants ψ and η such that (1.6) N (σ, T ) T ψ(1-σ) (log T ) η for 1 2 σ 1 and T 2. Huxley [START_REF] Huxley | The difference between consecutive primes[END_REF] showed that (1.7) ψ = 12 5 and η = 9 are admissible. The zero density hypothesis is stated as

(1.8) ψ = 2.
Combining (1.7) with the explicit formula (see [20, page 177]), Huxley derived his well known prime number theorem in short intervals [START_REF] Huxley | The difference between consecutive primes[END_REF] : for any θ ∈ ( 7 12 , 1] and y = x θ , the asymptotic formula (1.9) x<p x+y 1 ∼ y log x holds as x → ∞. Corresponding to (1.9), Motohashi [START_REF] Motohashi | On the sum of the Möbius function in a short segment[END_REF] proved the following result for the Möbius function µ(n) : For any θ > 7 12 and y = x θ , the inequality (1.10)

x<n x+y µ(n) = o(y)
holds as x → ∞. Independently Ramachandra [START_REF] Ramachandra | Some problem of analystic number theory[END_REF] obtained a better result :

(1.11)

x<n x+y µ(n) A,θ y (log x) A
For each A > 0. Their methods are similar. Our approach is a generalization and refinement of Motohashi's method [START_REF] Motohashi | On the sum of the Möbius function in a short segment[END_REF]. The first key of this method is to construct a contour M T (see Section 2 below for its precise definition) in the critical strip such that for any ε > 0 we have

(1.12) (|τ | + 1) -ε(1-σ) ε |ζ(s)| ε (|τ | + 1) ε(1-σ) for s ∈ M T .
The second key is a very good bound for the density of "small value points" (i.e. satisfying (2.6) below), which was established by adapting Montgomery's new method to study the zero-densities of the Riemann ζ-function and of the Dirichlet L-functions [START_REF] Montgomery | Topics in multiplicative number theory[END_REF]. With these two nice ideas and Huxley's zero density estimation, we establish a general asymptotic formula for the summatory function (1.5), see Theorem 1.1 below. It is worthy to point out that our Theorem 1.1 allows us to unify the treatment of (1.9) and (1.10); indeed the latter is a particular case of the former.

In order to state our main result, it is necessary to introduce some more notation. From [20, Theorem II.5.1], the function * Z(s; z)

:= {(s -1)ζ(s)} z (z ∈ C) is holomorphic in the disc |s -1| < 1,
and admits, in the same disc, the Taylor series expansion

Z(s; z) = ∞ j=0 γ j (z) j! (s -1) j ,
where the γ j (z)'s are entire functions of z satisfying the estimate

(1.13) γ j (z) j! B,ε (1 + ε) j (j 0, |z| B)
for all B > 0 and ε > 0. Under our hypothesis, the function

G(s; z, w)ζ(2s) w Z(s; z) is holomorphic in the disc |s -1| < 1 2 and (1.14) |G(s; z, w)ζ(2s) w Z(s; z)| A,B,C,δ,ε M for |s -1| 1 2 -ε, |z| B and |w| C. Thus for |s -1| < 1 2 , we can write (1.15) G(s; z, w)ζ(2s) w Z(s; z) = ∞ =0 g (z, w)(s -1) ,
where

(1.16) g (z, w) := 1 ! j=0 j ∂ -j (G(s; z, w)ζ(2s) w ) ∂s -j s=1 γ j (z).
The main result of this paper is as follows.

Theorem 1.1. Let z ∈ C, w ∈ C, α > 0, δ 0, A 0, B > 0, C > 0, M > 0 be some constants. Suppose that the Dirichlet series

F(s) := ∞ n=1 f (n)n -s
is of type P(z, w, α, δ, A, B, C, M ). Then for any ε > 0, we have

(1.17) x<n x+y f (n) = y(log x) z-1 N =0 λ (z, w) (log x) + O M R N (x, y)
uniformly for x 3, x 1-1/(ψ+δ)+ε y x, N 0, |z| B and |w| C, where λ (z, w) := g (z, w)/Γ(z -) and

(1.18) R N (x, y) := (c 1 N + 1) N +1 (log x) N +1 + e c 2 (log x) 1/3 (log 2 x) -1/3
for some constants c 1 > 0 and c 2 > 0 depending only on B, C, δ and ε. The implied constant in the O-term depends only on A, B, C, α, δ and ε. In particular ψ = 12 5 is admissible.

The admissible length of short intervals in Theorem 1.1 depends only on the zero density constant ψ of ζ(s) and δ in (1.4) (for which we take δ = 0 in most applications). Its independence from the power z of ζ(s) in the representation of F(s) seems interesting. Theorem 1.1 generalizes and improves [1, Theorem 1] to the case of complex powers and intervals of shorter length.

Taking N = 0 in Theorem 1.1, we obtain readily the following corollary.

Corollary 1.2. Under the conditions of Theorem 1.1, for any ε > 0, we have

(1.19) x<n x+y f (n) = y(log x) z-1 λ 0 (z, w) + O M log x
uniformly for x 2, x 1-1/(ψ+δ)+ε y x, |z| B and |w| C, where

λ 0 (z, w) := G(1; z, w)ζ(2) w Γ(z)
and the implied constant in the O-term depends only on A, B, α, δ and ε. Note that ψ = 12 5 is admissible. Taking f (n) = µ(n) in Theorem 1.1, we have z = -1, w = 0 and G(s; z, w) ≡ 1, δ = 0, ψ = 12 5 , λ(-1, ) = 0 for all integers 0. Thus we can choose N = [c (log x) 1/3 (log 2 x) -4/3 ] with some small constantc > 0 to obtain an improvement of Motohashi's result (1.10): For any θ > 7 12 , we have

x<n x+y µ(n) y e -c(log x) 1/3 (log 2 x) -1/3
uniformly for x 2 and x θ y x, where c > 0 is a constant depending on θ.

Integers having a fixed number of prime factors.

