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Introduction

The distribution of shifted primes with large prime factors is an interesting suject in number theory, which has received much attention. It is related to many well known arithmetic problems such as the last Fermat theorem [START_REF] Fouvry | Théorème de Brun-Titichmarsh; application au théorème de Fermat[END_REF], the Brun-Titichmarsh theorems [START_REF] Baker | The Brun-Titchmarsh theorem on average[END_REF], the twin prime conjecture [START_REF] Zhang | Bounded gaps between primes[END_REF], etc. As usual, we use P + (n) to denote the largest prime factor of n with the convention P + (1) = 1. Recently Luca, Menares and Pizarro-Madariaga [START_REF] Luca | On shifted primes with large prime factors and their products[END_REF] considered the following counting function where π(x) denotes the number of primes p x, the implied constant depends on θ only and

E(x) :=        log log x log x for 1 4 < θ < 1 2 , 1 (log x) 2/3 for θ = 1 4 •
In [START_REF] Chen | On the largest prime factor of shifted primes[END_REF], Y.-G. Chen and F.-J. Chen improved this result by showing that (1.2) holds for 0 < θ < 1 2 with a better error term. They also conjectured that (1.3)

T θ (x) ∼ (1 -ρ(1/θ))π(x)
as x → ∞, where ρ(θ) is the Dickman function. Very recently, Feng & Wu [START_REF] Feng | On the density of shifted primes with large prime factors[END_REF] and Liu, Wu & Xi [START_REF] Liu | Primes in arithmetic progressions with friable indices[END_REF] introduced and developed the friable number argument in this problem, and improved density 1 -θ to 1 -4ρ(1/θ) for 0 < θ < Θ ≈ 0.3734, where Θ is the unique solution of the equation θ -4ρ(1/θ) = 0.

Motived by Billerey & Menares' work [START_REF] Billerey | On the modularity of reducible mod Galois representations[END_REF] on the modularity of reducible mod Galois representations, Luca, Menares and Pizarro-Madariaga, in the same paper [START_REF] Luca | On shifted primes with large prime factors and their products[END_REF], also studied the following counting function (1.4) T k,θ (x) :=

p 1 •••p k x P + (gcd(p 1 -1,..., p k -1)) (p 1 •••p k ) θ 1,
which can be regarded as a generalisation of (1.4), by noticing T 1,θ (x) = T θ (x). With the help of the Brun-Titchmarsh theorem (see Lemmas 2.1-2.2 below), they proved that for fixed integer k 2 and real θ ∈ [1/(2k), 17/(32k)), inequalities [START_REF] Luca | On shifted primes with large prime factors and their products[END_REF]Theorem 2]), where the implied constants depend on k. The case θ = 1/(2k) is important for the results from [START_REF] Billerey | On the modularity of reducible mod Galois representations[END_REF]. They also wrote (see [9, page 41]): "We leave as a problem for the reader to determine the exact order of magnitude of T k,θ (x), or an asymptotic for it."

(1.5) x 1-(k-1)θ (log x) k+1 k T k,θ (x) k x 1-θ(k-1) (log x) 2 (log log x) k-1 hold as x → ∞ (see
The first aim of this short note is to give a partial answer to this question by improving the lower part in (1.5).

Theorem 1. Let k 2 and θ ∈ [1/(2k), 17/(32k)) be fixed. Then we have

(1.6) T k,θ (x) k x 1-θ(k-1) (log x) 2 for x → ∞,
where the implied constant depends on k.

Remark 1. In view of (1.5) and (1.6), it seems reasonable to think that

(1.7) T k,θ (x) x 1-θ(k-1) (log x) 2 (log log x) k-1 for x → ∞.
In [START_REF] Chen | On the largest prime factor of shifted primes[END_REF], Y.-G. Chen and F.-J. Chen also posed a question. Defining T θ (x) := p x : P + (p -1) x θ , they wrote (see [4, Remark 3.1]): "Currently, we cannot give a proof of

(1.8) T θ (x) = T θ (x) + o(π(x)).
We believe that this is not really difficult."

