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Denote by P the set of all prime numbers and by P (n) the largest prime factor of positive integer n 1 with the convention P (1) = 1. In this paper, we prove that for each η ∈ ( 32 17 , 2.1426 . . . ), there is a constant c(η) > 1 such that for every fixed non-zero integer a ∈ Z * the set {p ∈ P : p = P (q -a) for some prime q with p η < q c(η)p η } has relative asymptotic density 1 in P. This improves a similar result due to Banks & Shparlinski [2, Theorem1.1], which requires η ∈ ( 32 17 , 2.0606 . . . ) in place of η ∈ ( 32 17 , 2.1426 . . . ).

Introduction

The largest prime factors of shifted primes appears in many well-known arithmetic questions (such as the Fermat last theorem, the twin prime conjecture, RSA schemes of cryptology, etc), and their distribution plays a key role. The study of this problem has received much attention. Denote by P the set of all prime numbers and by P (n) the largest prime factor of the positive integer n 1 with the convention P (1) = 1. For example, we are interested in the greatest value of θ for which there is a positive proportion of primes p such that P (p -a) p θ (see [START_REF] Goldfeld | On the number of primes p for which p + a has a large prime factor[END_REF][START_REF] Fouvry | Théorème de Brun-Titichmarsh; application au théorème de Fermat[END_REF][START_REF] Baker | The Brun-Titchmarsh theorem on average[END_REF][START_REF] Zhang | Bounded gaps between primes[END_REF][START_REF] Rivest | Are 'Strong' Prime Needed for RSA ? Cryptology ePrint Archive[END_REF]). For given θ ∈ (0, 1), we also considered the relative asymptotic density of such primes in P (see [START_REF] Luca | On shifted primes with large prime factors and their products[END_REF][START_REF] Chen | On the largest prime factor of shifted primes[END_REF][START_REF] Feng | On the density of shifted primes with large prime factors[END_REF]). Motived by these questions, Liu, Wu & Xi [START_REF] Liu | Primes in arithmetic progressions with friable indices[END_REF] studied the distribution of primes in arithmetic progressions with friable indices, i.e., {a + mq} m friable (recall that a positive integer m is friable if its all prime factors are small), and established analogues of classical Siegel-Walfisz theorem, Bombieri-Vinogradov theorem and Brun-Titchmarsh theorem.

In [START_REF] Banks | On values taken by the largest prime factor of shifted primes[END_REF], Banks & Shparlinski studied the related problem of estimating the number of primes p that occur as the largest prime factor of a shifted prime q -a when q ∈ P lies in a certain interval determined by p. It is worthy to note that this question has applications in theoretical computer science and has been considered by Vishnoi [START_REF] Vishnoi | Theoretical aspects of randomization in computation[END_REF] (in a different form).

For a ∈ Z * , real numbers c > 1 and η > 0, define P a,c,η := {r ∈ P : r = P (q -a) for some prime q with r η < q cr η } and π a,c,η (x) := |{r x : r ∈ P a,c,η }|, π(x) := |{r x : r ∈ P}|.

Banks & Shparlinski [2, Theorem 1.1] proved that for every η ∈ ( 32 17 , 1 + 3 4 √ 2), there exists a constant c = c(η) > 1 such that the asymptotic formula

(1.1) π a,c,η (x) = π(x) + O A,a,c,η x (log x) A
holds for each fixed non-zero integer a ∈ Z * and any constant A > 1. Moreover for 2 η < 1 + 3 4 √ 2, this estimate holds for any constant c > 1. The aim of this paper is to improve the result of Banks-Shparlinski by etending the domain of η. Our result is as follows.

Theorem 1. Let η 0 ≈ 2.1426 be the unique solution of the equation

(1.2) η -1 -4η log(η -1) = 0.
For each real number η ∈ ( 32 17 , η 0 ), there exists a constant c = c(η) > 1 such that the asymptotic formula (1.1) holds for every fixed non-zero integer a ∈ Z * and any A > 1, where the implied constant depends only on A, a, c and η. Moreover for 2 η < η 0 , this asymptotic formula holds for any constant c > 1.

