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Abstract

We made the hypothesis that, if spacetime is composed of small hypercubes of one Planck length edge, it exists
elementary wavefunctions which are equal to

√
2 exp(ix j) if it corresponds to a space dimension or equal to

√
2 exp(it)

if it corresponds to a time dimension. The masses of fermions belonging to the first family of fermions are equal to
integer powers of 2 (in eV/c2) [1]. We make the hypothesis that the fermions of the 2nd and 3rd families are excited
states of the fermions of the 1st family. Indeed, the fermions of the 2nd and 3rd families have masses equal to
2n.(p2)/2 where n is an integer [1] calculated for the first family of fermions and p is another integer. p is an integer
which corresponds to the excited states of the elementary wavefunctions (the energy of the excited elementary wave
functions are equal to p2/2; using normalized units).

Keywords:

1. Introduction

I make the assumption that our threedimensional uni-
verse is embedded in a four dimensional euclidean
space. Time is a function of the fourth dimension of
this space [2–4]. If we apply this hypothesis to particle
physics, we may say that elementary particles are four-
dimensional, threedimensional and twodimensional.

The coordinates (x, y, z, t) are not orthonor-
mal.Indeed, time t evolves as log(r) where r is the
comoving distance in cosmology [2].

To obtain the first family of fermions from the Stan-
dard Model ( i.e. quark up, electron, electron neutrino)
one may say that [5]:

• the electron is fourdimensional (t, x, y, z)

• the quark is three dimensional (t, x, y).

• finally, the electronic neutrino is twodimensional
(t, x) and x, y and z are equivalent.
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To obtain the remaining fermions (elementary parti-
cles), one has to modify the quantum number p (similar
to the quantum number of a particle in a box). Thus, the
remaining fermions of the Standard Model may be seen
as excited states of the first fermion family.

Straightforwardly, we make the following hypothe-
ses:

• Spacetime has an underlying hypersquare array of
edge length ~

• Elementary wave functions ( in (x, y, z, t) space)are
eigenfunctions of a particle in a square poten-
tial (reduced parameters)

√
2exp(−ix) for space√

2exp(−it) for time

• The eigenvalues of the elementary wave functions
are equal to p2/2 (with p an integer number)

2. Masses of the electron, muon and tau

For electrons, we have

iγµ∂µψ = mψ (2)
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γ1 0 0 0 0 0 0 0 0 0
0 γ2 0 0 0 0 0 0 0 0
0 0 γ3 0 0 0 0 0 0 0
0 0 0 γ3 0 0 0 0 0 0
0 0 0 0 γ1 0 0 0 0 0
0 0 0 0 0 γ2 0 0 0 0
0 0 0 0 0 0 γ2 0 0 0
0 0 0 0 0 0 0 γ3 0 0
0 0 0 0 0 0 0 0 γ1 0
0 0 0 0 0 0 0 0 0 σ0
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(1)

particle Theoretical mass (eV/c2) Experimental mass (eV/c2) [6]
electron 219 = 0.524MeV/c2 0.511MeV/c2

muon 219.202/2 = 104.8MeV/c2 105.6MeV/c2

tau 219.822/2 = 1.76GeV/c2 1.78GeV/c2

Table 1: Theoretical and experimental masses of the electron, muon and tau

The Dirac matrices are representative of infinitesimal
rotations within the wavefunction of a given elementary
particle.

Using combinatorial analyzis we obtain equation (1)
(using the fact that electrons are 4d [5] and that all space
dimensions are equivalent).

There are 3 possibilities of arranging γ1, γ2, γ3 (the
Dirac matrices) over x, y and z (all space dimensions are
equivalent) and one possibility to arrange σ0 (temporal
Pauli matrix: half of γ0; because time does not go back-
ward).

The large matrix M (see equation (1) ) containing
all combinations has a dimension 9X4 + 2 = 38. We
see that, with the coordinate vectors

√
2exp(−it) and√

2exp(−ix) (eigenfunctions of a particle in a square po-
tential), we have to multiply the modified Dirac equa-
tion by the Jacobian corresponding to these new coor-
dinates. This Jacobian is equal to

√
238 where 38 is the

dimension of the large matrix [1]. We multiply the mass
of the first particle of this family by the eigenvalues of
the eigenfunctions (of the particle).

We decompose the eigenvalues into prime numbers.
The number of eigenvalues for the ground state (elec-
tron) is 38 (the dimension of the large matrix M). For
the other particles, we take into account the spinor
(1, 0)T corresponding to the σ0 Pauli matrix. So except
for the electron, there are 37 eigenvalues for each parti-
cle.

• The mass of the electron is equal to
√

238 =219eV/c2=219.( 1
2

2)19.( 22

2 )19 =

0.524MeV/c2 ≈ 0.511 MeV/c2

• The mass of the muon is equal to
219.202/2=219. 2

2

2 .
22

2 .
22

2 .
22

2 .
52

2 .(
1
2

2)16.( 22

2 )16 =

104.8MeV/c2 ≈ 105.6 MeV/c2

• The mass of the tau is equal to
219.822/2=219. 412

2 .
22

2 .
22

2 .(
1
2

2)17.( 22

2 )17 =

1.76GeV/c2 ≈ 1.78 GeV/c2

The values in italic are the experimental masses [6].
We see that for the tau particle, one of the eigenvalues

( 412

2 ) is much larger than the others. This may explain
the short lifetime of this particle.

The masses (theoretical and experimental) of the
electron, muon and tau are summarized in Table 1.

3. Masses of the quarks

For quarks, we have

iγµ∂µψ = mψ (4)

The Dirac matrices are representative of infinitesimal
rotations within the wavefunction of a given elementary
particle.

