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In this paper, we considered two generalisations of the classical Titchmarsh divisor problem: friable variant and short intervals.

Introduction

As usual, denote by τ (n) the number of divisors of the integer n and by ϕ(n) the Euler totient function. The letter p is used to denote primes. The Titchmarsh divisor problem consists to evaluate the asymptotic behaviour of the counting function p x τ (p -a) for x → ∞, where a ∈ Z * is a fixed non-zero integer. This problem was studied initially by Titchmarsh [START_REF] Titchmarsh | A divisor problem[END_REF], who showed, under the Generalised Riemann Hypothesis (GRH) for the Dirichlet L-functions, .

Linnik [START_REF] Yu | The dispersion method in binary additive problems[END_REF] removed GRH by his dispersion methd. The best known result is due to Fouvry [START_REF] Fouvry | Sur le problme des diviseurs de Titchmarsh[END_REF] and Bombieri-Friedlander-Iwaniec [START_REF] Bombieri | Primes in arithmetic progressions to large moduli[END_REF], who proved, independently, for any A > 1,

p x τ (p -a) = C a x + D a x 2 dt log t + O A x (log x) A ,
where D a is certain constant depending on a. Diverse generalisations were studied by different authors. Here we only present two such generalisations:

(i) Very recently Xi [START_REF] Xi | A quadratic analogue of Titchmarsh divisor problem[END_REF] considered a quadratic analogue of (1.1) and established the following inequalities (ii) Pollack [START_REF] Pollack | A Titchmarsh divisor problem for elliptic curves[END_REF] studied analogues of (1.1) for elliptic curves and proved the following two results:

-For the CM elliptic curve E : y 2 = x 3 -x, there is an explicite constant C such that p x p≡1(mod 4) τ (|E(F p )|) ∼ Cx, as x → ∞, where |E(F p )| is the order of the group of points of the reduction at p of E.

-Let E be a non-CM elliptic curve over Q. Assume the GRH for Dedekind zetafunctions. Then for x → ∞, we have

p x * τ (|E(F p )|) E x,
where * means that the sum is restricted to primes of good reduction and the implied constants depend on E.

In this paper, we shall consider two other generalisations of the classic Titchmarsh divisor problem: friable variant and short intervals.

Firstly let us fix some notation. As usual, denote by P + (n) the largest prime factor of integer n with the convention P + (1) = 1. We say that an integer n is y-friable if P + (n) y. Let ρ(u) be the Dickman function, which is defined as the unique continuous solution of the differential-difference equation

ρ(u) = 1 (0 u 1), uρ (u) = -ρ(u -1) (u > 1).
For x 1 and y > 1, we use systematically the notation

(1.3) u := log x log y • For a ∈ Z * , q ∈ N such that (a, q) = 1 and x 1, y > 1, define π(x, y; d, a) := p x p≡a(mod d) P + ((p-a)/d) y 1,
which counts the number of primes p x in the arithmetic progression with friable indices {a + md} m y-friable . A key point to study friable variant of the Titchmarsh divisor problem (1.1) is that we need a theorem of Bombieri-Vinogradov type for π(x, y; d, a). It seems that this is a very interesting and rather difficult question, since Pomerance's conjecture (see [START_REF] Pomerance | Popular values of Euler's function[END_REF])

(1.4) π(x, y; 1, a) ∼ π(x)ρ(u)
is still open, where u := (log x)/ log y and π(x) is the number of primes x. Granville [5, Section 5.3] announced that (1.4) follows from the Elliott-Halberstam conjecture without proof. Very recently Wang [START_REF] Wang | Autour des plus grands facteurs premiers d'entiers consécutifs voisins d'un entier criblé[END_REF] gave a detailed proof of such result: Let a ∈ Z * be a fixed non-zero integer. Assuming that for any A > 0 and ε > 0 there is a positive number η = η(A, ε) such that

(EH[η]) d x 1-η p x p≡a(mod d) 1 - π(x) ϕ(d) a,A,ε
x (log x) A , then we have (1.5)

p x P + (p-a) y 1 = π(x)ρ(u){1 + O a (ε)}
for x y x ε , where the implied constant depends on a only.

Our result on the friable variant of the classic Titchmarsh divisor problem (1.1) is as follows, which is comparable with (1.5).

