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Denote by P the set of all primes and by P (n) the largest prime factor of integer n 1 with the convention P (1) = 1. Let η 0 ≈ 2.1426 be the unique positive zero of the equation η -1 -4η log(η -1) = 0 in (1, ∞). Very recently Wu proved that for η ∈ ( 32 17 , η 0 ) there is a constant c(η) > 1 such that for each fixed non-zero integer a ∈ Z * the set (0.1) P a,c,η := {p ∈ P : p = P (q -a) for some prime q with p η < q c(η)p η } has relative density 1 in P. In this short note, we shall further extend the domain of η at the cost of obtaining a lower bound in place of an asymptotic formula, by showing that for each η ∈ [η 0 , 1 + 4 √ e) the set P a,c,η has relative positive density in P.

Introduction

Denote by P the set of all prime numbers and by P (n) the largest prime factor of the positive integer n 1 with the convention P (1) = 1. Banks & Shparlinski [START_REF] Banks | On values taken by the largest prime factor of shifted primes[END_REF] proposed to estimate the number of primes p that occur as the largest prime factor of a shifted prime q -a when q ∈ P lies in a certain interval determined by p. This question has applications in theoretical computer science and has been considered by Vishnoi [START_REF] Vishnoi | Theoretical aspects of randomization in computation[END_REF].

For a ∈ Z * , c > 1 and η > 0, we put P a,c,η := {r ∈ P : r = P (q -a) for some prime q with r η < q cr η } and π a,c,η (x) := |{r x : r ∈ P a,c,η }|, π(x) := |{r x : r ∈ P}|.

Banks & Shparlinski [1, Theorem 1.1] proved that for each η ∈ ( 32 17 , 1 + 3 4 √ 2), there exists a constant c = c(η) > 1 such that the asymptotic formula

(1.1) π a,c,η (x) = π(x) + O A,a,c,η x (log x) A (x → ∞)
holds for every fixed non-zero integer a ∈ Z * and any constant A > 1. Moreover for 2 η < 1 + 3 4 √ 2, this estimate holds for any constant c > 1. Very recently, Wu [START_REF] Wu | On values taken by the largest prime factor of shifted primes[END_REF] extended Banks-Shparlinski's interval ( 32 17 , 1 + 3 4 √ 2) to ( 32 17 , η 0 ), where η 0 is the unique positive zero of the equation η -1 -4η log(η -1) = 0 in (1, ∞).

In this short note, we shall further extend domain of η at the cost of obtaining a positive proportion in place of the density 1.

Our result is as follows.

Theorem 1. Let η ∈ (2, 1 + 4 √ e) and c > 1. There is a small positive number δ = δ(η, c) such that for every fixed non-zero integer a ∈ Z * , we have

(1.2) π a,c,η (x) (log 2)(η -1) 4η 1 -4 log(η -1) -8δ log(η -1) c -1 π(x), as x → ∞.
For comparison, we have

1 + 3 4 √ 2 ≈ 2.0606, η 0 ≈ 2.142 and 1 + 4 √ e ≈ 2.284.
The improvement of Wu [START_REF] Wu | On values taken by the largest prime factor of shifted primes[END_REF] comes from the following two simple observations:

(i) In many arithmetic applications, the linear sieve is more powerful than the sieve of dimension 2; (ii) With the help of the Chen-Iwaniec switching principle [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes[END_REF][START_REF] Iwaniec | Primes of the type φ(x, y) + A where φ is a quadratic form[END_REF] 

k r + a : k 2cr η-2 , 2 (a + k), c 1 y/(kr) < c 2 y/(kr)
for each fixed r ∈ ( 1 2 x, x] ∩ P by the linear sieve, instead of fixing (k, r) and sieving {n(knr + a)} n by the sieve of dimension 2 as in [START_REF] Banks | On values taken by the largest prime factor of shifted primes[END_REF].