Denote by ω(n) (resp. Ω(n)) the number of distinct (resp. all) prime factors of n. For each positive integer k 1, consider

π k (x) := |{n x : ω(n) = k}| (1.20) N k (x) := |{n x : Ω(n) = k}|. (1.21)
In 1909, Landau [START_REF] Landau | Handbuch der Lehre von der Verteilung der Primzahlen[END_REF] proved by induction that for each fixed positive integer k, the following asymptotic formulas

π k (x), N k (x) ∼ x log x (log 2 x) k-1 (k -1)! (x → ∞)
hold, where log denotes the -fold iterated logarithm. However, if we allow k to grow with x, the method by induction will become too technical (see [START_REF] Sathe | On a problem of Hardy and Ramanujan on the distribution of integers having a given number of prime factors[END_REF][START_REF] Sathe | On a problem of Hardy and Ramanujan on the distribution of integers having a given number of prime factors[END_REF]). In [START_REF] Selberg | Note on the paper by L. G. Sathe[END_REF], Selberg proposed a new and very elegant approach to attack this problemidentifying π k (x) with the coefficient of z k in the expression n x z ω(n) and then applying Cauchy's integral formula. Through a detailed study of the sum over z, he proved that for any fixed constant B > 0 the asymptotic formula

(1.22) π k (x) = x log x (log 2 x) k-1 (k -1)! λ k -1 log 2 x + O B k (log 2 x) 2
holds uniformly for x 3 and 1 k B log 2 x, where

(1.23) λ(z) := 1 Γ(z + 1) p 1 + z p -1 1 - 1 p
z and the implied constant depends only on B. In the same fashion, Selberg also proved that for any δ ∈ (0, 1), the asymptotic formula

(1.24) N k (x) = x log x (log 2 x) k-1 (k -1)! ν k -1 log 2 x + O δ k (log 2 x) 2
holds uniformly for x 3 and 1 k (2 -δ) log 2 x, where

(1.25) ν(z) := 1 Γ(z + 1) p 1 - z p -1
1 -1 p z and the implied constant depends only on δ.

As the first application of Theorem 1.1, we shall generalize Selberg's results (1.22) and (1.24) to the short interval case. Theorem 1.3. Let B > 0. There exist positive constants c 1 = c 1 (B) and c 2 = c 2 (B) such that for any ε > 0, we have

(1.26) π k (x + y) -π k (x) = y log x N j=0 P j,k (log 2 x) (log x) j + O B,ε (log 2 x) k k! R N (x, y)
uniformly for x 3, x 1-1/ψ+ε y x and 1 k B log 2 x, where P j,k (X) is a polynomial of degree at most k -1 and R N (x, y) is defined as in (1.18). Here c 1 , c 2 in the definition of R N (x, y) and the implied constant depend on B and ε only. In particular, we have

P 0,k (X) = m+ =k-1 λ (m) (0) !m! X .
Moreover, under the same conditions, we have 2 .

(1.27) π k (x + y) -π k (x) = y log x (log 2 x) k-1 (k -1)! λ k -1 log 2 x + O k (log 2 x)
In particular ψ = 12 5 is admissible in both assertions (1.26) and (1.27). Theorem 1.4. There exist absolute positive constants c 1 and c 2 such that for any ε > 0, we have

(1.28) N k (x + y) -N k (x) = y log x N j=0 Q j,k (log 2 x) (log x) j + O B,ε (log 2 x) k k! R N (x, y)
uniformly for x 3, x 1-1/ψ+ε y x and 1 k log 2 x, where Q j,k (X) is a polynomial of degree at most k -1 and R N (x, y) is defined as in (1.18). Here c 1 , c 2 in the definition of R N (x, y) and the implied constant depend on ε only. In particular, we have

Q 0,k (X) = m+ =k-1 ν (m) (0) !m! X .
Moreover, under the same conditions, we have 2 .

(1.29) N k (x + y) -N k (x) = y log x (log 2 x) k-1 (k -1)! ν k -1 log 2 x + O k (log 2 x)
In particular ψ = 12 5 is admissible in both assertions (1.28) and (1.29). Remark 1. Kátai [START_REF] Kátai | A remark on a paper of Ramachandra[END_REF] applied Ramachandra's theorem [START_REF] Ramachandra | Some problem of analystic number theory[END_REF] to obtain

π k (x + y) -π k (x) = {1 + o(1)} y log x (log 2 ) k-1 (k -1)! uniformly for any k log 2 x + c x log 2 x
, where c x → ∞ sufficiently slowly, and y

x 1-1/ψ+ε . Clearly Theorem 1.3 improves Kátai's result in two directions: get a more precise asymptotic formula and extend domain of k.

Taking k = 1, we obtain Huxley's well known prime number theorem in short intervals (1.9).

The Deshouillers-Dress-Tenenbaum arcsin law on divisors.

For each positive integer n, denote by τ (n) the number of divisors of n and define the random variable D n which takes the value (log d)/ log n, as d runs through the set of the τ (n) divisors of n, with the uniform probability 1/τ (n). The distribution function F n of D n is given by

F n (t) = Prob(D n t) = 1 τ (n) d|n, d n t 1 (0 t 1).
It is clear that the sequence {F n } n 1 does not converge pointwisely on [0, 1]. However Deshouillers, Dress & Tenenbaum ([4] or [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]Theorem II.6.7]) proved that its Cesàro mean converges uniformly to the arcsin law. More precisely, they showed that the asymptotic formula

1 x n x F n (t) = 2 π arcsin √ t + O 1 √ log x
holds uniformly for x 2 and 0 t 1, and that the error term is optimal. Very recently Cui & Wu [1, Theorem 2] established a short interval version of this result: For ε > 0, we have

(1.30) 1 y x<n x+y F n (t) = 2 π arcsin √ t + O ε 1 √ log x
uniformly for 0 t 1, x 2 and x 62/77+ε y x, where the implied constant depends only on ε.

Our third application of Theorem 1.1 is to improve the exponent in (1.30).

Theorem 1.5. For any ε > 0, the asymptotic formula (1.30) holds uniformly for 0 t 1, x 2 and x 19/24+ε y x, where the implied constant depends on ε only.

For comparison, we have 62 77 = 0.805 . . . and 19 24 = 0.791 . . . .

1.4.

Divisor problem for τ k (n) on short intervals. As usual, denote by ∆ k (x) the error term in the asymptotic formula for the kdimension divisor problem:

D k (x) := n x τ k (n) = xP k-1 (log x) + ∆ k (x),
where P k-1 (t) is a polynomial of degree k -1 with leading coefficient 1/(k -1)!. The best known result for ∆ k (x) for k 4 is as follows :

(1.31) ∆ 4 (x) x 1/2 (log x) 5 , ∆ k (x) k,ε x θ k +ε (k 5) with θ k = 3 4 -1 k (5 k 8), θ 9 = 35 54 , θ 10 = 41 60 , θ 11 = 7 10 , θ k = k-1 k+2 (12 k 25), θ k = k-1 k+4 (26 k 50), θ k = 31k-98 32k (51 k 57), θ k = 7k-34 7k (k 58)
, where ε is an arbitrarily small positive number (see [5, (1.3)] for k = 4 and [8, Theorem 12.3] for k 5.) In 2006, Garaev, Luca and Nowak [START_REF] Garaev | The divisor problem for d 4 (n) in short intervals[END_REF] considered the divisor problem for τ 4 (n) in short intervals and proved that

x<n x+y τ 4 (n) = 1 6 y(log x) 3 1 + O √ x log x y 2/3
for x 3 and x 1/2 log x y x 1/2 (log x) 5/2 . They also emphasized that for no other dimension k = 4 short interval results are known for the sum over τ k (n) that are sharper than what is immediate from the ("long interval") asymptotics for D k (x) (see [START_REF] Garaev | The divisor problem for d 4 (n) in short intervals[END_REF]Remark]). The next theorem gives a such result for all integers k 7.