Theorem 1. Let a ∈ Z * be a fixed non-zero integer. For any ε > 0, there exists a positive number η = η(ε) such that if we assume the Elliott-Halberstam conjecture EH[η], we have

(1.6) p x P + (p-a) y τ (p -a) = C a π(x)(log y)(ρ * ρ)(u){1 + O a (ε)}
uniformly for x 2 and x y x ε , where the convolution of ρ and ρ is defined by

(1.7) (ρ * ρ)(u) := u 0 ρ(v)ρ(u -v) dv
and the implied constant depends on a only.

About the generalisation of (1.1) to short intervals, we have the following result.

Theorem 2. Let a ∈ Z * a fixed non-zero integer and 3 5 < θ 1. Then for x → ∞ and y = x θ , we have

(1.8) C † a (θ)y 1 + O a,θ log 2 x log x x<p x+y τ (p -a) C a (θ)y 1 + O a,θ log 2 x log x ,
where log k is the k-fold iterated logarithm,

C † a (θ) := (2θ -1)C a , C a (θ) := (2θ -1 -4 log(2θ -1))C a ,
and the implied O-constants depend on a and θ at most.

Since C † a (1) = C a (1) = C a , the inequalities (1.8) with θ = 1 become the classic asymptotic formula (1.1). The key tool for the proof of this theorem is a Bombieri-Vinogradov theorem in short intervals (see Lemma 5.1 below).

Some preliminary lemmas

Firstly we prove a preliminary lemma, which will be needed later.

Lemma 2.1. Let a ∈ Z * be a fixed non-zero integer. Then for any ε ∈ (0, 1), we have

(2.1) d x, (a,d)=1 P + (d) y 1 ϕ(d) = C a π(x)(log y) u 0 ρ(v) dv 1 + O a,ε log(u + 1) log y uniformly for (H ε ) x 3 and exp{(log 2 x) 5/3+ε } y x,
where u := (log x)/ log y and the implied constants depend on a and ε.

Proof. Define

f (d) := d/ϕ(d) if (a, d) = 1, 0 
otherwise. We shall apply Lemma 2.2 below to prove (2.2)

d x P + (d) y f (d) = C a ρ(u)x 1 + O a,ε log(u + 1) log y uniformly for (x, y) ∈ H ε .
To this end, it is sufficient to verify that the function f verifies the conditions of Lemma 2.2.

With the help of the prime number theorem, it is easy to see that

p z f (p) log p = p z, p a p log p p -1 = p z log p + O a (log z) = z + O a ze -c(log z) 3/5 (log 2 z) -1/5 and p ν 2 f (p ν ) p ν p,ν 2 1 p ν (1 -p -1 ) 2π 2 3 •
This shows that f satisfies the conditions (2.3) and (2.4) of Lemma 2.2. Thus the asymptotic formula (2.2) is a particular case of this general lemma. Now the required result (2.1) follows from (2.2) by a simple partial summation.

Next we cite four lemmas, which are useful. The first one is a particular case of [14, Théorème 2.1] with κ = 1 and R(z) = e c(log z) 3/5-ε , which has been used in the proof of Lemma 2.1 above. Lemma 2.2. Let A > 0, C > 0, η ∈ (0, 1 2 ) and ε > 0. Suppose that arithmetic function f : N → R + verifies the following conditions

p z f (p) log p -z Cze -(log z) 3/5-ε , (2.3) p ν 2 f (p ν ) p (1-η)ν A. (2.4)
Then we have (2.5)

n x P + (n) y f (n) = C(f )xρ(u) 1 + O ε log(u + 1) log y uniformly for (x, y) ∈ (H ε ), where C(f ) := p (1 -1/p) ν 0 f (p ν )/p ν .
The second lemma is an elegant Brun-Titchmarsh inequality, due to Montgomery-Vaughan [START_REF] Montgomery | On the large sieve[END_REF].

Lemma 2.3. We have

(2.6) x<p x+y p≡a(mod d) 1 < 2y ϕ(d) log(y/d) uniformly for 1 < d < y x and (a, d) = 1.
The third lemma is essentially due to Lachand and Tenenbaum [START_REF] Lachand | Note sur les valeurs moyennes criblées de certaines fonctions arithmétiques[END_REF]. * Lemma 2.4. Let µ(n) be the Möbius function and let P -(n) be the largest prime factor with the convention P -(1) = ∞. For any ε > 0, we have

n x P -(n)>y µ(n) n = ρ(u) + O ε e -(log y) 3/5-ε
uniformly in

(G ε ) x 3 and exp{(log x) 2/5+ε } y x,
where u := log x/ log y and the implied constant depends on ε only.

