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Abstract: Lentiviruses induce a wide variety of pathologies in different animal species. A 

common feature of the replicative cycle of these viruses is their ability to target  

non-dividing cells, a property that constitutes an extremely attractive asset in gene therapy. 

In this review, we shall describe the main basic aspects of the virology of lentiviruses that 

were exploited to obtain efficient gene transfer vectors. In addition, we shall discuss some 

of the hurdles that oppose the efficient genetic modification mediated by lentiviral vectors 

and the strategies that are being developed to circumvent them. 
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1. Introduction: On Lentiviruses and Their Natural Cellular Targets 

1.1. Virus Replication and Pathology 

Lentiviruses owe their lenti appellative (slow in latin) to the long period of time elapsing between 

the initial infection and the onset of the disease, that can protract over a period of months or even 

years. Viruses belonging to the Lentivirus genus are present in primates, ungulates (horse, cattle, sheep 

and goat) and felids (cat) (for reviews see [1,2]). Primates are the natural host for several lineages of 

closely related simian and human immunodeficiency viruses (SIV and HIV, respectively) that are the 
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etiologic agents of the acquired immunodeficiency syndrome (AIDS) [3–5]. In monkeys, SIVs are 

divided in five lineages according to their host species: sooty mangabey, SM; african green monkey, 

AGM; chimpanzee, CPZ; mandrill, MND; syke, SYK. Transmission of these simian viruses to humans 

gave raise to two genetically distinct viruses: HIV-1, closely related to SIVCPZ and HIV-2, closely 

related to SIVSM. Both HIV-1 and HIV-2 cause AIDS. However, while HIV-1 induces a rapid 

syndrome in the absence of anti viral treatment and is responsible for AIDS worldwide, HIV-2 infected 

individuals develop AIDS with substantially slower kinetics and its distribution is essentially restricted 

to West Africa [6–8]. Interestingly, SIVs are capable of developing a peaceful relationship with their 

host, since SIV infection is non-pathogenic in the natural host. However, the infection becomes 

pathogenic when transmitted to a different species, as is the case in experimental infections of 

monkeys, or as has been the case in humans (a number of recent reviews illustrate these aspects in 

detail, [9–13]. Among ungulates, sheep is the natural host for the Visna/maedi virus (VMV), goats for 

the caprine arthritis-encephalitis virus (CAEV), cattle for the bovine immunodeficiency virus (BIV), 

and horses for the equine infectious anemia virus (EIAV) [2]. Finally, domestic and wild cats are 

infected with the feline immunodeficiency virus (FIV) that induces an AIDS-like syndrome [14].  

Historically, the first description of a lentiviral induced disease came from the observation of a 

slowly progressive disorder in the sheep flocks present in Iceland during the 1950s. This disease was a 

severe form of pneumo-encephalopathy that gave its name at its causal virus (paralysis and wasting, 

i.e., visna and labored breathing, known as maedi, in Icelandic) [15,16]. Despite the variety of 

pathologies they induce, lentiviral infections share several common features. De novo infection is 

characterized by an acute phase of viral replication that is transitory and that rapidly progresses into a 

chronic period. This long chronic phase in which viral replication is substantially diminished 

characterizes the pathogenesis induced by most lentiviruses, from the severe immunodeficiency caused 

by primate and feline immunodeficiency viruses, to the synovitis in CAEV-infected goats or to the 

severe pneumo-encephalopathy observed in VMV-infected sheep. During this period, lentiviruses 

continue to replicate and gradually subvert, as is the case of primate immunodeficiency viruses, host 

defenses. After this chronic phase the disease becomes manifest. Not all lentiviruses are associated to a 

disease, as is the case for BIV which causes only mild symptoms in infected cattle (namely 

lymphocytosis), although more pathogenic strains of BIV have recently been isolated [17,18]. Besides 

a certain number of exceptions to this general description do exist. For example, lentiviral infection 

can rapidly lead to the onset of the disease, as observed in HIV-1-infected newborns, or in  

CAEV-infected kid goats. In the case of EIAV infection, the chronic phase is not established after the 

initial infection, but rather after the disease. Indeed, infected animals develop anemia quite rapidly 

after infection and subsequently enter a relatively asymptomatic chronic state. This state is interrupted 

by cycles of peak viremia and disease that protracts during the entire life span of the animal [2].  

