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ON VALUES TAKEN BY THE LARGEST PRIME FACTOR
OF SHIFTED PRIMES

JIE WU

Abstract. Denote by P the set of all prime numbers and by P (n) the largest
prime factor of positive integer n > 1 with the convention P (1) = 1. In this paper,
we prove that for each η ∈ ( 32

17 , 2.1426 . . . ), there is a constant c(η) > 1 such that
for every fixed non-zero integer a ∈ Z∗ the set

{p ∈ P : p = P (q − a) for some prime q with pη < q 6 c(η)pη}
has relative asymptotic density 1 in P. This improves a similar result due to
Banks & Shparlinski [2, Theorem1.1], which requires η ∈ ( 32

17 , 2.0606 . . . ) in place

of η ∈ ( 32
17 , 2.1426 . . . ).

1. Introduction

The largest prime factors of shifted primes appears in many well-known arithmetic
questions (such as the Fermat last theorem, the twin prime conjecture, RSA schemes
of cryptology, etc), and their distribution plays a key role. The study of this problem
has received much attention. Denote by P the set of all prime numbers and by P (n)
the largest prime factor of the positive integer n > 1 with the convention P (1) = 1.
For example, we are interested in the greatest value of θ for which there is a positive
proportion of primes p such that P (p − a) > pθ (see [7, 6, 1, 17, 14]). For given
θ ∈ (0, 1), we also considered the relative asymptotic density of such primes in P (see
[12, 3, 5]). Motived by these questions, Liu, Wu & Xi [11] studied the distribution
of primes in arithmetic progressions with friable indices, i.e., {a+mq}m friable (recall
that a positive integer m is friable if its all prime factors are small), and established
analogues of classical Siegel-Walfisz theorem, Bombieri-Vinogradov theorem and
Brun-Titchmarsh theorem.

In [2], Banks & Shparlinski studied the related problem of estimating the number
of primes p that occur as the largest prime factor of a shifted prime q−a when q ∈ P
lies in a certain interval determined by p. It is worthy to note that this question
has applications in theoretical computer science and has been considered by Vishnoi
[16] (in a different form).

For a ∈ Z∗, real numbers c > 1 and η > 0, define

Pa,c,η := {r ∈ P : r = P (q − a) for some prime q with rη < q 6 crη}
and

πa,c,η(x) := |{r 6 x : r ∈ Pa,c,η}|, π(x) := |{r 6 x : r ∈ P}|.
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Banks & Shparlinski [2, Theorem 1.1] proved that for every η ∈ (32
17
, 1 + 3

4

√
2), there

exists a constant c = c(η) > 1 such that the asymptotic formula

(1.1) πa,c,η(x) = π(x) +OA,a,c,η

( x

(log x)A

)
holds for each fixed non-zero integer a ∈ Z∗ and any constant A > 1. Moreover for
2 6 η < 1 + 3

4

√
2, this estimate holds for any constant c > 1.

The aim of this paper is to improve the result of Banks-Shparlinski by etending
the domain of η. Our result is as follows.

Theorem 1. Let η0 ≈ 2.1426 be the unique solution of the equation

(1.2) η − 1− 4η log(η − 1) = 0.

For each real number η ∈ (32
17
, η0), there exists a constant c = c(η) > 1 such that

the asymptotic formula (1.1) holds for every fixed non-zero integer a ∈ Z∗ and any
A > 1, where the implied constant depends only on A, a, c and η. Moreover for
2 6 η < η0, this asymptotic formula holds for any constant c > 1.

For comparaison, we have

32
17
≈ 1.8823, 1 + 3

4

√
2 ≈ 2.0606 and η0 ≈ 2.1426.