Theorem 1.6. Let k 7 be a positive integer and ε > 0 be an arbitrarily small positive number. Then there is a positive constant c depending on k and ε such that the asymptotic formula

x<n x+y τ k (n) = yQ k-1 (log x) 1 + O k,ε e -c(log x) 1/3 (log 2 x) -1/3
holds uniformly for x 2 and x 1-1/ψ+ε y x, where Q k-1 (t) is a polynomial of degree k -1 with leading coefficient 1/(k -1)! and the implied constant depends only on k and ε. In particular ψ = 12 5 is admissible. It is interesting to note that the exponent (1.31) tends to 1 as k → ∞, and that the length of short intervals in Theorem 1.6 is independent of k.

1.5. The mean value of 1/τ k (n) on short intervals.

Recently Sedunova [START_REF] Sedunova | On the asymptotic formulae for some multiplicative functions in short intervals[END_REF] considered mean values of the following arithmetic functions over short intervals:

τ k (n) -1 , σ(n)/τ (n), r(n) -1 , where τ k (n) := d|n τ k-1 (d), σ(n) := d|n d and r(n) := |{(n 1 , n 2 ) ∈ Z 2 : n 2 1 + n 2 2 = n}|.
In particular she proved that for any fixed integer N 0 the asymptotic formula (1.32)

x<n x+y 1 τ k (n) = y √ log x N =0 a (k) (log x) + O k,N 1 (log x) N +1
holds uniformly for x 3 and x (21k+5)/(36k+5) e (log x) 0.1 y x, where the a (k) are some constants depending on k (see [START_REF] Sedunova | On the asymptotic formulae for some multiplicative functions in short intervals[END_REF]Theorem 1]).

The fourth application of Theorem 1.1 is the following result.

Theorem 1.7. For any ε > 0, the asymptotic formula (1.32) holds uniformly for x 2 and x 7/12+ε y x, where the implied constant depends only on k, N and ε.

Since 287k+64 492k+64 → 7 12 decreasingly as k → ∞, Theorem 1.7 improves Sedunova's (1.32) for all k. It is worthy to note that our exponent is independent of k. Clearly the other results in [START_REF] Sedunova | On the asymptotic formulae for some multiplicative functions in short intervals[END_REF] can also be improved by Theorem 1.1 or its method of proof.

Hooley-Huxley-Motohashi's contour M T .

Let ε be an arbitrarily small positive constant and let T 0 = T 0 (ε) be a large constant depending on ε only. As in [START_REF] Motohashi | On the sum of the Möbius function in a short segment[END_REF], for T T 0 , put (2.1)

δ T := C 0 (log T ) -2/3 (log 2 T ) -1/3 ,
where C 0 is a suitable positive constant such that

(2.2) (log |τ |) -2/3 (log 2 |τ |) -1/3 |ζ(s)| (log |τ |) 2/3 (log 2 |τ |) 1/3
for σ 1 -100δ T and 1 |τ | 100T (see [20, page 162]). For T T 0 , write

(2.3) J T := [( 1 2 -δ T ) log T ] and K T := [T (log T ) -1 ].
For each pair of integers (j, k) with 0 j J T and |k| K T , we define (2.4) ∆ j,k := {s = σ + iτ : σ j σ < σ j+1 and τ k τ < τ k+1 }, where (2.5)

σ j := 1 2 + j(log T ) -1 and τ k := k log T.
We divide ∆ j,k into two classes (W ) and (Y ) as follows.

• σ j 1 -ε: Then ∆ j,k ∈ (W ) if ∆ j,k contains at least one zero of ζ(s), and ∆ j,k ∈ (Y ) otherwise; • 1 -ε < σ j 1 -δ T : ∆ j,k ∈ (W ) if and only if ∃ at least one s ∈ ∆ j,k such that (2.6) |ζ(s)M N j (s)| < 1 2 with (2.7)         
A := a fix large integer

N j := A (log T ) 5 max σ 4σ j -3, 1 |τ | 4T |ζ(s)| 1/2(1-σ j ) M N j (s) := n N j µ(n)n -s and ∆ j,k ∈ (Y ) if and only if for all s ∈ ∆ j,k (2.8) |ζ(s)M N j (s)| 1 2 •
For each k, we define

j k :=    max ∆ j,k ∈(W ) j if ∃ j such that ∆ j,k ∈ (W ), 0 otherwise. Put (2.9) D := ∪ 0 k K T ∪ 0 j j k ∆ j,k , D 0 := ∪ 0 k K T ∪ j k <j j T ∆ j,k
Clearly D 0 consists of ∆ j,k of type (Y ) only.

Hooley-Huxley-Motohashi's contour M T is symmetric about the real axis. Its upper part is the path in D 0 consisting of horizontal and vertical line segments whose distances away from D are respectively d h and d v , given by (2.10) 

d h := log 2 T, d v := ε 2 if σ 1 -ε, (log T ) -1 if 1 -ε < σ < 1 -δ T . T ∆ j,k σ j σ j+1 τ k τ k+1 ∆ j 0 ,0 ∆ j k ,k ∆ j K ,K M T r d v d h D D 0 1 -δ T 1 -ε 1 2 b 1 σ τ O Figure 1 -
(2.11) e -(log T ) 1-ε 2 |ζ(s)| e (log T ) 1-ε 2 for s ∈ M T with σ 1 -ε, or s (with 1 -ε < σ 1 -ε + ε 2 )
on the horizontal segments in M T that intersect the vertical line e s = 1-ε. Here the implied constant depends only on ε.