1.2. Myeloid Cells as a Preferential Target for Lentiviruses 

Myeloid cells include a large panel of cell types with specialized functions. Blood monocytes are 

precursors that leave the circulation in response to tissue damage or infection and enter tissues where 

they differentiate into macrophages or dendritic cells (DCs). These are professional antigen presenting 

cells (APCs) that play a central role in the orchestration of host immune responses [19–22]. Following 
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a similar migratory pattern, monocytes are also able to cross the blood-brain barrier before 

differentiating into microglia cells in the central nervous system. Overall, these cell types are not 

homogeneous, but are constituted by highly heterogeneous cell subtypes performing specific functions. 

For example, at least two sets of monocytes co-exist in the blood: CD16
−
CD14

+
 cells, the most 

abundant monocyte population in the blood and CD16
+
CD14

+
 cells, a minor monocyte population with 

a more activated phenotype (about 1 to 5% of circulating monocytes) [23–26]. The presence of distinct 

cell subtypes is common not only to monocytes, but also macrophages and DCs. To add to the extreme 

complexity of cells of the myeloid lineage, these cells have the ability to polarize in response to the 

surrounding environment (for example into M1 or M2 macrophages) and to exert distinct functions 

[22]. A more extended introduction on the plasticity of myeloid cells would fall beyond the scope of 

this review and the reader is referred to other reviews that have covered these aspects [22,26,27].  

Despite the fact that lentiviruses infect different cell types, all seem to share an exquisite ability to 

target cells of the myeloid lineage in vivo (as for VMV, CAEV, HIV, SIV and FIV) [28–35]. In the 

case of EIAV the tropism for monocyte-macrophages is extreme, because these cells seem to be the 

only ones infected (including Kupffer cells that are macrophage-like cells in the liver) [36]. In the case 

of HIV, the virus is primarily transmitted as a CCR5-tropic virus, a co-receptor present on cells of the 

myeloid lineage in addition to gut-associated lymphocytes [37–40]. To strengthen this point, it is 

interesting to note that lentiviral infection causes a variety of neurological disorders that result from 

viral replication in the central nervous system (CNS) [41–43]. Given that monocytes are the sole cell 

type that under normal conditions is able to traverse the blood-brain barrier, it is clear that the virus 

must use these cells to gain access to this privileged site. 

The relationship established between myeloid cells and lentiviruses is multifaceted. For example, 

EIAV and VMV integrate as proviruses into circulating monocytes, however their genome is not 

expressed until these cells differentiate into macrophages, a phenomenon called post-integration 

silencing [44–48]. Instead, HIV-1 delays integration for days after entry in non-stimulated monocytes, 

thus achieving pre-integrative silencing [49–53]. Albeit different, these silencing strategies may allow 

the virus to remain under cover within monocytes thus minimizing their exposure to the immune 

system. Afterward when monocytes enter the tissues and become activated, the virus is able to exit this 

covert phase and resumes its replication cycle [44,52,54]. This mode of action offers a double 

advantage to the virus: to profit from the migratory behavior of monocytes to reach sites in which viral 

spread can occur, as the lymph nodes or the CNS; to be present within the very cells that ought to 

instruct antiviral responses. The consequence of the latter is the possibility for the virus to modify the 

behavior of these antigen presenting cells and thus to influence antiviral immune responses.  

These considerations are not meant to diminish the importance that the infection of other cell types 

has in the pathogenesis caused by the different lentiviruses, but is meant to suggest that these viruses 

may have evolved certain common features that allow them to target myeloid cells. In light of their 

multiple roles, these cells are of interest for a wide variety of applications that range from anti-cancer 

strategies, to vaccination and antiviral immunity [55,56]. From a virological point of view, these cells 

are non-dividing cells and this implies that the viral genome must traverse an intact nuclear membrane 

to access the cellular genome. Among retroviruses, lentiviruses have evolved the most efficient 

machinery to achieve this goal, a property that is highly valuable in gene therapy.  
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2. Basic Aspects of Virology Applied to Lentivectors 

2.1. An Introduction to the Early Phases of the Viral Life Cycle 

The viral life cycle can be divided into two main phases: one in which the viral genome is 

transferred into the host cell and one in which this genome is expressed and viral propagation assured. 