We shall prove Theorem 1 by refining Banks-Shparlinski’s argument. Our key point
is Proposition 2.1 below, which gives a better upper bound for the counting function
(see (2.4) below)

Q2(r) :=
∑

y<q6cy
q≡a(mod r), P (q−a)>r

1

than [2, Formula (9) or Page 143, line 2] of Banks & Shparlinski, who obtained

8η(η− 2) in place of 4η log(η−1)
η−1 . In view of the inequality log(1 + t) < t for t > 0, we

see that

η > 2 ⇒ log(η − 1)

η − 1
<
η − 2

η − 1
< η − 2.

Therefore our bound must be better. This improvement comes from the following
two observations:

(i) In many arithmetic applications, the linear sieve is more powerful than the
sieve of dimension 2;

(ii) With the help of the Chen-Iwaniec switching principle [4, 8] and our theorem
of Bombieri-Vinogradov type (see Proposition 3.2 below), we can sieve the sequence
of convolution defined as in (4.1) below by the linear sieve, instead of fixing k and
sieving {n(knr + a)}n by the sieve of dimension 2 as in [2].

2. Banks-Shparlinski’s argument and sketch of the proof of
Theorem 1

In this section, we shall present the sketch of the proof of Theorem 1 by simplifying
the Banks-Shparlinski argument [2]. In view of the Banks-Shparlinski result (1.1),
it suffices to prove Theorem 1 for η ∈ (2, η0).
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The letters p, q, r and ` are always used to denote prime numbers, and d,m, and
n always denote positive integers. In what follows, let a and A be as in Theorem 1
and η ∈ (2, η0). Let δ be a sufficiently small positive constant and let c > 1 be a
parameter to be chosen later. Let x0(A, a, η, δ, c) be a large constant depending on
A, a, η, δ, c at most. For x > x0(A, a, η, δ, c) and r ∈ (1

2
x, x], put y := rη.

As usual, for (a, d) = 1 define

π(x; d, a) :=
∑

p6x, p≡a(mod d)

1.

The Bombieri-Vinogradov theorem plays an important role in the Banks-Shparplinski
argument. This theorem can be stated as follows: For any A > 0, there exists a
constant B = B(A) > 0 such that

(2.1)
∑

d6x1/2(log x)−B

max
z6x

max
(a,d)=1

∣∣∣∣π(z; d, a)− π(z)

ϕ(d)

∣∣∣∣�A
x

(log x)A

for all x > 2, where ϕ(n) denotes the Euler totient function and the implied constant
depends on A only.

For z 6 x1/2(log x)−B, put

D(x; z) :=

{
d 6 z :

∣∣∣∣π(x; d, a)− π(x)

ϕ(d)

∣∣∣∣ > δ
π(x)

ϕ(d)

}
.

By using (2.1) with A + 1 in place of A, we deduce that, for every d ∈ D(x; z),
remove

δ
π(x)

z
|D(x; z)| �A

x

(log x)A+1
,

which gives immediately

(2.2) |D(x; z)| �A,δ
z

(log x)A
·

Define

R(x) :=

{
1
2
x < r 6 x : π(y; r, a) 6 (1 + δ)

π(y)

ϕ(r)
and π(cy; r, a) > (c− δ)π(y)

ϕ(r)

}
.

Since η > 2, we have r = y1/η 6 y1/2(log y)−B. Thus the last estimation in (2.2)
with (x, z) = (y, x) implies that

(2.3) |R(x)| = π(x)− π(1
2
x) +OA,a,η,δ,c

( x

(log x)A

)
(x > 2).

For every prime r ∈ R(x), define

(2.4) Q1(r) :=
∑

y<q6cy
P (q−a)=r

1 and Q2(r) :=
∑

y<q6cy
q≡a(mod r), P (q−a)>r

1,

Then the definition of R(x) allows us to write

(2.5)

Q1(r) = π(cy; r, a)− π(y; r, a)− Q2(r)

> (c− 1− 2δ)
π(y)

ϕ(r)
− Q2(r).
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The following result gives us the required upper bound for Q2(r), which constitutes
the key to our improvement.