Proof. Let s = σ + iτ satisfy the conditions in this lemma. Without loss of generality, we can suppose that τ T 0 (ε). Let us consider the four circles C 1 , C 2 , C 3 and C 4 , all centered at s 0 = log 2 τ + iτ , with radii

r 1 := log 2 τ -1 -η, r 2 := log 2 τ -σ, r 3 := log 2 τ -σ + 1 2 ε 2 , r 4 := log 2 τ -σ + ε 2 ,
respectively. Here η > 0 is a parameter to be chosen later. We note that these four circles pass through the points 1+η+iτ , σ+iτ , σ-1 2 ε 2 +iτ and σ-ε 2 +iτ , respectively. Clearly ζ(s) = 0 in a region containing the disc |s -s 0 | r 4 . Thus we can unambiguously define log ζ(s) in this region. We fix a branch of the logarithm throughout the remaining discussion.

Let M i denote the maximum of | log ζ(s)| on C i relative to this branch. By using Hadamard's three circle theorem and the fact that s = σ + iτ is on C 2 , we have

(2.12) | log ζ(s)| M 2 M 1-a 1 M a 3 , where a = log(r 2 /r 1 ) log(r 3 /r 1 ) = log(1 + (1 + η -σ)/(log 2 τ -1 -η)) log(1 + (1 + η -σ + 1 2 ε 2 )/(log 2 τ -1 -η)) = 1 + η -σ 1 + η -σ + 1 2 ε 2 + O (log 2 τ ) -1 . On taking η = σ -1 2 -1 2 ε 2 -ε 3 2(1+ε 3 ) (η 1 4 ε 2 , since σ 1 2 + ε 2 ), we have (2.13) a = 1 -ε 2 -ε 5 + O (log 2 τ ) -1 .
On the circle C 1 , we have

(2.14) M 1 max e s 1+η ∞ n=2 Λ(n) n s log n ∞ n=2 1 n 1+η 1 η ,
where Λ(n) is the von Mangoldt function.

In order to bound M 3 , we shall apply the Borel-Carathéodory theorem to the function log ζ(s) on the circles C 3 , C 4 . On the circle C 4 , it is well known that

e (log ζ(s)) = log |ζ(s)| log τ.
Hence the Borel-Carathéodory theorem gives (2.15)

M 3 2r 3 r 4 -r 3 max |s-s 0 | r 4 log |ζ(s)| + r 4 + r 3 r 4 -r 3 | log ζ(s 0 )| 2(log 2 τ -σ + 1 2 ε 2 ) 1 2 ε 2 log τ + 2 log 2 τ -2σ + 1 2 ε 2 1 2 ε 2 | log ζ(2 + iτ )| (log 2 τ ) log τ.
From (2.12), (2.13), (2.14) and (2.15), we deduce that

| log ζ(s)| (η -1 ) 1-a (log 2 τ log τ ) a ε (log 2 τ log τ ) 1-ε 2 -ε 5 (log τ ) 1-ε 2 .
This leads to the required estimates.

Lemma 2.2. Under the previous notation, we have

(2.16) T -400(1-σ j ) 3/2 (log T ) -4 |ζ(s)| T 100(1-σ j ) 3/2 (log T ) 4
for s ∈ M T with 1 -ε < σ j σ < σ j+1 . Here the implied constants are absolute. In particular we have

(2.17) T -400 √ ε(1-σ j ) (log T ) -4 |ζ(s)| T 100 √ ε(1-σ j ) (log T ) 4
for s ∈ M T with 1 -ε < σ j σ < σ j+1 . All the implied constants are absolute.

Proof. According to [15, page 98], we have

(2.18) |ζ(s)| τ 100(1-σ) 3/2 (log τ ) 2/3 ( 1 2 σ 1, τ 2).
This immediately implies the upper bound of (2.16) and

(2. [START_REF] Selberg | Note on the paper by L. G. Sathe[END_REF])

N 1-σ j j = A (log T ) 5 max σ 4σ j -3 1 |τ | 4T |ζ(s)| 1/2 T 400(1-σ j ) 3/2 (log T ) 3 .
Next we consider the lower bound. Let s ∈ M T with 1 -ε < σ j σ < σ j+1 . Then there is an integer k such that s ∈ ∆ j,k . According to the definition of M T , this ∆ j,k must be in (Y ) and (2.8) holds for all s of this ∆ j,k . On the other hand, (2.19) allows us to deduce that for σ j σ < σ j+1

|M N j (s)| n N j n -σ j (1 -σ j ) -1 N 1-σ j j T 400(1-σ j ) 3/2 (log T ) 4 .
Combining this with (2.8) immediately yields

|ζ(s)| (2|M N j (s)|) -1 T -400(1-σ j ) 3/2 (log T ) -4
for s ∈ M T with 1 -ε < σ j σ < σ j+1 . Finally we note (2.17) is a simple consequence of (2.16) since 1 -ε < σ j implies that (1 -σ j ) 1/2 √ ε.

Proposition 2.3. Under the previous notation, we have

(2.20) T -400 √ ε(1-σ) (log T ) -4 |ζ(s)| T 400 √ ε(1-σ) (log T ) 4 .
for all s ∈ M T , where the implied constants depend only on ε.

Proof. Let s ∈ M T . Then there is a j such that σ j σ < σ j+1 . We consider the three possibilities.

• The case of 1 -ε < σ j .

The inequality (2.20) follows immediately from (2.17) of Lemma 2.2.

• The case of σ j σ 1 -ε.

In this case, the first part of Lemma 2.1 shows that (2.20) holds again since

√ ε(1 - σ) ε 3/2 (log T ) -ε 2 for T T 0 (ε).
• The case of σ j 1 -ε < σ.

In this case, s must be on the horizontal segment in M T , because the vertical segment keeps the distance ε 2 from the line e s = σ j and σ j < σ < σ j+1 . Thus we can apply the second part of Lemma 2.1 to get (2.20) as before.

Montgomery's method and Huxley's zero-density estimation.

In [START_REF] Montgomery | Topics in multiplicative number theory[END_REF], Montgomery developed a new method for studying zero-densities of the Riemann ζ-function and of the Dirichlet L-functions. Subsequently by modifying this method, Huxley [START_REF] Huxley | The difference between consecutive primes[END_REF] established his zero-density estimation (1.7) (see (2.21) below). In [START_REF] Motohashi | On the sum of the Möbius function in a short segment[END_REF], Motohashi noted that Montgomery's method can be adapted to estimate the density of "small value points" (characterized by (2.6)). The estimation (2.22) below is due to Motohashi [13, (5)].

Proposition 2.4. Under the previous notation, for j = 0, 1, . . . , J T we have

(2.21) k K T : ∆ j,k ∈ (W ) T ψ(1-σ j ) (log T ) η if σ j 1 -ε; and (2.22) k K T : ∆ j,k ∈ (W ) T 170(1-σ j ) 3/2 (log T ) 13 if 1 -ε σ j 1 -δ T .
Here (ψ, η) = ( 12 5 , 9) is admissible. Proof. The case of σ j 1 -ε is very simple, because the number of (W ) does not exceed the number of non-trivial zeros of ζ(s).