The main interest of viral vectors for gene therapy purposes lays in the first, collectively referred to as 

the early steps of the viral life cycle. This process can be defined as gene transduction (in gene 

therapy) or single cycle infection (in virology) and both terms will be used here. In the case of 

retroviruses, the infection starts with the engagement of a specific cellular receptor by the viral 

envelope and culminates in the integration of the neo-synthesized full length viral DNA into the host 

cell genome. The cellular receptor-viral Env engagement triggers the fusion between the plasma cell 

and the particle membranes and results in the release of a viral nucleoprotein complex (VNC) 

composed of the viral genome associated to viral and cellular proteins in the cytoplasm of target cells. 

The exact composition of VNCs has proven particularly difficult to establish due to different reasons. 

These structures are labile and change over time as they accommodate the conversion of the viral 

genome from an RNA to a double stranded DNA molecule. In addition, for reasons that are currently 

unknown, a large proportion of VNCs present during infection is non-functional and this complicates 

the analysis of the composition of truly infectious VNCs. Nonetheless, a number of notions as to their 

composition and trafficking have been gathered and will be discussed below. If this rather general 

description applies to all retroviruses, the infection of non-dividing cells requires the viral genome to 

traverse the nuclear membrane to access the host genome. This step, key for gene therapy purposes in 

non-dividing cells, is termed nuclear import. 

2.2. An Efficient Nuclear Import, the Distinctive Feature of Lentiviruses 

The nuclear membrane constantly regulates exchanges between the cytoplasm and the nucleus, 

apart from a brief period in which it is removed during mitosis. These exchanges depend on the 

nuclear pore, a multiprotein structure that allows free exchanges of small molecules, but that 

selectively controls the transport of molecules of a molecular weight superior to 40 kDa [57]. Proteins 

localized in the nucleus possess a nuclear localization signal (NLS) by virtue of which they are 

recognized by karyopherins, or importins, that are the cellular cytoplasm-nucleus transporters. In 

humans, karyopherins are divided in two families comprising multiple members (6 and 20 for 

karyopherins α and β, respectively). The NLS is recognized either directly by karyopherin β or via the 

karyopherin α adaptor that associates to karyopherin β. The cargo-karyopherin complex is transported 

through the nuclear pore into the nucleus via interactions with several of its constituents, the 

nucleoporins. The asymmetric distribution of the GTP/GDP bound forms of the Ras-related nuclear 

protein, the Ran GTPase, is responsible for the directionality of this transport toward the nucleus. The 

GTP-bound form of Ran (RanGTP) is primarily found in the nucleus, where it binds to the imported 

complex dissociating the karyopherin from its cargo. The karyopherin-RanGTP complex shuttles back 

into the cytoplasm, where it dissociates upon hydrolysis of GTP to GDP. RanGDP is then transported 

back to the nucleus by a specific transporter, the nuclear transport factor 2 (NTF2), so that the cycle 

can start anew. These movements are possible because of the high and low affinities that Ran displays 



Viruses 2011, 3                            

 

 

136 

for karyopherins in its GTP- or GDP-bound state, respectively. The directionality of the transport relies 

also on a Ran gradient that is maintained by the Ran guanine exchange factor (RanGEF, that charges 

Ran with GTP in the nucleus) and by the Ran GTPase activating protein (RanGAP, that mediates the 

hydrolysis of GTP in GDP in the cytoplasm). 