Proposition 2.1. Under the previous notation, for r ∈ P ∩ [1
2
x, x] we have

(2.6) Q2(r) 6 (c− 1 + 2δ)
4η log(η − 1)

η − 1
· π(y)

ϕ(r)

{
1 +O

(
1

3
√

log r

)}
for x > x0(A, a, η, δ, c).

In Section 4, we shall prove this proposition. Now we suppose this proposition
and complete the proof of Theorem 1.

Inserting (2.6) into (2.5), it follows that

Q1(r) >
c− 1− 2δ

η − 1

(
η − 1− 4η log(η − 1) · c− 1 + 2δ

c− 1− 2δ

)
π(y)

ϕ(r)
·

Taking c = 1 + 2
√
δ, we can find that

Q1(r) > 2

√
δ − δ
η − 1

(
η − 1− 4η log(η − 1) · 1 +

√
δ

1−
√
δ

)
π(y)

ϕ(r)

=
{
G(η) +O

(√
δ
)}

2
√
δ

1−
√
δ

η − 1
· π(y)

ϕ(r)
,

where

(2.7) G(η) := η − 1− 4η log(η − 1).

It is easy to see that G(η) is decreasing on [2,∞) and G(2) = 1. Therefore there is
a unique real number η0 ∈ (2,∞) such that G(η0) = 0 and for η ∈ [2, η0) we have
the inequality

(2.8) Q1(r)�A,a,η,δ
π(y)

ϕ(r)

for x > x0(A, a, η, δ, c). From (2.8), we deduce that

R(x) ⊆ Pa,c,η ∩ (1
2
x, x].

Combining this with (2.3) lead to

πa,c,η(x)− πa,c,η(12x) = π(x)− π(1
2
x) +OA,a,η,δ,c

( x

(log x)A

)
.

This implies the required asymptotic formula (1.1). The proof of Theorem 1 is
completed assuming Proposition 2.1.

3. Linear sieve and mean value theorem

The aim of this section is devoted to present two tools and a preliminary lemma.
They will be needed in the proof of Proposition 2.1 above.
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3.1. The Rosser-Iwaniec linear sieve. The first one is the Rosser-Iwaniec linear
sieve [9, 10]. As usual, denote by µ(n) the Möbius function.

Lemma 3.1. Let D > 2. There are two sequences {λ±d }d>1, vanishing for d > D or
µ(d) = 0, verifying |λ±d | 6 1, such that

(3.1)
∑
d|n

λ−d 6
∑
d|n

µ(d) 6
∑
d|n

λ+d (n > 1)

and ∑
d|P (z)

λ+d
w(d)

d
6
∏
p6z
p∈P

(
1− w(p)

p

){
F (s) +O

(
e
√
L−s

3
√

logD

)}
(3.2)

∑
d|P (z)

λ−d
w(d)

d
>
∏
p6z
p∈P

(
1− w(p)

p

){
f(s) +O

(
e
√
L−s

3
√

logD

)}
(3.3)

for any z ∈ [2, D], s = (logD)/ log z, set of prime numbers P and multiplicative
function w satisfying

0 < w(p) < p (p ∈ P),(3.4) ∏
u<p6v, p∈P

(
1− w(p)

p

)−1
6

log v

log u

(
1 +

L

log u

)
(2 6 u 6 v),(3.5)

where P (z) :=
∏

p6z, p∈P p and the implied O-constants are absolute. Here F, f are
defined by the continuous solutions to the system{

(sF (s))′ = f(s− 1) (s > 2)

(sf(s))′ = F (s− 1) (s > 2)

with the initial condition {
sF (s) = 2eγ (1 6 s 6 2)

sf(s) = 0 (0 < s 6 2)

where γ is the Euler constant.