The second aim of this short note is to prove (1.8). Our result is as follows.

Theorem 2. We have

(1.9) T θ (x) = T θ (x) + O π(x) log log x log x for x → ∞.
Further assuming the Elliott-Halberstam conjecture, Chen-Chen's conjecture (1.3) holds. Remark 2. In view of the second assertion of Theorem 2, it seems rather difficult to get an asymptotic formula for T k,θ (x) with k 2 and 0 < θ < 1 unconditionally.

Brun-Titchmarsh inequalities

In this section, we shall cite two versions of the Brun-Titchmarsh theorem, an invidual and an average on the modulus. For x 2 and 1 a q with (a, q) = 1, we define π(x; q, a) := p x p≡a(mod q)

1.

The first one is due to Montgomery-Vaughan [START_REF] Montgomery | The large sieve[END_REF].

Lemma 2.1. Let x 2 and 1 a q with (a, q) = 1. Then we have (2.1) π(x; q, a) 2x ϕ(q) log(x/q) , where ϕ(q) is the Euler totient function.

The following result is Lemma 2.1 of [START_REF] Banks | On values taken by the largest prime factor of shifted primes[END_REF], due to Bombierie-Vinogradov for 0 < θ < ) such that for each fixed integer a ∈ Z * , each fixed real A > 0 and all sufficiently large Q = x θ , the inequalities

(2.2) C 1 (θ) π(x) ϕ(q) π(x; q, a) C 2 (θ) π(x) ϕ(q)
hold for all primes q ∈ (Q, 2Q] with at most O A (Q(log Q) -A ) exceptions, where the implied constant depends only on a, A and θ. Moreover, for any fixed ε > 0, these functions can be chosen to satisfy the following properties:

• C 1 (θ) is monotonic decreasing, and C 2 (θ) is monotonic increasing;

• C 1 ( 1 2 ) = 1 -ε and C 2 ( 1 2 ) = 1 + ε.

Proof of Theorem 1

Denote by P the set of all prime numbers. Let k 2 and θ ∈ [1/(2k), 17/(32k)). Put Q := x θ . According to (2.2) of Lemma 2.2, we have

(3.1) C 1 (θ) π(x) ϕ(q) π(x; q, a) C 2 (θ) π(x) ϕ(q)
for all primes q ∈ (Q, 2Q] with at most O A (Q(log Q) -A ) exceptions, where the implied constant depends only on A, a, k and θ. We introduce

Q g (x) := q ∈ P ∩ (Q, 2Q] : (3.1) above holds , (3.2) Q b (x) := (P ∩ (Q, 2Q]) Q g (x). (3.3) By Lemma 2.2, we have (3.4) |Q b (x)| A,a,k,θ Q(log Q) -A .
Firstly we write

T k,θ (x) p 1 x 1/k • • • p k-1 x 1/k p k x/p 1 •••p k-1 P + (gcd(p 1 -1,...,p k -1)) x θ 1.
Putting q := P + (gcd(p 1 -1, . . . , p k -1)), we have p j ≡ 1 (mod q) for 1 j k. Thus

T k,θ (x) q∈Qg(x) p 1 x 1/k p 1 ≡1(mod q) • • • p k-1 x 1/k p k-1 ≡1(mod q) p k x/p 1 •••p k-1 p k ≡1(mod q)
1.