For the purposes of viral infection, the nuclear membrane is an additional obstacle that can be 

bypassed either by taking advantage of its natural removal during cell division, or by traversing the 

nuclear pores. Intuitively, the latter is the only possibility available in non-dividing cells. The 

relationship between retroviruses and nuclear membrane remains surrounded by a number of 

questions. For example, although simple retroviruses are impaired in the transduction of  

growth-arrested cells, there is no proof that they truly access the nucleus in that short window of time 

during which the nuclear membrane is absent in dividing cells. Similarly, although lentiviruses must 

traverse the nuclear pore during the infection of non-dividing cells, it remains unclear whether this step 

is optional or obligatory during the infection of dividing cells.  

Aside from these considerations and despite the fact that other retroviruses are able to accomplish 

infection of non-dividing cells [58–61], lentiviruses certainly appear the most efficient ones to carry 

out nuclear import. In light of their exquisite tropism for non-dividing myeloid cells, it is tempting to 

speculate that they have perfected this property through evolution.  

Over the years, a number of studies attempted to identify determinants of nuclear import and, as 

most of the work has been focused on HIV-1, we shall use this virus as a paradigm for other 

lentiviruses. The literature on the subject is vast, and has often been contradictory due to the 

heterogeneity of the experimental systems used and to the relative complexity of nuclear import (for 

reviews, see [57,62–64]). However, a certain consensus is now apparent, as we will discuss below.  

Historically, potential factors that mediate nuclear import were sought among components of 

VNCs. Among them, the search was directed at nucleophilic elements specific to lentiviruses. A 

number of proteins met these criteria, namely Matrix (MA), Integrase (IN) and Vpr. The first two are 

structural components of viral particles and are conserved among retroviruses. However, NLSs seem 

present uniquely in lentiviral MA and IN proteins. Instead, Vpr is a non-structural viral protein 

incorporated into particles and is coded solely by primate lentiviruses. Despite the fact that these 

proteins localized to the nucleus, their role during nuclear import turned out to be negligible, as most 

defects observed upon their mutagenesis were due to pleiotropic effects, rather than to an effect on 

nuclear import per se (compare the above mentioned reviews with older reviews on the subject, [65–67]. 

Retrospectively, failure to reveal a major role in nuclear import for these proteins was just as possible 

as the contrary would have been. Indeed, even if a protein is nuclear when expressed outside its 

context, it may not be so when part of a higher order molecular complex (such as the VNC). This may 

be due to different reasons, given that a particular protein may be present in limited amounts in the 

complex to drive it into the nucleus, or else it may not be exposed to physically associate to 

components of the nucleo-cytoplasmic transport machinery. Following a similar rationale, early studies 

focused on a particular sequence present almost exclusively in the genome of lentiviruses, named the 

central polypurine tract-central termination sequence (cPPT-CTS) [68]. The cPPT sequence is present 

roughly in the middle of the viral genome and, similar to the polypurine tract present at the 3’ of the 

viral genome, it resists RNaseH-mediated degradation and acts as an internal primer for viral DNA 

synthesis. The CTS is located downstream of the cPPT and is the site at which plus strand viral DNA 
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synthesis terminates. Presence of the cPPT-CTS determines a discontinuity in the plus strand of 

completed viral DNA that yields a triple helix structure, a DNA flap, that is later resolved in an 

integrated provirus. Although a central discontinuity region has been evidenced in the genome of 

primate foamy viruses [69] and in yeast retrotransposons [70], it is unclear whether this region yields 

to the formation of a DNA flap and whether it acts similarly to the one present in lentiviruses [71]. In 

lentiviral vectors, presence of the cPPT-CTS exerts a positive effect on viral infectivity on most cells 