3.2. A mean value theorem of Bombieri-Vinogradov type.
In order to control the error term coming from the linear sieve in our case, we

need a mean value theorem of Bombieri-Vinogradov type. For this, we consider
non-negative arithmetic functions κ, which satisfy the properties (A ), (B) and (C )
as introduced by Motohashi [13]:

(A ) There is a positive constant C such that κ(n) � τ(n)C , where τ(n) is the
classical divisor function.

(C ) If the conductor of a non-trivial Dirichlet character χ is O((log x)D) for some
D > 0, then ∑

n6x

κ(n)χ(n)� x(log x)−3D.
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(C ) For any A > 0, there exists a constant B = B(A) > 0 such that∑
d6x1/2(log x)−B

max
z6x

max
(a,d)=1

∣∣∣∣ ∑
n6z

n≡a(mod d)

κ(n)− 1

ϕ(d)

∑
q6z

(d,n)=1

κ(n)

∣∣∣∣� x

(log x)A

for all x > 3.

In [13, Theorem 1], Motohashi proved the following result: If f and g have the
properties (A ), (B) and (C ), then so does the multiplicative convolution f ∗ g.

The following proposition will play a key role in the proof of Proposition 2.1 above.
Evidently it is of independent interest and should have other applications.

Proposition 3.2. Let κ1(m) and κ2(m) be the characteristic functions of the odd
integers and of even integers, respectively. Then for any A > 0, there is a constant
B = B(A) > 0 such that the inequality∑

d6x1/2(log x)−B

2-d

max
z6x

max
(a,d)=1

∣∣∣∣ ∑
mp6z

mp≡a(mod d)

κi(m)− 1

ϕ(d)

∑
mp6z

(d,mp)=1

κi(m)

∣∣∣∣�A
x

(log x)A

holds for all x > 3.

Proof. In view of the Bombieri-Vinogradov theorem (2.1), the characteristic function
of the primes has the properties (A ), (B) and (C ). According to Motohashi’s result
mentioned above, it is sufficient to verify that κ1 and κ2 satisfy (A ), (B) and (C ).

The property (A ) is obvious for these two functions.
Since n 7→ χ(n) is completely multiplicative, we have∑

n6x

κ2(n)χ(n) = χ(2)
∑
m6x/2

χ(m)� (log x)D � x(log x)−3D.

This shows that κ2 has the property (B). Defining 1(n) := 1 for n > 1 and noticing
that κ1 = 1− κ2, the function κ1 also has the property (B).

It remains to prove that κi satisfies the property (C ). For 2 - d, we have∑
n6z

(n,d)=1

κ2(n) =
∑
m6z/2
(m,d)=1

1 =
∑
m6z/2

∑
d′|(m,d)

µ(d′)

=
∑
d′|d

µ(d′)
∑

m6z/(2d′)

1 =
ϕ(d)

2d
z +O(τ(d)).

Thus ∑
n6z

n≡a(mod d)

κ2(n)− 1

ϕ(d)

∑
n6x

(n,d)=1

κ2(n) =
∑
m6z/2

m≡2a(mod d)

1− z

2d
+O

(
τ(d)

ϕ(d)

)
� 1,

where 2 is the inverse of 2 modulo d. From this we deduce immediately∑
d6x1/2(log x)−B

2-d

max
z6x

max
(a,d)=1

∣∣∣∣ ∑
n6z

n≡a(mod d)

κ2(n)− 1

ϕ(d)

∑
n6z

(n,d)=1

κ2(n)

∣∣∣∣� x1/2

(log x)B
·
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This proves that the function κ2(n) has the property (C ). A similar argument shows
that the function 1 has the property (C ). Since κ1(n) = 1(n)−κ2(n) for all integers
n > 1, the sequence {κ1(n)}n>1 satisfies the property (C ). �

3.3. A preliminary lemma.

Lemma 3.3. For each positive integer n > 1, define

(3.6) ψ(n) :=
∏
2<p|n

p− 1

p− 2
·

Then we have ∑
n6x

ψ(n) = Ξ−12 x+O
( x

log x

)
for x > 2, where

(3.7) Ξ2 :=
∏
p>2

(
1− 1

(p− 1)2

)
.