Using combinatorial analyzis we obtain equation (3)
(using the fact that quarks are 3d [5] and that all space
dimensions are equivalent).

There are 3 possibilities of arranging γ1, γ2, γ3 (the
Dirac matrices) over x, y and z (all space dimensions
are equivalent). There is one possibility to arrange σ0
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γ1 0 0 0 0 0 0 0 0 0 0 0
0 γ2 0 0 0 0 0 0 0 0 0 0
0 0 γ3 0 0 0 0 0 0 0 0 0
0 0 0 σ0 0 0 0 0 0 0 0 0
0 0 0 0 γ2 0 0 0 0 0 0 0
0 0 0 0 0 γ3 0 0 0 0 0 0
0 0 0 0 0 0 γ1 0 0 0 0 0
0 0 0 0 0 0 0 σ0 0 0 0 0
0 0 0 0 0 0 0 0 γ3 0 0 0
0 0 0 0 0 0 0 0 0 γ1 0 0
0 0 0 0 0 0 0 0 0 0 γ2 0
0 0 0 0 0 0 0 0 0 0 0 σ0
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(3)

quark Theoretical mass (eV/c2) Experimental mass (eV/c2) [6]
up 221 = 2.09Mev/c2 2.2MeV/c2

down 221.22/2 = 4.19MeV/c2 4.7MeV/c2

strange 221.92/2 = 84.9MeV/c2 96MeV/c2

charm 221.362/2 = 1.35GeV/c2 1.27GeV/c2

bottom 221.632/2 = 4.16GeV/c2 4.18GeV/c2

top 221.4052/2 = 171.9GeV/c2 173GeV/c2

Table 2: Theoretical and experimental masses of the quarks family.

(temporal Pauli matrix; half of γ0, because time does
not go backward ) for each combination of spatial Dirac
matrices (x, y; x, z and y, z). We have to take into ac-
count that the quarks are 3 dimensional. So, the matrix
M containing all combinations has a dimension equal to
9X4 + 3X2 = 42.

We see that, with the coordinate vectors
√

2exp(−it)
and
√

2exp(−ix) (eigenfunctions of the underlying hy-
persquare array), we have to multiply the modified
Dirac equation by the Jacobian corresponding to these
new coordinates. This Jacobian is equal to

√
242 where

42 is the dimension of the matrix [1].
We multiply the mass of the first particle of the quarks

family by the eigenvalues of the eigenfunctions (of the
particle). We decompose the eigenvalues into prime
numbers. The number of eigenvalues for the ground
state (quark up) is 42 (the dimension of the large ma-
trix M, see equation (3)). For the other quarks, we take
into account the spinor (1, 0)T corresponding to the 3 σ0
Pauli matrices. So except for the quark up, there are 39
eigenvalues for each quark.

• The quark up has a mass equal to
√

242 =221eV/c2= 221.( 1
2

2)21.( 22

2 )21 =

2.09MeV/c2 ≈2.2 MeV/c2

• The quark down has a mass equal to

221. 2
2

2 =221. 2
2

2 .(
1
2

2)19.( 22

2 )19 = 4.19MeV/c2 ≈

4.7MeV/c2

• The quark strange has a mass equal to 221. 9
2

2 =

221. 3
2

2 .
32

2 .
22

2 .(
1
2

2)18.( 22

2 )18 = 84.9MeV/c2 ≈ 96
MeV/c2

• The quark charm has a mass equal
to221. 362

2 = 221. 3
2

2 .
32

2 .
22

2 .
22

2 .
22

2 .
22

2 .
22

2 ( 1
2

2)16.( 22

2 )16 =

1.35GeV/c2 ≈ 1.27GeV/c2

• The quark bottom has a mass equal to 221. 632

2 =

221. 3
2

2 .
32

2 .
22

2 .
22

2 .
72

2 .(
1
2

2)17.( 22

2 )17 = 4.16GeV/c2 ≈

4.18GeV/c2

• The quark top has a mass equal to 221. 4052

2 =

221. 3
2

2 .
32

2 .
32

2 .
32

2 .
52

2 .
22

2 .
22

2 .
22

2 .
22

2 .(
1
2

2)15.( 22

2 )15 =

171.9GeV/c2 ≈ 173GeV/c2

The values in italic are the experimental masses [6].
The theoretical and experimental masses of the

quarks family are summarized in table 2.

4. Masses of the neutrinos

Up to now, there is no theoretical propagation equa-
tion for the neutrinos.
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particle Theoretical mass Experimental mass: upper limit [6]
electron neutrino 2eV/c2 2.5eV/c2

muon neutrino 4122 = 169.7keV/c2 170keV/c2

tau neutrino 39372 = 15.4MeV/c2 18MeV/c2

Table 3: Theoretical masses of the neutrinos and upper limits of experimental masses

If we use the eigenvalues of the elementary wave
functions like for quarks and electrons, muons and taus,
we may write:

• The mass of the electron neutrino is equal to
2eV/c2

• The mass of the muon neutrino is equal to 2. 4122

2 =

4122eV/c2 = 169keV/c2

• The mass of the tau neutrino is equal to 2. 39372

2 =

39372eV/c2 = 15.4MeV/c2

Hence, we found theoretical values of the masses of
the neutrinos which are in good agreement with the ex-
perimental masses.

5. Conclusion

We found the theoretical values of masses for all
the elementary fermions (1st, 2nd and 3rd families of
fermions). These theoretical masses are in good agree-
ment with the experimental masses (the differences be-
tween theoretical and experimental masses are less than
10% except for the quarks down and strange). There is a
possibility to analyze the symmetries of these particles
and compare them to the symmetries of the Standard
Model.
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