For every prime r ∈ [ 1 2 x, x], we write

(1.3) Q 1 (r) := y<q cy q≡a(mod r) 1 = y<q cy P (q-a)=r 1 -Q 2 (r),
where (1.4) Q 2 (r) := y<q cy q≡a(mod r), P (q-a)>r 1.

The observations above allowed Wu to obtain a better upper bound for Q 2 (r) than [START_REF] Banks | On values taken by the largest prime factor of shifted primes[END_REF]Formula (9) or Page 143, line 2] of Banks & Shparlinski.

We shall prove Theorem 1 by introducing a new idea into Wu's refinement on Banks-Shparlinski's argument. Our key point is Proposition 3.1 below, which gives a good upper bound for the mean value of the counting function Q 2 (r):

x/2<r x Q 2 (r).
For this, we shall sieve the sequence of convolution defined as in (4.1) below by the Rosser-Iwaniec linear sieve. The lower bound in Theorem 1 can be increased with more work, but this does not improve the point when the bound becomes trivial.

Some preliminary lemmas

In this section, we cite three lemmas, which will be useful later.

The Rosser-Iwaniec linear sieve.

The first lemma is due to Iwaniec [START_REF] Iwaniec | Rosser's sieve[END_REF][START_REF] Iwaniec | A new form of the error term in the linear sieve[END_REF].

Lemma 2.1. Let D 2 and let µ(n) be the Möbius function. Then there are two sequences

{λ ± d } d 1 , vanishing for d > D or µ(d) = 0, verifying |λ ± d | 1, such that (2.1) d|n λ - d d|n µ(d) d|n λ + d (n 1)
and

d|P P (z) λ + d w(d) d p z p∈P 1 - w(p) p F (s) + O e √ L-s 3 √ log D (2.2) d|P P (z) λ - d w(d) d p z p∈P 1 - w(p) p f (s) + O e √ L-s 3 √ log D (2.3)
for any z ∈ [2, D], s = (log D)/ log z, set of prime numbers P and multiplicative function w satisfying

0 < w(p) < p (p ∈ P), (2.4) u<p v, p∈P 1 - w(p) p -1 log v log u 1 + L log u (2 u v), (2.5) 
where P P (z) := p z, p∈P p and the implied O-constants are absolute. Here F, f are defined by the continuous solutions to the system

(sF (s)) = f (s -1) (s > 2) (sf (s)) = F (s -1) (s > 2) with the initial condition sF (s) = 2e γ (1 s 2) sf (s) = 0 (0 < s 2)
where γ is the Euler constant. The Bombieri-Vinogradov theorem can be stated as follows: For any A > 0, there exists a constant B = B(A) > 0 such that (2.6)

A mean value theorem of

d x 1/2 (log x) -B max z x max (a,d)=1 π(z; d, a) - π(z) ϕ(d) A x (log x) A
for all x 2, where ϕ(n) denotes the Euler totient function and the implied constant depends on A only.

The following proposition is a mean value theorem of Bombieri-Vinogradov type and will play a key role in the proof of Proposition 3.1 below. Proposition 2.2. Let κ 1 (m) and κ 2 (m) be the characteristic functions of the odd integers and of even integers, respectively. Then for any A > 0, there is a constant B = B(A) > 0 such that the inequalities

d x 1/2 (log x) -B 2 d max z x max (a,d)=1 mp z mp≡a(mod d) κ i (m) - 1 ϕ(d) mp z (d,mp)=1 κ i (m) A x (log x) A (2.7) d x 1/2 (log x) -B 2 d max z x max (a,d)=1 mp 1 p 2 z mp 1 p 2 ≡a(mod d) κ i (m) - 1 ϕ(d) mp 1 p 2 z (d,mp 1 p 2 )=1 κ i (m) A x (log x) A (2.8)
hold for all x 3.

Proof. The first inequality is Proposition 3.2 of [START_REF] Wu | On values taken by the largest prime factor of shifted primes[END_REF]. With the help of Motohashi's convolution argument [START_REF] Motohashi | An induction principle for the generalization of Bombieri's prime number theorem[END_REF], (2.8) follows from (2.7) and the classical Bombieri-Vinogradov theorem (see (2.6) below).