Applying (3.1) to the inner sum over p k and noticing that ϕ(q) = q -1 q/2, it follows that

T k,θ (x) k q∈Qg(x) p 1 x 1/k p 1 ≡1(mod q) • • • p k-1 x 1/k p k-1 ≡1(mod q) x qp 1 • • • p k-1 log(x/p 1 • • • p k-1 ) • In view of the fact that x/p 1 • • • p k-1 x 1/k , we can derive that (3.5) T k,θ (x) k x log x q∈Qg(x) 1 q p x 1/k p≡1(mod q) 1 p k-1 .
Clearly, π(t; q, 1) = 0 for 1 t q and q x 1/(2k) for q ∈ Q g (x). Let δ k,θ :=

1 2 ( 1 k + 32 17 θ). It is easy to verify that (3.6) θ ∈ [1/(2k), 17/(32k)) ⇒ 1/(2k) < δ k,θ < 1/k and θ/δ k,θ < 17/32.
Thus a simple partial integration gives us

p x 1/k p≡1(mod q) 1 p = x 1/(2k) p x 1/k p≡1(mod q) 1 p = x 1/k
x 1/(2k) -dπ(t; q, 1) t = π(x 1/k ; q, 1)

x 1/k + x 1/k x 1/(2k)
π(t; q, 1)

t 2 dt x 1/k x δ k,θ π(t; q, 1) t 2 dt for q ∈ Q g (x)
. In view of the last inequality in (3.6), we can apply the lower bound in (3.1) to derive

p x 1/k p≡1(mod q) 1 p k x 1/k x δ k,θ dt qt log t k 1 q •
Inserting it into (3.5) and using (3.4) with A = 2, we find that

T k,θ (x) k x log x q∈Qg(x) 1 q k k x log x q∈P∩(Q,2Q] 1 q k + O 1 Q k-1 (log Q) 2 k x log x • 1 Q k-1 log Q k x 1-(k-1)θ (log x) 2 •
This completes the proof of Theorem 1.

Proof of Theorem 2

It is sufficient to prove that we have (4.1)

T θ (x) -T θ (x) = p x p θ P + (p-1)<x θ 1 π(x) log log x log x for x → ∞. For this, we write (4.2) T θ (x) -T θ (x) = p xδ(x) p θ P + (p-1)<x θ 1 + xδ(x)<p x p θ P + (p-1)<x θ 1 =: S 1 + S 2 ,
where δ(x) → 0 is a function to be chosen later.

By the Chebyshev upper bound, we have

(4.3) S 1 p xδ(x) 1 xδ(x) log(xδ(x)) •
In order to estimate S 2 , we write p -1 = mq with q = P + (p -1) and P + (m) q. Thus S 2 (xδ(x)) θ q<x θ q is prime p x p≡1(mod q) 1.

By the Brun-Titchmarsh inequality (2.1), we can derive (4.4) 2) and taking δ(x) = (log log x)/ log x, we obtain the required estimate (1.9).

S 2 4x (1 -θ) log x q∈P∩((xδ(x)) θ , x θ ]
Pomerance [START_REF] Pomerance | Popular values of Euler's function[END_REF] conjectured that for θ ∈ (0, 1) we have (4.5) π(x, x θ ) := p x P + (p-1) x θ 1 ∼ ρ(1/θ)π(x) as x → ∞. This conjecture is still open today. Granville [START_REF] Granville | Smooth numbers, in: computational number theory and beyond[END_REF] announced that (4.5) follows from the Elliott-Halberstam conjecture without proof. A such proof has been given by Wang [START_REF] Wang | Autour des plus grands facteurs premiers d'entiers consécutifs voisins d'un entier criblé[END_REF] very recently. Noticing that T θ (x) = π(x) -π(x, x θ ), for θ ∈ (0, 1) and x → ∞ we have

T 1,θ (x) = T θ (x) ∼ T θ (x) ∼ (1 -ρ(1/θ))π(x)
under the Elliott-Halberstam conjecture.

(1. 1 )

 1 T θ (x) := p x : P + (p -1) p θ and proved (see [9, Theorem 1]) (1.2) T θ (x) (1 -θ)π(x){1 + O θ (E(x))},

|

  log δ(x)| log x • Inserting (4.3)-(4.4) into (4.

  There exist two functions C 2 (θ) > C 1 (θ) > 0, defined on the interval (0, 17 32

	1 2 , Baker-Harman [1] for 1 2	θ 13 25 and Mikawa [10] for 13 25	θ 17 32 .
	Lemma 2.2.		
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