The last lemma is due to Iwaniec [6, Lemma 3] (see also [START_REF] Fouvry | Répartition statistique des entiers sans grand facteur premier dans les progressions arithmétiques[END_REF]Lemme 4.1]). and

d|P (z) λ + d w(d) d p z p∈P 1 - w(p) p F (s) + O e √ L-s 3 √ log D (2.8) d|P (z) λ - d w(d) d p z p∈P 1 - w(p) p f (s) + O e √ L-s 3 √
log D (2.9) * In the original version of [START_REF] Lachand | Note sur les valeurs moyennes criblées de certaines fonctions arithmétiques[END_REF], there is a supplementary error term O ε exp{-(log y) 3/5-ε } . Recently de la Bretèche & Fiorilli [START_REF] De La Bretèche | Entiers friables dans des progressions arithmétiques de grand module[END_REF] have succeeded to remove this superfluous error term.

for any z ∈ [2, D], s = (log D)/ log z, the set P of primes and the multiplicative function w satisfying 0 < w(p) < p (p ∈ P), (2.10)

u<p v p∈P 1 - w(p) p -1 log v log u 1 + L log u (2 u v), (2.11) 
where P (z) := p z, p∈P p, the implied O-constants are absolute and F, f are defined by the continuous solutions to the system

         sF (s) = 2e γ (1 s 2), sf (s) = 0 (0 < s 2), (sF (s)) = f (s -1) (s > 2), (sf (s)) = F (s -1) (s > 2).
Here γ is the Euler constant.

A variant of Bombieri-Vinogradov theorem

The asymptotic behaviours of π(x, y; d, a) should be an interesting new subject in the prime number theory. An initial study on this counting function can be found in a recent work of Liu, Wu & Xi [START_REF] Liu | Primes in arithmetic progressions with friable indices[END_REF]. The aim of this section is to establish (3.1) below by following their argument. We will see that it will play a key role in the proof of Theorem 1.

Proposition 3.1. Let a ∈ Z * be a fixed non-zero integer, η ∈ (0, 1), ε > 0 and A > 0. Assuming the Elliott-Halberstam conjecture EH[η], the following estimate

(3.1) d √ x (a,d)=1 P + (d) y π(x, y; d, a) - π(x) ϕ(d) ρ log(x/d) log y a,A,ε x (log x) A + π(x)(log y)ηu u/2 0 ρ(v) dv
holds uniformly for η ∈ (0, 1) and (x, y) ∈ G ε , where the implied constant depends on a, A and ε only. Firstly we treat π 1 (x, y; d, a). We note, via writing q = d ,

(3.3) d √ x (a,d)=1 P + (d) y π 1 (x, y; d, a) - x 1-η /d P -( )>y µ( ) ϕ(d ) π(x) q x 1-η (a,q)=1
τ (q) π(x; q, a) -π(x) ϕ(q) .

Trivially, for all q x 1-η , we have π(x; q, a) + π(x) ϕ(q)

x q • Hence q x 1-η (a,q)=1 τ (q) 2 π(x; q, a) -π(x) ϕ(q) x q x 1-η τ (q) 2 q x(log x) 4 . Noticing that (d, ) = 1 and using Lemma 2.4, we can write Inserting it into the proceeding relation, it follows that

By (3.3) and the

π(x) ϕ(d) x 1-η /d P -( )>y µ( ) ϕ( ) = π(x) ϕ(d) x 1-η /d P -( )>y µ( ) 1 + O 1 y = π(x) ϕ(d) ρ log(x 1-η /d) log y 1 + O ε log(u +
(3.5) π(x) ϕ(d) x 1-η /d P -( )>y µ( ) ϕ( ) = π(x) ϕ(d) ρ log(x/d) log y {1 + O(ηu log(u + 1))} for all (x, y) ∈ G ε and d √ x.
With the help of (2.1), a simple partial integration gives us