Next we suppose 1 -ε σ j 1 -δ T . Let K j (T ) be a subset of the set

log T k K T : ∆ j,k ∈ (W )
such that the difference of two distinct integers of K j (T ) is at least 3A , where A is the large integer specified in (2.7). Obviously

(log T ) 2 k K T : ∆ j,k ∈ (W ) 3A |K j (T )|.
Therefore it suffices to show that (2.23) |K j (T )| ε T 170(1-σ j ) 3/2 (log T ) 13 for T T 0 (ε), where the implied constant and the constant T 0 (ε) depend only on ε.

Let M x (s) be defined as in (2.7) and let a n,x be the nth coefficient of the Dirichlet series ζ(s)M x (s). Then ζ(w + s)M x (w + s)Γ(w)y w dw for y > x 3 and s = σ + iτ ∈ C with 1 2 < σ < 1. We take the contour to the line e w = α -σ < 0 with α := 4σ j -3 1 -4ε, and in doing so we pass two simple poles at w = 0 and w = 1 -s. Our equation becomes

n 1 a n,x n s e -n/y = ζ(s)M x (s) + M x (1)Γ(1 -s)y 1-s + I(s; x, y), where I(s; x, y) := 1 2π +∞ -∞ ζ(α + iτ + iu)M x (α + iτ + iu)Γ(α -σ + iu)y α-σ+iu du.
Obviously the formula (2.24) implies that a 1,x = 1, a n,x = 0 for 2 n x and |a n,x | τ (n) for n > x. With the classical estimate n t τ (n) t log t and a simple partial integration, we obtain

n>y 2 a n,x n s e -n/y ∞ y 2 t -σ e -t/y d n t τ (n) e -y y 2-2σ log y + y -1 ∞ y 2 e -t/y t 1-σ (log t) dt e -y/2
for σ > 1 2 . Inserting it into the precedent relation, we find that

(2.25) e -1/y + x<n y 2 a n,x n s e -n/y + O(e -y/2 ) = ζ(s)M x (s) + M x (1)Γ(1 -s)y 1-s + I(s; x, y)
for s ∈ C with 1 2 < σ < 1 and y > x 3. If k ∈ K j (T ), then there is at least an

s k := v k + it k ∈ ∆ j,k such that (2.26) |ζ(s k )M N j (s k )| 1 2
, where M N j (s) = M (s, N j ) is defined as in (2.7). By the definition of K j (T ), we have

σ j v k σ j+1 , (log T ) 2 t k T and |t k 1 -t k 2 | 3A log T (k 1 = k 2 ).
By the Stirling formula [21, page 151], we have (2.28)

(2.27) |Γ(s)| = √ 2π e -(π/2)|τ | |τ | σ-1/2 1 + O | tan( ϑ 2 )| |τ | + |a| 2 + |b| 2 |τ | 2 + |a| 3 + |b| 3 |τ | 3
|M x (1)Γ(1 -s k )y 1-s k | (log x)y 1-v k e -(π/2)|t k | |t k | 1/2-v k 1 10
for all 3 x y T 100 . Similarly, using the estimates

ζ(α + it k + iu) T + |u|, M x (α + it k + iu) x 1-α log x T,
and the Stirling formula (2.27), we derive that (2.29)

|u| A log T ζ(α + it k + iu)M x (α + it k + iu)Γ(α -v k + iu) y α-v k du 1 10
for all 3 x y T 100 . Taking (s, x) = (s k , N j ) in (2.25) and combining with (2.26), (2.28) and (2.29), we easily see that (2.30)

N j <n y 2 a n,N j n s k e -n/y 1 6
or (2.31)

A log T -A log T ζ(α + it k + iu)M N j (α + it k + iu)Γ(α -v k + iu)y α-v k +iu du 1 6
or both. Let K j (T ) and K j (T ) be the subsets of K j (T ) for which (2.30) and (2.31) hold respectively. Then holds for |K j (T )|(log y) -1 integers k ∈ K j (T ). Let S be the set of corresponding points s k . Using [START_REF] Montgomery | Topics in multiplicative number theory[END_REF]Theorem 8.4] with θ = α := 4σ j -3 and the bound

U <n 2U τ (n) 2 n 2σ j e -2n/y
U 1-2σ j (log T ) 3 e -2U/y , it follows that (2.34)

s k ∈S U <n 2U a n,N j n s k e -n/y 2 U + |S | max σ α 1 |τ | 4T |ζ(s)|U α U 1-2σ j (log T ) 3 e -2U/y U 2(1-σ j ) (log T ) 3 e -2U/y + |S | max σ α 1 |τ | 4T |ζ(s)|U -2(1-σ j ) (log T ) 3 e -2U/y . Since U N j , we have max σ α 1 |τ | 4T |ζ(s)|U -2(1-σ j ) (log T ) 3 A -1 (log T ) -2 .
On the other hand, the inequality (2.33) implies that the member on the left-hand side of (2.34) is

|S |(18 log y) -2 |S |(1800 log T ) -2 .
Since A is a fixed large integer, the last term on the right-hand side of (2.34) is smaller than this lower bound. Thus it can be simplified as

|S |(log T ) -2 U 2(1-σ j ) (log T ) 3 e -2U/y
for all N j y T 100 and some U ∈ [N j , y 2 ]. Noticing that

|S | |K j (T )|(log T ) -1 , we obtain (2.35) |K j (T )| y 2(1-σ j ) (log T ) 6
for all N j y T 100 . Next we bound

|K j (T )|. Let u k ∈ [-A log T, A log T ] such that ζ(s k )M N j (s k ) = max |u| A log T |ζ(α + it k + iu)M N j (α + it k + iu)|
where s k := α + it k and t k := t k + u k . Thus from (2.31) we deduce that 1 6

A log T -A log T ζ(α + it k + iu)M N j (α + it k + iu)Γ(α -v k + iu)y α-v k +iu du y α-v k ζ(s k )M N j (s k ) A log T -A log T Γ(α -v k + iu) du.
Since Γ(s) has a simple pole at s = 0 and |α -v k | (log T ) -1 , we can derive, via (2.27), that

A log T -A log T Γ(α -v k + iu) du log T and thus 1 y α-σ j M N j (s k ) max σ α 1 |τ | 8T |ζ(s)| log T, or equivalently M N j (s k ) y σ j -α max σ α 1 |τ | 8T |ζ(s)| log T -1 .
Hence there is a