Proof. Since the function n 7→ ψ(n) is strongly multiplicative such that

ψ(2ν) = 1 and ψ(pν) =
p− 1

p− 2
(p odd prime),

for <e s > 1 we can write∑
n>1

ψ(n)

ns
=
∏
p

(
1 +

∑
ν>1

ψ(pν)

pνs

)
=

1

1− 2−s

∏
p>2

(
1 +

p− 1

p− 2

p−s

1− p−s

)
= ζ(s)

∏
p>2

(
1 +

1

(p− 2)ps

)
,

where ζ(s) :=
∏

p(1−p−s)−1 is the Riemann ζ-function. Using [15, Theorem II.5.3],
we obtain the required result. �

4. Proof of Proposition 2.1

As indicated in the introduction, our method is different from [2].
If a prime number q is counted in Q2(r), then we can write q − a = k`r, where `

is the largest prime factor of q − a. Since ` > r ∈ (1
2
x, x] and y < q 6 cy, we have

k 6 (cy − a)/(`r) 6 2crη−2. On the other hand, noticing that `, r and q = k`r + a
are odd, we must have 2 - (a+ k).

For simplicity of notation, we put

c1 := 1− δ, c2 := c+ δ.

By the Chen-Iwaniec switching principle [4, 8], we see that Q2(r) does not exceed
the number of primes in the sequence

(4.1)
{
k`r + a : k 6 2crη−2, 2 - (a+ k), c1y/(kr) < ` 6 c2y/(kr)

}
.
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We shall sieve this sequence by the set of primes P2r := {p ∈ P : p - 2r}. Define
P2r(z) :=

∏
p<z, p-2r p with z := (y/r)1/4(log(y/r))−B(3) < r and denote by µ(n) the

Möbius function. The inversion formula of Möbius allows us to write that

Q2(r) 6
∑

k62crη−2, 2-(a+k)

∑
c1y/(kr)<`6c2y/(kr)

k`r+a is prime

1

6
∑

k62crη−2, 2-(a+k)

∑
c1y/(kr)<`6c2y/(kr)

(k`r+a,P2r(z))=1

1

=
∑

k62crη−2, 2-(a+k)

∑
c1y/(kr)<`6c2y/(kr)

∑
d|(k`r+a,P2r(z))

µ(d).

By using Lemma 3.1, it follows that

Q2(r) 6
∑

k62crη−2, 2-(a+k)

∑
c1y/(kr)<`6c2y/(kr)

∑
d|(k`r+a,P2r(z))

λ+d

=
∑

d|P2r(z)

λ+d
∑

k62crη−2, 2-(a+k)

∑
c1y/(kr)<`6c2y/(kr)

k`r≡−a(mod d)

1

=
∑

d|P2r(z)

λ+d
∑

k62crη−2, 2-(a+k)

∑
c1y/(kr)<`6c2y/(kr)

k`≡−ar(mod d)

1,

where r is the inverse of r module d, i.e., rr ≡ 1 (mod d).
Introducing the notation

E(t; d, b) :=
∑

k62crη−2, 2-(a+k)

∑
`6t/(kr)

k`≡b(mod d)

1− 1

ϕ(d)

∑
k62crη−2, 2-(a+k)

∑
`6t/(kr)

(k`,d)=1

1,

we write ∑
k62crη−2, 2-(a+k)

∑
c1y/(kr)<`6c2y/(kr)

k`≡−ar(mod d)

1 =
1

ϕ(d)

∑
k62crη−2, 2-(a+k)

∑
c1y/(kr)<`6c2y/(kr)

(k`,d)=1

1

+ E(c2y; d,−ar)− E(c1y; d,−ar).