For comparaison, we have y<q cy q≡a(mod r), P (q-a)>r 1 than [START_REF] Banks | On values taken by the largest prime factor of shifted primes[END_REF]Formula (9) or Page 143, line 2] of Banks & Shparlinski, who obtained 8η(η -2) in place of 4η log(η-1) η-1

. In view of the inequality log(1 + t) < t for t > 0, we see that

η > 2 ⇒ log(η -1) η -1 < η -2 η -1 < η -2.
Therefore our bound must be better. This improvement comes from the following two observations: (i) In many arithmetic applications, the linear sieve is more powerful than the sieve of dimension 2;

(ii) With the help of the Chen-Iwaniec switching principle [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes[END_REF][START_REF] Iwaniec | Primes of the type φ(x, y) + A where φ is a quadratic form[END_REF] and our theorem of Bombieri-Vinogradov type (see Proposition 3.2 below), we can sieve the sequence of convolution defined as in (4.1) below by the linear sieve, instead of fixing k and sieving {n(knr + a)} n by the sieve of dimension 2 as in [START_REF] Banks | On values taken by the largest prime factor of shifted primes[END_REF].

2. Banks-Shparlinski's argument and sketch of the proof of Theorem 1

In this section, we shall present the sketch of the proof of Theorem 1 by simplifying the Banks-Shparlinski argument [START_REF] Banks | On values taken by the largest prime factor of shifted primes[END_REF]. In view of the Banks-Shparlinski result (1.1), it suffices to prove Theorem 1 for η ∈ (2, η 0 ). The letters p, q, r and are always used to denote prime numbers, and d, m, and n always denote positive integers. In what follows, let a and A be as in Theorem 1 and η ∈ (2, η 0 ). Let δ be a sufficiently small positive constant and let c > 1 be a parameter to be chosen later. Let x 0 (A, a, η, δ, c) be a large constant depending on A, a, η, δ, c at most. For x x 0 (A, a, η, δ, c) and r ∈ ( The Bombieri-Vinogradov theorem plays an important role in the Banks-Shparplinski argument. This theorem can be stated as follows: For any A > 0, there exists a constant B = B(A) > 0 such that (2.1)

d x 1/2 (log x) -B max z x max (a,d)=1 π(z; d, a) - π(z) ϕ(d) A x (log x) A
for all x 2, where ϕ(n) denotes the Euler totient function and the implied constant depends on A only.

For z x 1/2 (log x) -B , put D(x; z) := d z : π(x; d, a) - π(x) ϕ(d) δ π(x) ϕ(d) .
By using (2.1) with A + 1 in place of A, we deduce that, for every d ∈ D(x; z), remove

δ π(x) z |D(x; z)| A x (log x) A+1 , which gives immediately (2.2) |D(x; z)| A,δ z (log x) A • Define R(x) := 1 2 x < r x : π(y; r, a) (1 + δ) π(y) ϕ(r) and π(cy; r, a) (c -δ) π(y) ϕ(r) . Since η > 2, we have r = y 1/η y 1/2 (log y) -B . Thus the last estimation in (2.2) with (x, z) = (y, x) implies that (2.3) |R(x)| = π(x) -π( 1 2 x) + O A,a,η,δ,c x (log x) A (x 2).
For every prime r ∈ R(x), define 

(2.4) Q 1 (r) := y<q cy P (q-a)=r
Q 1 (r) = π(cy; r, a) -π(y; r, a) -Q 2 (r) (c -1 -2δ) π(y) ϕ(r) -Q 2 (r).
The following result gives us the required upper bound for Q 2 (r), which constitutes the key to our improvement. Proposition 2.1. Under the previous notation, for r ∈ P ∩ [ 1 2 x, x] we have

(2.6) Q 2 (r) (c -1 + 2δ) 4η log(η -1) η -1 • π(y) ϕ(r) 1 + O 1 3 √ log r for x x 0 (A, a, η, δ, c).
In Section 4, we shall prove this proposition. Now we suppose this proposition and complete the proof of Theorem 1.