(3.6) d √ x (a,d)=1 P + (d) y 1 ϕ(d) ρ log(x/d) log y = π(x) √ x-a 1- ρ log(x/t) log y d d t, (a,d)=1 P + (d) y 1 ϕ(d) = C a π(x)(log y) u/2 0 ρ(v)ρ(u -v) dv 1 + O a,ε log(u + 1) log y = C a 2 π(x)(log y)(ρ * ρ)(u) 1 + O a,ε log(u + 1) log y
for (x, y) ∈ H ε , we have used the trivial relation

u/2 0 ρ(v)ρ(u -v) dv = 1 2 u 0 ρ(v)ρ(u -v) dv = 1 2 (ρ * ρ)(u).
Combining (3.5) with (3.4) and using (3.6) to bound the contribution of the error term in (3.5), we can find

(3.7) d √ x (a,d)=1 P + (d) y π 1 (x, y; d, a) - π(x) ϕ(d) ρ log(x/d) log y a,A,ε x (log x) A + π(x)(log y)(ρ * ρ)(u)ηu log(u + 1)
for all (x, y) ∈ G ε and η ∈ (0, 1), provided we assume EH [η].

We now turn to π 2 (x, y; d, a). For p -a = d m, we have (a, m) = 1 and m x η subject to the restrictions in π 2 (x, y; d, a). We have trivially

|π 2 (x, y; d, a)| x 1-η /d< (x-a)/d P -( )>y π(x; d , a) m x η (a,m)=1 p x, p≡a(mod dm) P -((p-a)/dm)>y 1.
We are now in a position to apply sifting arguments subject to the target sequence A(x; dm, a) := {(p -a)/dm : p x and p ≡ a (mod dm)}.

Trivially we have, with the notation P 2 (y) := 2<p y p,

|π 2 (x, y; d, a)| m x η (a,m)=1 n∈A(x;dm,a) (n,P 2 (y))=1
1.

Let {λ + q } q 1 be an upper bound sieve of level Q as in Lemma 2.5, so that

|π 2 (x, y; d, a)| m x η (a,m)=1 n∈A(x;dm,a) q|(n,P 2 (y)) λ + q = q Q q|P 2 (y) λ + q m x η (a,m)=1
π(x; dmq; a).

We may take Q = x 1/2-2η such that √ xQx η = x 1-η . As before, we may approximate π(x; dmq; a) on average over d, m, q and apply the the Elliott-Halberstam conjecture EH[η]. Similar to (3.3), we can prove

d √ x (a,d)=1 P + (d) y q Q q|P 2 (y) |λ + q | m x η (a,m)=1 π(x; dmq; a) - π(x) ϕ(dmq) a,A x (log x) A
for all x 2 and y > 1. It now follows that

d √ x (a,d)=1 P + (d) y |π 2 (x, y; d, a)| π(x) d √ x (a,d)=1 P + (d) y m x η (a,m)=1 1 ϕ(dm) q Q q|P 2 (y) λ + q ϕ(q) + O a,A x (log x) A .
From Lemma 2.5, Mertens' formula and the inequality ϕ(dm) ϕ(d)ϕ(m), we derive

(3.8) d √ x (a,d)=1 P + (d) y |π 2 (x, y; d, a)| a,A π(x) d √ x P + (d) y m x η 1 ϕ(dm) 2<p<y p -2 p -1 + x (log x) A a,A π(x) log y d √ x P + (d) y 1 ϕ(d) m x η 1 ϕ(m) + x (log x) A a,A,ε π(x)(log y)ηu u/2 0 ρ(v) dv + x (log x) A
for all (x, y) ∈ H ε and η ∈ (0, 1). Now the required result follows from (3.7)-(3.8) and the trivial inequality

(3.9) (ρ * ρ)(u) 2ρ u 2 u/2 0 ρ(v) dv 1 log(u + 1) u/2 0 ρ(v) dv.
This completes the proof of Proposition 3.1.

Proof of Theorem 1

In view of the symmetry of divisors of integer n, we have 2) and using (3.9), we find that (4.6) for some constant λ > 0. Define

p x P + (p-a) y τ (p -a) = C a π(x)(log y)(ρ * ρ)(u) 1 + O a,ε log(u + 1) log y + O a,A,ε x (log x) A + π(x)(log y)ηu
H(z, h, d, a, ) := p z+h p≡a(mod d) 1 - p z p≡a(mod d) 1 - 1 ϕ(d) (z+h)/ z/ dt log t •
Then for any 3 5 < θ 1 and A > 0, there exists a constant B = B(θ, A) > 0 such that the inequality

(5.2) d D max (a,d)=1 max h y max x/2<z x L, ( ,d)=1 g( )H(z, h, d, a, ) θ,ε y (log x) A holds for x 3, D := x θ-1/2 /(log x) B and L = x (5θ-3)/2 .
In view of (4.1), we have trivially 1.