V ∈ [1, N j ] such that V <n 2V µ(n)n -s k y σ j -α max σ α 1 |τ | 8T |ζ(s)| -1 (log T ) -2
holds for |K j (T )|(log T ) -1 integers k ∈ K j (T ). Let S be the corresponding set of points s k . We note |t k | 2T and

|t k 1 -t k 2 | |t k 1 -t k 2 | -|u k 1 -u k 2 | A log T.
Using [START_REF] Montgomery | Topics in multiplicative number theory[END_REF]Theorem 8.4] with θ = α = 4σ j -3 and the bound

V <n 2V n -2α V 1-2α V 7-8σ j ,
it follows that (2.36)

s k ∈S V <n 2V µ(n)n -s k 2 V + |S | max σ α 1 |τ | 8T |ζ(s)|V 4σ j -3 V 7-8σ j V 8(1-σ j ) + |S | max σ α 1 |τ | 8T |ζ(s)|V 4(1-σ j ) .
Take y such that (2.37)

y 2(σ j -α) = A N 4(1-σ j ) j max σ α 1 |τ | 8T |ζ(s)| 3 (log T ) 4 .
The left-hand side of (2.36) is

|S |y 2(σ j -α) max σ α 1 |τ | 8T |ζ(s)| -2 (log T ) -4 .
Hence the inequality (2.36) can be simplified as

|S |y 2(σ j -α) max σ α 1 |τ | 8T |ζ(s)| -2 (log T ) -4 N 8(1-σ j ) j . With |S | |K j (T )|(log T ) -1 , we deduce that (2.38) |K j (T )| N 8(1-σ j ) j y 2(α-σ j ) max σ α 1 |τ | 8T |ζ(s)| 2 (log T ) 5 .
On combining (2.32), (2.35), (2.38) and (2.37), it follows that

|K j (T )| N (10/3)(1-σ j ) j (log T ) 3 .
Now the required inequality follows from (2.19). This completes the proof.

Proof of Theorem 1.1

We shall conserve the notation of Section 2. First we prove a lemma.

Lemma 3.1. Let z ∈ C, w ∈ C, α > 0, δ 0, A 0, B > 0, C > 0, M > 0 be some constants. Suppose that the Dirichlet series

F(s) := ∞ n=1 f (n)n -s
is of type P(z, w, α, δ, A, B, C, M ). Then there is an absolute positive constant D such that we have

(3.1) F(s) M D B T (100B √ ε+δ)(1-σ) (log T ) A+4B
for all s ∈ M T , where the implied constant depends only on ε.

Proof. Since we have chosen the principal value of complex logarithm, we can write

(3.2) |ζ(s) z | = |ζ(s)| e z e -( m z) arg ζ(s) e πB |ζ(s)| e z
for all s ∈ C such that ζ(s) = 0. Invoking Proposition 2.3, we see that there is a suitable absolute constant D such that

(3.3) |ζ(s) z | ε D B T 100B √ ε(1-σ) (log T ) 4B
for all s ∈ M T , where the implied constant depends only on ε.

Finally the required bound (3.1) follows from (3.3), the hypothesis (1.4) and the trivial bound |ζ(2s)| 1 for s ∈ M T . Now we are ready to prove Theorem 1.1. Since the Dirichlet series F(s) is of type P(z, w, α, δ, A, B, C, M ), we can apply Corollary II.2.2.1 of [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF] with the choice of parameters σ a = 1, α = α, σ = 0 to write

x<n x+y f (n) = 1 2πi b+iT b-iT F(s) (x + y) s -x s s ds + O ε M x 1+ε T , where b = 1 + 1/ log x, e √ log x

T

x is a parameter to be chosen later and

T = K T log T ∼ T .
Denote by Γ T the path formed from the circle |s -1| = r := 1/(2 log x) excluding the point s = 1 -r, together with the segment [1 -δ T , 1 -r] traced out twice with respective arguments +π and -π. By the residue theorem, the path

[b -iT , b + iT ] is deformed into Γ T ∪ [1 -δ T -iT , 1 -δ T + iT ] ∪ [1 -δ T ± iT , b ± iT ].
In view of (2.2) and the hypothesis (1.4), the function F(s) is analytic in the interior of this contour and in the same domain

(3.4) F(s) M D C T max{δ(1-σ), 0} (log T ) A+B ,
where the implied constant and the constant D are absolute. The integral over the horizontal segments

[1 -δ T ± iT , b ± iT ] is b±iT 1-δ T ±iT F(s) (x + y) s -x s s ds M D C (log T ) A+B T b 1-δ T T max{δ(1-σ), 0} x σ dσ M D C x T (log T ) A+B 1 1-δ T x T δ σ-1 dσ + 1 M D C x T (log T ) A+B-1 .

Thus

(3.5)

x<n x+y f (n) = I + O M D C x 1+ε T ,
where the implied constant depends on ε only and

I := 1 2πi Γ T ∪[1-δ T -iT , 1-δ T +iT ] F(s) (x + y) s -x s s ds.
Let M T be the Motohashi contour defined as in Section 2. Consider the two symmetric simply connected regions bounded by M T , the segment [1-δ T -iT , 1-δ T +iT ] and the two line segments [σ j 0 +1 + d v , 1 -δ T ] with respective arguments +π and -π measured from the real axis on the right of 1 -δ T . It is clear that F(s) is analytic in these two simply connected regions. Denote by Γ * T the path joining (the two endpoints of) Γ T with the two line segments [σ j 0 +1 + d v , 1 -δ T ] of the symmetric regions. Thanks to the residue theorem, we can write (3.6)

I = I 1 + I 2 ,
with

I 1 := 1 2πi Γ * T F(s) (x + y) s -x s s ds, I 2 := 1 2πi M T F(s) (x + y) s -x s s ds.
A 

(log t) z-1- 1 Γ(κ -) + O (c 1 + 1) t δ T /2 dt,
where we have used the following inequality Inserting this into the preceding formula, we obtain

47 |z-| Γ(1 + |z -|) B (c 1 + 1) ( 0, |z| B).
(3.10) M (x, y) = y(log x) z-1- 1 Γ(z -) + O B ( + 1)y Γ(z -)x log x + (c 1 + 1) x δ T /2
for 0 and |z| B. Next we estimate E N (x, y). In view of the trivial inequality

(3.11) (x + y) s -x s s yx σ-1 ,
we deduce that (3.12)

E N (x, y) 1-1/ log x 1/2+ε 2 (1 -σ) N +1-e z x σ-1 y dσ + y (log x) N +2-e z y (log x) N +2-e z ∞ 1 t N +1-e z e -t dt + 1 y(log x) e z-1 c 1 N + 1 log x N +1
uniformly for x y 2, N 0 and |z| B, where the constant c 1 > 0 and the implied constant depends only on B.