An asymptotic formula.

The next lemma is [9, Lemma 3.3].

Lemma 2.3. For each positive integer n 1, define

(2.9) ψ(n) := 2<p|n p -1 p -2 •
Then for x 2, we have

n x ψ(n) = x Ξ 1 + O 1 log x ,
where

(2.10) Ξ := p>2 1 - 1 (p -1) 2 .

Banks-Shparlinski's argument and sketch of the proof of Theorem 1

As in [START_REF] Wu | On values taken by the largest prime factor of shifted primes[END_REF], the letters p, q, r and are always used to denote prime numbers, and d, m, and n always denote positive integers. In what follows, let a ∈ Z * and η ∈ [η 0 , 1 + 4 √ e). Let δ be a sufficiently small positive constant and let c > 1 be a parameter to be chosen later. Let x 0 (A, a, c, η, δ) be a large constant depending on A, a, c, η, δ at most. For x x 0 (A, a, c, η, δ) and r ∈ ( 1 2 x, x], put y := r η . For every prime r ∈ [ 1 2 x, x], recall the definition of (3.1) Q 1 (r) := y<q cy P (q-a)=r 1 and Q 2 (r) := y<q cy q≡a(mod r), P (q-a)>r 1.

Since η > 2, we have x 2r = 2y 1/η y 1/2 (log y) -B . Thus the Bombieri-Vinogradov theorem (2.6) allows us to write (3.2)

x/2<r x Q 1 (r) = x/2<r x y<q cy q≡a(mod r) 1 -Q 2 (r) = (c -1) x/2<r x π(y) ϕ(r) + O y (log y) A - x/2<r x Q 2 (r).
The following result constitutes the key to prove Theorem 1.

Proposition 3.1. Under the previous notation, we have

(3.3) x/2<r x Q 2 (r) 4(c -1 + 2δ) log(η -1) x/2<r x π(y) ϕ(r) 1 + O 1 3 √ log x
for x → ∞, where the implied constant depends on c, η and δ.

In Section 4, we shall prove this proposition. Now we suppose this proposition and complete the proof of Theorem 1.

From (3.2), (3.3) and the following simple asymptotic formula

x/2<r x 1 ϕ(r) = log 2 log x 1 + O 1 log x ,
we deduce that (3.4)

x/2<r x Q 1 (r) C 1 (c, η, δ) π(y) log x 1 + O 1 √ log x , where (3.5) C 1 (c, η, δ) := (log 2)(c -1) 1 -4 log(η -1) -δ log(η -1) 8 c -1 .
On the other hand, the Brun-Titchmarsh inequality (see [START_REF] Montgomery | On the large sieve[END_REF]) give us

Q 1 (r) y<q cy q≡a(mod r) 1 2(c -1)y ϕ(r) log((c -1)y/r) 4(c -1)y (η -1)x log x 1 + O 1 log x for all primes r ∈ ( 1 2 x, x]. This implies that (3.6) x/2<r x Q 1 (r) 4(c -1)y (η -1)x log x 1 + O 1 log x x/2<r x Q 1 (r) =0 1.
Combining (3.4) and (3.6), it follows that

x/2<r x Q 1 (r) =0 1 C 2 (c, η, δ)π(x) 1 + O 1 3 √ log x with C 2 (c, η, δ) := (log 2)(η -1) 4η 1 -4 log(η -1) -δ log(η -1) 8 c -1 .
This implies the required inequality (1.2). The proof of Theorem 1 is completed assuming Proposition 3.1.