τ (n) =
In the preceding subsection, we have proved that (5.9) M + R = (θ -1 2 )C a y 1 + O log 2 x log x .

On the other hand, by the Brun-Titchmarsh inequality (2.6), it follows that S < New the upper bound in (1.6) follows from (5.9), (5.10) and (5.8). This completes the proof of Theorem 2.

τ

  (p -a) ∼ C a x for x → ∞, where C a

Lemma 2 . 5 .D 2 .

 252 Let There are two sequences {λ ± d } d 1 , vanishing for d > D or µ(d) = 0, verifying |λ ± d | 1, such that (

  Proof. Let P := y<p (x-a)/d p. The Möbius inversion formula allows us to write (3.2) π(x, y; d, a) = p x p≡a(mod d) |(P,(p-a)/d) µ( ) = (x-a)/d P -( )>y µ( )π(x; d , a) = π 1 (x, y; d, a) + π 2 (x, y; d, a), where π 1 (x, y; d, a) := x 1-η /d P -( )>y µ( )π(x; d , a), π 2 (x, y; d, a) := x 1-η /d< (x-a)/d P -( )>y µ( )π(x; d , a).

  Cauchy-Schwarz inequality, this bound and the Elliott-Halberstam conjecture EH[η] with 2A + 4 in place of A allow us to derive that (3.4) d √ x (a,d)=1 P + (d) y π 1 (x, y; d, a)x 1-η /d P -x) A for all x 1 and y > 1.

  + (p-a) y τ (p -a) = 2 d (x-a) 1/2 (a,d)=1, P + (d) y p x p≡a(mod d) P ((p-a)/d) y 1 + p x P + (p-a) y δ (p -b)= 2(M + R 1 ) + R 2 ,whereM := d √ x-a (a,d)=1, P + (d) y d)=1, P + (d) y π(x, y; d, a) -π(x) ϕ(d) ρ log(x/d) log y , R 2 := p x P + (p-a) y δ (p -b).By noticing that δ (p -b) = 1 ⇒ p -b = n 2 , we have trivially (4.3) R 2 2 √ x uniformly for x 1 and y > 1. According to Proposition 3.1, we have (4.4) R 1 a,A,ε x (log x) A + xρ u 2 ηu uniformly for (x, y) ∈ G ε . Finally according to (3.6), we have (4.5) M = C a 2 π(x)(log y)(ρ * ρ)(u) 1 + O a,ε log(u + 1) log y for (x, y) ∈ H ε . Now inserting (4.4), (4.3) and (4.5) into (4.
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 25151 ρ(v) dv uniformly for (x, y) ∈ G ε and η ∈ (0, 1). Clearly (4.6) implies the required result (1.6) Proof of Theorem 2 Lower bound. Firstly we prove the lower bound in (1.6). Our principal tool is a mean value theorem of Bombieri-Vinogradov type in short intervals, due to Wu [17, Théorme 1.2]. Let g( ) be an arithmetic function satisfying the condition (5.1) x |g( )| 2 / (log x) λ (x 2)

5 . 2 .

 52 By using (2.1) with y = x, it follows that (5.7)M = (θ -1 2 )C a log x + O(log 2 x) and (5.6) into (5.3), we obtain the lower bound in (1.6). Upper bound. Now we prove the bound bound in (1.6). By (4.1), we write (5.8) x<p x+y τ (p -a) 2 x<p x+y d|(p-a) d< √+ R + S + √ x),where M and R are defined as in (5.4)-(5.5) andS := x θ-1/2/(log x) B <d √ 3x x<p x+y p≡a(mod d)

x θ- 1 / 2 / 5

 125 (log x) B <d √ 3x 2y ϕ(d) log(y/d) = 2y log y x θ-1/2 /(log x) B <d √ 3x 1 ϕ(d)(1 -(log d)/ log y) •In view of (2.1) with y = x, a simple partial integration allows us to deduce that (log 2 x log x 2 log(2θ -1) -1 C a y.
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