Inserting (3.10) and (3.12) into (3.8) and using (3.7), we find that (3.13)

I 1 = y(log x) z-1 N =0 λ (z, w) (log x) + O B E * N (x, y) ,
where

E * N (x, y) := y x N +1 =1 |λ -1 (z, w)| (log x) + (c 1 N + 1) N +1 x δ T /2 + M c 1 N + 1 log x N +1
.

B. Evaluation of I 2

Let M T be the union of those vertical line segments of M T whose real part is equal to 1 2 + ε 2 (i.e. corresponding to those k such that j k = 0) and M T := M T M T . Denote by I 2 and I 2 the contribution of M T and M T to I 2 , respectively. Using the trivial inequality

(x + y) s -x s s x 1/2+ε 2 |τ | + 1 (s ∈ M T )
and Lemma 3.1, we can deduce (3.14)

I 2 M D B x 1/2+ε 2 T (δ+100B √ ε)(1/2-ε 2 ) (log T ) A+4B+1 M x 1/2+δ/(2ψ+2δ)+ √ ε M x 1-1/(ψ+δ)+ √ ε
with the value of T given by (3.16) below and ψ 2.

Next we bound I 2 . In view of (3.11), we can write that (3.15)

I 2 y M T |F(s)|x σ-1 | ds| y 0 j J T 0 k K T ∆ j,k ∈(W ) M T (j,k) |F(s)|x σ-1 | ds|,
where M T (j, k) is the vertical line segment of M T around ∆ j,k and the horizontal line segments with σ σ j + d v . Clearly the length of M T (j, k) is log T . Thus with the help of Lemma 3.1, it is easy to see that

M T (j,k) |F(s)|x σ-1 | ds| M D B (log T ) A+4B+1 T (δ+100B √ ε)(1-σ j -dv) x σ j +dv-1
for all 0 k K T . Inserting it into (3.15) and using Proposition 2.4, we can deduce, with the notation J T,0 := [( 1 2 -ε) log T ], that

I 2 M D B y(log T ) A+4B+18+η I 2, * + I 2, † ,
where

I 2, * := 0 j J T,0 T (δ+100B √ ε)(1-σ j -dv) x σ j +dv-1 • T ψ(1-σ j ) , I 2, † := J T,0 <j J T T (δ+100B √ ε)(1-σ j -dv) x σ j +dv-1 • T 100 √ ε(1-σ j ) . Taking (3.16) T := x (1-√ ε)/(ψ+δ+100B √ ε)
and in view of (2.10), it is easy to check that

I 2, * x ε 2 0 j J T,0 x/T ψ+δ+100B √ ε -(1-σ j ) log x x ε 2 -ε 3/2 log x x -ε 2 and I 2, † J T,0 <j J T x/T δ+100(B+1) √ ε -(1-σ j ) e -2c 2 (log x) 1/3 (log 2 x) -1/3
Inserting it into the preceding estimate for I 2 , we conclude that (3.17) 

I 2 B M ye -c 2 (log x) 1/3 (log 2 x) -1/3
f (n) = y(log x) z-1 N =0 λ (z, w) (log x) + O A,B,C,α,δ,ε R * N (x, y)
uniformly for x 3, x 1-1/(ψ+δ)+ε y x, N 0, |z| B and |w| C, where

R * N (x, y) := y x N +1 =1 |λ -1 (z, w)| (log x) + M c 1 N + 1 log x N +1 + (c 1 N + 1) N +1 e c 2 (log x) 1/3 (log 2 x) -1/3
for some constants c 1 > 0 and c 2 > 0 depending only on B, C, δ and ε.

It remains to prove that the first term on the right-hand side can be absorbed by the third. In view of (1.14), the Cauchy formula allows us to write g (z, w) A,B,C,δ M 3 for |z| B, |w| C and 1. Combining this with the Stirling formula, we easily derive λ (z, w) A,B,C,δ M (9/ ) for |z| B, |w| C and 1. This implies that

y x N +1 =1 |λ -1 (z, w)| (log x) A,B,C,δ M y x A,B,C,δ,ε M (c 1 N + 1) N +1 e c 2 (log x) 1/3 (log 2 x) -1/3
holds uniformly for x 3, x 1-1/(ψ+δ)+ε y x, N 0, |z| B and |w| C. This completes the proof. uniformly for x 3,

x y x 1-1/ψ+ε , |z| B, N 0, where λ (z) := g (z)/Γ(z -) and R N (x, y) is defined as in (1.18). The constants c 1 , c 2 in R N (x, y) and the implied constant depends only on B and ε.

Lemma 4.1 improves Theorem 3 of [START_REF] Kátai | Some remarks on a paper of Ramachandra[END_REF] in two directions: get a more precise asymptotic formula and extend the domain x 7/12+ε y x 2/3-ε to x 7/12+ε y x.

The next lemma is a short interval version of the asymptotic formula [START_REF] Motohashi | On the sum of the Möbius function in a short segment[END_REF] of [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]Theorem II.6.3]. We omit the proof as it is very similar. The proof of Theorem 1.5 will be proceeded exactly as in [START_REF] Cui | The Selberg-Delange method in short intervals with an application[END_REF]. The only difference is the use of Corollary 1.2 in place of [START_REF] Cui | The Selberg-Delange method in short intervals with an application[END_REF]Theorem 1].

Since n 1 τ k (n)n -s = ζ(s) k for σ > 1, we can apply Theorem 1.1 with z = k, w = 0, G(s; k, 0) ≡ 1 and A = δ = 0. Taking N = [c (log x) 1/3 (log 2 x) -4/3 ] with some small constant c and noticing that λ (k, 0) = 0 for all k, we obtain the result of Theorem 1.6.