Inserting (2.6) into (2.5), it follows that

Q 1 (r) c -1 -2δ η -1 η -1 -4η log(η -1) • c -1 + 2δ c -1 -2δ π(y) ϕ(r) • Taking c = 1 + 2 √ δ, we can find that Q 1 (r) 2 √ δ -δ η -1 η -1 -4η log(η -1) • 1 + √ δ 1 - √ δ π(y) ϕ(r) = G(η) + O √ δ 2 √ δ 1 - √ δ η -1 • π(y) ϕ(r) ,
where

(2.7) G(η) := η -1 -4η log(η -1).
It is easy to see that G(η) is decreasing on [2, ∞) and G(2) = 1. Therefore there is a unique real number η 0 ∈ (2, ∞) such that G(η 0 ) = 0 and for η ∈ [2, η 0 ) we have the inequality

(2.8) Q 1 (r) A,a,η,δ π(y) ϕ(r)
for x x 0 (A, a, η, δ, c). From (2.8), we deduce that

R(x) ⊆ P a,c,η ∩ ( 1 2 x, x]. Combining this with (2.3) lead to π a,c,η (x) -π a,c,η ( 1 2 x) = π(x) -π( 1 2 x) + O A,a,η,δ,c x (log x) A .
This implies the required asymptotic formula (1.1). The proof of Theorem 1 is completed assuming Proposition 2.1.

Linear sieve and mean value theorem

The aim of this section is devoted to present two tools and a preliminary lemma. They will be needed in the proof of Proposition 2.1 above.

3.1.

The Rosser-Iwaniec linear sieve. The first one is the Rosser-Iwaniec linear sieve [START_REF] Iwaniec | Rosser's sieve[END_REF][START_REF] Iwaniec | A new form of the error term in the linear sieve[END_REF]. As usual, denote by µ(n) the Möbius function. and

d|P (z) λ + d w(d) d p z p∈P 1 - w(p) p F (s) + O e √ L-s 3 √ log D (3.2) d|P (z) λ - d w(d) d p z p∈P 1 - w(p) p f (s) + O e √ L-s 3 √ log D (3.3)
for any z ∈ [2, D], s = (log D)/ log z, set of prime numbers P and multiplicative function w satisfying

0 < w(p) < p (p ∈ P), (3.4) u<p v, p∈P 1 - w(p) p -1 log v log u 1 + L log u (2 u v), (3.5) 
where P (z) := p z, p∈P p and the implied O-constants are absolute. Here F, f are defined by the continuous solutions to the system

(sF (s)) = f (s -1) (s > 2) (sf (s)) = F (s -1) (s > 2)
with the initial condition

sF (s) = 2e γ (1 s 2) sf (s) = 0 (0 < s 2)
where γ is the Euler constant.

A mean value theorem of Bombieri-Vinogradov type.

In order to control the error term coming from the linear sieve in our case, we need a mean value theorem of Bombieri-Vinogradov type. For this, we consider non-negative arithmetic functions κ, which satisfy the properties (A ), (B) and (C ) as introduced by Motohashi [

13]:

(A ) There is a positive constant C such that κ(n) τ (n) C , where τ (n) is the classical divisor function. (C ) If the conductor of a non-trivial Dirichlet character χ is O((log x) D ) for some D > 0, then

n x κ(n)χ(n) x(log x) -3D .
(C ) For any A > 0, there exists a constant B = B(A) > 0 such that

d x 1/2 (log x) -B max z x max (a,d)=1 n z n≡a(mod d) κ(n) - 1 ϕ(d) q z (d,n)=1 κ(n) x (log x) A
for all x 3. In [13, Theorem 1], Motohashi proved the following result: If f and g have the properties (A ), (B) and (C ), then so does the multiplicative convolution f * g.