Proof of Proposition 3.1

For simplicity of notation, we put

c 1 := 1 -δ and c 2 := c + δ.
If a prime number q is counted in Q 2 (r), then we can write q -a = k r, where is the largest prime factor of q -a. Since > r ∈ ( 1 2 x, x] and y < q cy, we have k (cy -a)/( r) 2cr η-2 . On the other hand, noticing that , r and q = k r + a are odd, we must have 2 (a + k). By the Chen-Iwaniec switching principle (see [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes[END_REF][START_REF] Iwaniec | Primes of the type φ(x, y) + A where φ is a quadratic form[END_REF]), we see that x/2<r x Q 2 (r) does not exceed the number of primes in the sequence

(4.1) k r + a : 1 2 x < r x, k 2cr η-2 , 2 (a + k), c 1 y/(kr) < c 2 y/(kr) .
We shall sieve this sequence by the set of primes P 2 := {p ∈ P : p > 2}. Define

P m (z) := p<z, p m p with z := y 1/4 (log y) -B(3)/2 < r.

The inversion formula of Möbius allows us to write that

x/2<r x Q 2 (r)

x/2<r x k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) k r+a is prime 1

x/2<r x k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) (k r+a, P 2 (z))=1

=

x/2<r x k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) d|(k r+a, P 2 (z))

µ(d).

Using Lemma 2.1, it follows that

x/2<r x Q 2 (r)

x/2<r x k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) d|(k r+a, P 2 (z))

λ + d .
By inversion of summations, we can write Inserting into the preceding formula, it follows that (4.2)

x/2<r x Q 2 (r)
x/2<r x Q 2 (r) M + E,
where

M := d|P 2 (z) λ + d ϕ(d) K d (y), E := d|P 2 (z) λ + d (E(c 2 y, d, -a) -E(c 1 y, d, -a)).
With the help of (2.8) of Proposition 2.2 with D := z 2 = y 1/2 (log y) -B(3) , we can derive On the other hand, the Mertens formula allows us to deduce that

p z, p 2m 1 - 1 p -1 = 2<p z 1 - 1 (p -1) 2 2<p|m p -1 p -2 2<p z 1 - 1 p = 2Ξψ(m)e -γ log z 1 + O 1 log z ,
where Ξ and ψ(m) are defined as in (2.10) and (2.9), respectively. Inserting this into the preceding relation and using the fact that F (2) = e γ , we find

M 1 + O 1 3 √ log x 2Ξ log z
x/2<r x k 2cr η-2 2 (a+k) c 1 y/(kr)< c 2 y/(kr) ψ(k r).

Noticing that > r > 1 2 x and that and r are primes, we have ψ(k r) ψ(k)ψ( )ψ(r) = {1 + O(x -1 )}ψ(k). 

  Bombieri-Vinogradov type. As usual, for (a, d) = 1 define π(x; d, a) := p x p≡a(mod d) 1.

d|P 2 1 .

 21 (z) λ + d K(y; d, -a), where K(y; d, b) := x/2<r x k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) k r≡b(mod d) Introducing the notation K d (y) := x/2<r x k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) (k r,d)=1 1 and E(t; d, b) := x/2<r x k 2cr η-2 , 2 (a+k) t/(kr) k r≡b(mod d) ; d, -a) = 1 ϕ(d) K d (y) + E(c 2 y; d, -a) -E(c 1 y; d, -a).

(4. 3 ) 1 =

 31 |E| d y 1/2 (log y) -B(3) (|E(c 2 y, d, -a)| + |E(c 1 y, d, -a)|) y (log y) 3 • It remains to evaluate M. By inversion of summations, we deduce that M = d|P 2 (z) λ + d ϕ(d) x/2<r x k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) (k r,d)=1 x/2<r x k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) d|P 2k r (z) w(d) = d/ϕ(d), D = z 2 and P = {p ∈ P : p 2k r}, it follows that

1 - 1 - 1 - 4

 1114 (log k)/ log(y/r)) • With the help of Lemma 2.3, a simple partial integration leads to (log k)/ log(y/r)) (log t)/ log(y/r))= 1 + O 1 log r log(η -1) 2Ξ log(y/r),where Ξ is defined as in (2.10). Combining it with the preceding formula, it follows that (and (4.3) into (4.2), we obtain the required inequality (3.3).
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