Inserting into the preceding formula, it follows that

(4.2) Q2(r) 6M(r) + E(r),

where

M(r) :=
∑

d|P2r(z)

λ+d
ϕ(d)

∑
k62crη−2, 2-(a+k)

∑
c1y/(kr)<`6c2y/(kr)

(k`,d)=1

1,

E(r) :=
∑

d|P2r(z)

λ+d (E(c2y, d,−ar)− E(c1y, d,−ar)).
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Firstly, by inversion of summations and Lemma 3.1 with

w(d) = d/ϕ(d), D := z2, P = {p ∈ P : p - 2k`r},

it follows that

M(r) =
∑

k62crη−2, 2-(a+k)

∑
c1y/(kr)<`6c2y/(kr)

∑
d|P2k`r(z)

λ+d
ϕ(d)

6

{
F (2) +O

(
1

3
√

log r

)} ∑
k62crη−2

2-(a+k)

∑
c1y/(kr)<`6c2y/(kr)

∏
p6z
p-2k`r

(
1− 1

p− 1

)
.

On the other hand, the Mertens formula allows us to deduce that∏
p6z, p-2m

(
1− 1

p− 1

)
=
∏

2<p6z

(
1− 1

p− 1

) ∏
2<p|m

p− 1

p− 2

=
∏

2<p6z

(
1− 1

(p− 1)2

) ∏
2<p|m

p− 1

p− 2

∏
2<p6z

(
1− 1

p

)

=
2Ξ2ψ(m)e−γ

log z

{
1 +O

(
1

log z

)}
,

where Ξ2 and ψ(m) are defined as in (3.7) and (3.6), respectively. Inserting it into
the preceding relation and using the fact that F (2) = eγ, we find

M(r) 6

{
1 +O

(
1

3
√

log r

)}
2Ξ2

log z

∑
k62crη−2

2-(a+k)

∑
c1y/(kr)<`6c2y/(kr)

ψ(k`r).

Noticing that ` > r > 1
2
x and that ` and r are primes, we have

ψ(k`r) 6 ψ(k)ψ(`)ψ(r) = {1 +O(x−1)}ψ(k).

Thus

M(r) 6

{
1 +O

(
1

3
√

log r

)}
2Ξ2

log z

∑
k62crη−2

2-(a+k)

ψ(k)
∑

c1y/(kr)<`6c2y/(kr)

1

=

{
1 +O

(
1

3
√

log r

)}
2Ξ2

log z

∑
k62crη−2

2-(a+k)

ψ(k)
(c2 − c1)y
kr log(y/kr)

=

{
1 +O

(
1

3
√

log r

)}
2Ξ2(c2 − c1)y
r(log z) log(y/r)

S(r),

where

S(r) :=
∑

k62crη−2

2-(a+k)

ψ(k)

k(1− (log k)/ log(y/r))
·
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With the help of Lemma 3.3, a simple partial integration leads to

S(r) =
{

1 +O
( 1

log r

)}1

2

∑
k6crη−2

ψ(k)

k(1− (log k)/ log(y/r))

=
{

1 +O
( 1

log r

)} 1

2Ξ2

∫ crη−2

1

dt

t(1− (log t)/ log(y/r))

=
{

1 +O
( 1

log r

)} log(y/r)

2Ξ2

∫ (η−2)/(η−1)

0

dv

1− v

=
{

1 +O
( 1

log r

)} log(η − 1)

2Ξ2

log(y/r),

where Ξ2 is defined as in (3.7). Combining it with the preceding formula, it follows
that

(4.3)

M(r) 6

{
1 +O

(
1

3
√

log r

)}
(c2 − c1)y
r log z

log(η − 1)

6

{
1 +O

(
1

3
√

log r

)}
4(c− 1 + 2δ)η log(η − 1)

η − 1

π(y)

ϕ(r)
·

With the help of Proposition 3.2, it is easy to see that

(4.4) E(r)� y

r(log y)A
·

Inserting (4.3) and (4.4) into (4.2), we obtain the required inequality (2.6).
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