The following proposition will play a key role in the proof of Proposition 2.1 above. Evidently it is of independent interest and should have other applications. Proposition 3.2. Let κ 1 (m) and κ 2 (m) be the characteristic functions of the odd integers and of even integers, respectively. Then for any A > 0, there is a constant B = B(A) > 0 such that the inequality

d x 1/2 (log x) -B 2 d max z x max (a,d)=1 mp z mp≡a(mod d) κ i (m) - 1 ϕ(d) mp z (d,mp)=1 κ i (m) A x (log x) A holds for all x 3.
Proof. In view of the Bombieri-Vinogradov theorem (2.1), the characteristic function of the primes has the properties (A ), (B) and (C ). According to Motohashi's result mentioned above, it is sufficient to verify that κ 1 and κ 2 satisfy (A ), (B) and (C ).

The property (A ) is obvious for these two functions.

Since n → χ(n) is completely multiplicative, we have

n x κ 2 (n)χ(n) = χ(2) m x/2 χ(m) (log x) D x(log x) -3D .
This shows that κ 2 has the property (B). Defining 1(n) := 1 for n 1 and noticing that κ 1 = 1 -κ 2 , the function κ 1 also has the property (B). It remains to prove that κ i satisfies the property (C ). For 2 d, we have

n z (n,d)=1 κ 2 (n) = m z/2 (m,d)=1 1 = m z/2 d |(m,d) µ(d ) = d |d µ(d ) m z/(2d ) 1 = ϕ(d) 2d z + O(τ (d)).
Thus

n z n≡a(mod d) κ 2 (n) - 1 ϕ(d) n x (n,d)=1 κ 2 (n) = m z/2 m≡2a(mod d) 1 - z 2d + O τ (d) ϕ(d) 1,
where 2 is the inverse of 2 modulo d. From this we deduce immediately

d x 1/2 (log x) -B 2 d max z x max (a,d)=1 n z n≡a(mod d) κ 2 (n) - 1 ϕ(d) n z (n,d)=1 κ 2 (n) x 1/2 (log x) B •
This proves that the function κ 2 (n) has the property (C ). A similar argument shows that the function 1 has the property (C ). Since κ 1 (n) = 1(n) -κ 2 (n) for all integers n 1, the sequence {κ 1 (n)} n 1 satisfies the property (C ).

3.3.

A preliminary lemma. Lemma 3.3. For each positive integer n 1, define

(3.6) ψ(n) := 2<p|n p -1 p -2 •
Then we have

n x ψ(n) = Ξ -1 2 x + O x log x for x 2, where (3.7) Ξ 2 := p>2 1 - 1 (p -1) 2 . Proof. Since the function n → ψ(n) is strongly multiplicative such that ψ(2 ν ) = 1 and ψ(p ν ) = p -1 p -2 (p odd prime),
for e s > 1 we can write

n 1 ψ(n) n s = p 1 + ν 1 ψ(p ν ) p νs = 1 1 -2 -s p>2 1 + p -1 p -2 p -s 1 -p -s = ζ(s) p>2 1 + 1 (p -2)p s , where ζ(s) := p (1 -p -s ) -1 is the Riemann ζ-function. Using [15, Theorem II.5.3],
we obtain the required result.

Proof of Proposition 2.1

As indicated in the introduction, our method is different from [START_REF] Banks | On values taken by the largest prime factor of shifted primes[END_REF]. If a prime number q is counted in Q 2 (r), then we can write q -a = k r, where is the largest prime factor of q -a. Since > r ∈ ( 1 2 x, x] and y < q cy, we have k (cy -a)/( r) 2cr η-2 . On the other hand, noticing that , r and q = k r + a are odd, we must have 2 (a + k).

For simplicity of notation, we put

c 1 := 1 -δ, c 2 := c + δ.
By the Chen-Iwaniec switching principle [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes[END_REF][START_REF] Iwaniec | Primes of the type φ(x, y) + A where φ is a quadratic form[END_REF], we see that Q 2 (r) does not exceed the number of primes in the sequence µ(d).