Proof of Theorem 1.7

Since the function τ k (n) is multiplicative and

τ k (p ν ) = k + ν -1 ν = 1 ν! ν-1 j=0 (k + j),
we can write, for σ > 1, As before, we expand G 3 s; 1 k , -2k 3 +2k 2 +2k+1 k 2

n 1 τ k (n) -1 n -s = p 1 + ν 1 k + ν -1 ν -1 p -νs = ζ(s) 1 k ζ(2s) -2k 3 +2k 2 +2k+1 k 2 G 3 s; 1 k , -2k 3 +2k 2 +2k+1
as a Dirichlet series:

G 3 s; 1 k , -2k 3 +2k 2 +2k+1 k 2 = n 1 b 3k (n)n -s
where b 3k (n) is the multiplicative function for which the values on prime powers are determined by the identity ). This shows that the Dirichlet series associated to τ k (n) -1 is of type

1 + ν 1 b 3k (p ν )ξ ν = ν 0 k + ν -1 ν -1 ξ ν (1 -ξ) 1 k (1 -ξ 2 ) -2k 3 +2k 2 +2k+1
P( 1 k , -2k 3 +2k 2 +2k+1 k 2 , 1 k , 0, 1 k , 2k 3 +2k 2 +2k+1 k 2 , M (k)),
where M (k) is a positive constant depending on k. Therefore the required result follows immediately from Theorem 1.1 with any fixed positive integer N .

  (a) for any ε > 0 we have(1.2) |f (n)| ε M n ε (n 1),where the implied constant depends only on ε;(b) we have∞ n=1 |f (n)|n -σ M (σ -1) -α (σ>1); (c) the Dirichlet series (1.3) G(s; z, w) := F(s)ζ(s) -z ζ(2s) -w can be analytically continued to a holomorphic function in (some open set containing) σ 1 2 and, in this region, G(s; z, w) satisfies the bound (1.4) |G(s; z, w)| M (|τ | + 1) max{δ(1-σ),0} log A (|τ | + 1)

1 a

 1 By the Perron formula [22, Lemma, page 151], we can write n

  uniformly for a, b ∈ R with a < b, a σ b and |τ | 1, where ϑ := arg s and the implied O-constant is absolute. Since |t k | (log T ) 2 , the Stirling formula allows us to deduce

( 2 .

 2 32) |K j (T )| |K j (T )| + |K j (T )|. First we bound |K j (T )|. By a dyadic argument, there is a U ∈ [N j , y 2 ] such that (2.33) U <n 2Ua n,N j n s k e -n/y (18 log y) -1

. Evaluation of I 1 g

 1 According to our hypothesis, G(s; κ, w)ζ(2s) w Z(s; κ) is holomorphic and O(M ) in the disc |s -1| 1 2 -ε 3 =: c; the Cauchy integral formula implies that (3.7) g (κ, w) M c - ( 0, |z| B, |w| C),where g (κ, w) is defined as in(1.16). From this and (1.15), we deduce that for any integer N 0 and |s -1| 1 2 -ε 2 , G(s; κ, w)ζ(2s) w Z(s; κ) = N =0 g (κ, w)(s -1) + O M (|s -1|/c) N +1 . (κ, w)M (x, y) + O M c -N E N (x, y) ,whereM (x, y) := 1 2πi Γ * T (s -1) -z (x + y) s -x s s ds, E N (x, y) := Γ * T (s -1) N +1-z (x + y) s -x s s | ds|.Firstly we evaluate M (x, y). Using the formula (3.9) (x + y) s -x s s = x+y x t s-1 dt and Corollary II.5.2.1 of [20], we write M (x, y) = x+y x 1 2πi Γ * T (s -1) -z t s-1 ds dt = x+y x

The constant c 1 0 log z- 1 -

 101 and the implied constant depend at most on B. Besides for |z| B, x+y x (log t) z-1-dt = y (x + t) dt = y(log x) z-1-1 + O B ( + 1)y x log x .

Lemma 4 . 2 . 1 h 5 .

 4215 Let B > 0 and 0 < θ 1 be two positive constants. For each integer n 1, leta z (n) = ∞ k=0 c k (n)z kbe a holomorphic function for |z| B. Let N 0 be a non-negative integer. Suppose that there exist N + 1 holomorphic functions h 0 (z), . . . , h N (z) for |z| B and a quantity R N (x, y) independent of z such that(4.3) x<n x+y a z (n) = y(log x) z-1 N =0 zh (z) (log x) + O B,θ R N (x, y)holds uniformly for x 3, x y x θ and |z| B. Then we have k (log 2 x)(log x) j + O B,θ (log 2 x) k k! R N (x, y)uniformly for x 3, x y x θ and 1 k B log 2 x, where(4.5) R j,k(X) := +m=kand the implied constants depend only on B and θ. If, in addition, we suppose that |h 0 (z)| D (|z| B), then we have x, y) uniformly for x 3, x y x θ and 1 k B log 2 x. Here the implied constants depend only on B and θ. Now we are ready to finish the proof of Theorem 1.3. According to Lemma 4.1, the condition (4.3) of Lemma 4.2 is satisfied with the following choices:a z (n) = z ω(n) , zh (z) = λ (z), θ = 1 -1/ψ + ε, λ(z) and R N (x, y) are defined as in Lemma 4.1, and c k (n) is the characteristic function on the set of integers n such that ω(n) = k. Thus the assertion (a) is an immediate consequence of this lemma. Proofs of Theorems 1.5 and 1.6

k 2 .-2k 3 +2k 2 +2k+1 k 2 k,σ 1 (σ > 1 3

 2213 It is easy to see that the right-hand side is an analytic function in |ξ| < 1 and b 3k (p) = b 3k (p 2 ) = 0. Again the Cauchy integral formula yields|b 3k (p ν )| k 2 ν/2 (ν 3), G 3 s; 1 k ,

  Superieur part of the contour M T2.2. Lower and upper bounds of ζ(s) on M T .In this subsection we give bounds to ζ(s) on M T . The next two lemmas are essentially due to Motohashi[13, page 478, lines 21-28]. For completeness we shall provide proofs.

	Lemma 2.1. Under the previous notation, we have
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Motohashi method

This section is devoted to depict Motohashi's method [13]. His original presentation is rather sketchy. Some key estimations (see Lemma 2.1 and Proposition 2.4 below) are outlined without many details. Here we would give a complete and detailed presentation for the sake of readers' convenience and the importance of this method.

Proofs of Theorems 1.3 and 1.4

Since the proofs of Theorems 1.3 and 1.4 are very similar, we shall only prove the former. For z ∈ C and σ > 1, we can write

.

We expand G 1 s; z, z(1-z)

into the Dirichlet series

is the multiplicative function whose values on prime powers are determined by the identity

In particular b 1z (p) = b 1z (p 2 ) = 0 and the Cauchy integral formula gives

where

From these we deduce that for σ > 1 3 ,

Define g (z) by (4.1)

Applying Theorem 1.1 to the Dirichlet series ∞ n=1 z ω(n) n -s , we obtain the following result.

Lemma 4.1. Let B > 0 be a constant. For any ε > 0, we have