By using Lemma 3.1, it follows that

Q 2 (r)
k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) d|(k r+a,P 2r (z))

λ + d = d|P 2r (z) λ + d k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) k r≡-a(mod d) 1 = d|P 2r (z) λ + d k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) k ≡-ar(mod d) 1,
where r is the inverse of r module d, i.e., rr ≡ 1 (mod d).

Introducing the notation

E(t; d, b) := k 2cr η-2 , 2 (a+k) t/(kr) k ≡b(mod d) 1 - 1 ϕ(d) k 2cr η-2 , 2 (a+k) t/(kr) (k ,d)=1 1, we write k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) k ≡-ar(mod d) 1 = 1 ϕ(d) k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) (k ,d)=1 1 + E(c 2 y; d, -ar) -E(c 1 y; d, -ar).
Inserting into the preceding formula, it follows that On the other hand, the Mertens formula allows us to deduce that Noticing that > r > 1 2 x and that and r are primes, we have ψ(k r) ψ(k)ψ( )ψ(r) = {1 + O(x -1 )}ψ(k). 

p z, p 2m 1 - 1 p -1 = 2<p z 1 - 1 p -1 2<p|m p -1 p -2 = 2<p z 1 - 1 (p -1) 2 2<p|m p -1 p -2 2<p z 1 - 1 p = 2Ξ 2 ψ(m)e -γ log z 1 + O 1 log z ,

1 2 x

 2 , x], put y := r η . As usual, for (a, d) = 1 define π(x; d, a) := p x, p≡a(mod d) 1.

1 and Q 2

 12 (r) := y<q cy q≡a(mod r), P (q-a)>r1,Then the definition of R(x) allows us to write(2.5) 

Lemma 3 . 1 .

 31 Let D 2. There are two sequences {λ ± d } d 1 , vanishing for d > D or µ(d) = 0, verifying |λ ± d | 1, such that (

(4. 1 )r+a is prime 1 k 1 =k

 111 k r + a : k 2cr η-2 , 2 (a + k), c 1 y/(kr) < c 2 y/(kr) .We shall sieve this sequence by the set of primes P 2r := {p ∈ P : p 2r}. Define P 2r (z) := p<z, p 2r p with z := (y/r) 1/4 (log(y/r)) -B(3) < r and denote by µ(n) the Möbius function. The inversion formula of Möbius allows us to write thatQ 2 (r) k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr)k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) (k r+a,P 2r (z))=1 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) d|(k r+a,P 2r (z))

(4. 2 )k

 2 Q 2 (r) M(r) + E(r), where M(r) := d|P 2r (z) 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) (k ,d)=1 1, E(r) := d|P 2r (z) λ + d (E(c 2 y, d, -ar) -E(c 1 y, d, -ar)).

Firstly, by inversion

  of summations and Lemma 3.1 with w(d) = d/ϕ(d), D := z 2 , P = {p ∈ P : p 2k r}, it follows that M(r) = k 2cr η-2 , 2 (a+k) c 1 y/(kr)< c 2 y/(kr) d|P 2k r (z)

where Ξ 2 c 1

 21 and ψ(m) are defined as in (3.7) and(3.6), respectively. Inserting it into the preceding relation and using the fact that F (2) = e γ , we find y/(kr)< c 2 y/(kr) ψ(k r).

2Ξ 2 (c 2 - 2 4

 2224 c 1 )y r(log z) log(y/r) S(r),whereS(r) := k 2cr η-2 2 (a+k) ψ(k) k(1 -(log k)/ log(y/r))•With the help of Lemma 3.3, a simple partial integration leads to is defined as in (3.7). Combining it with the preceding formula, it follows that(-1 + 2δ)η log(η -1) η -1 π(y) ϕ(r) •With the help of Proposition 3.2, it is easy to see that (4.4) E(r) y r(log y) A • Inserting (4.3) and (4.4) into (4.2), we obtain the required inequality (2.6).
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