[72–74]. Although initial studies conferred a prime role to this structure in nuclear import [74], the first 

generation of lentiviral vectors was devoid of cPPT-CTS and was still capable of transducing  

non-dividing cells [75]. This and other studies tempered the enthusiasm over the role of the cPPT-CTS 

in nuclear import, implying that although it could contribute to the process, it was not its major 

determinant [76–79]. More recent data indicate a simpler role for the cPPT-CTS in promoting faster 

kinetics of reverse transcription [80]. This hypothesis is captivating, as lentiviral infection occurs in 

cells of low metabolism in which this process can be extremely long (such as myeloid cells). Thus, it is 

intriguing to speculate that this sequence may have evolved specifically in lentiviruses to maximize the 

speed at which reverse transcription is completed. In turn, fast completion of viral DNA synthesis may 

exert a protective effect on the viral genome for example by promoting its faster nuclear import, as 

suggested in [77,78], by contributing to structural rearrangements of VNCs or, more generally, by 

protecting it from cytoplasmic sensors that recognize RNA or single stranded DNA. In this respect, the 

cPPT-CTS has been recently shown to contribute to the protection of HIV-1 from members of the 

apolipoprotein B editing catalytic polypeptide 3 family (APOBEC3s), cytidine deaminases with 

marked antiviral activity [81–83]. These proteins are incorporated into virion particles where they 

deaminate single stranded viral DNA intermediates. Although APOBEC3s incorporation is countered 

by the viral protein Vif, residual molecules may escape Vif, especially in cells in which APOBEC3 

members are expressed at high levels. In this case, the cPPT-CTS element minimizes the time of 

exposure of single stranded DNA, thus providing an additional level of protection against APOBEC3 

proteins [81]. More generally, we do believe that the cPPT-CTS may exert a protective effect beyond 

APOBEC3s, because the advantage of lentiviral vectors bearing this sequence is manifest also in the 

absence of APOBEC3 proteins. We believe it likely that by promoting faster kinetics of reverse 

transcription, the cPPT-CTS may indirectly protect the viral genome from multiple attacks brought by 

deaminases, but also by other endonucleases and yet unidentified cellular factors. 

If the above-mentioned viral elements contribute marginally to nuclear import, what are its true 

viral determinants? An important difference between the composition of VNCs obtained after lentiviral 

and gammaretroviral infection is their content in Capsid protein (CA). CA is the main structural 

component of viral cores within viral particles, but as soon as the virus accesses the cytoplasm of 

target cells, CA is progressively shed from VNCs. In the case of lentiviruses which are more apt for 

nuclear import than gammaretroviruses, this loss is more pronounced [84–88]. Is this difference 

important for nuclear import? A role for CA in nuclear import is suggested by several findings: the 

existence of specific CA mutants that behave differently in cycling versus non-dividing cells, as well 

as the nuclear import defect of HIV chimeric viruses bearing gammaretroviral CA [89–93]. At present, 

a number of questions surround the role of CA in nuclear import. In particular, if CA associates with 

specific cellular transporters to reach the nucleus, why would loss of CA from viral cores be beneficial 

for this transport? On the other hand, if shedding of CA from the VNCs uncovers other signals that 
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mediate nuclear entry, which is the nature of these signals given that most of the components of VNCs 

have been found to play only a marginal role in this process? Does lentiviral CA promote a peculiar 

VNC trafficking through which VNCs gain preferential access to the nucleus? More generally, is 

nuclear import governed by a single key determinant which we have not yet found by multiple 

elements playing minor roles, or is it to be considered an overall promiscuous mechanism, as recently 

suggested in [94]? 

Despite these questions, the difference in the extent of CA shedding from VNCs between 

lentiviruses and gammaretroviruses is compelling and suggests that VNCs reorganization may play a 

central role in nuclear import [92,95,96]. If this is true, a number of factors that affect the viral core 

stability and composition may indirectly influence nuclear import. One such factor may be reverse 

transcription itself that drives important structural changes in VNCs, or a structure such as the DNA 

flap, which may signal the end of the process [95,97]. From a strictly theoretical point of view, the 

possibility that the end of reverse transcription drives structural changes that enable the nuclear import 

of VNCs is intriguing, as this may be a mechanism to favor the entry of completed viral DNA 

molecules into the nucleus [98]. 

The above-mentioned studies focused on viral proteins. However, several studies identified  

cellular components of the nucleo-cytoplasmic transport machinery as capable of modulating  

the nuclear import of HIV-1: Nup85, Nup107, Nup133, Nup153, Nup155, Nup160, RanBP2, 

Transportin-SR2/TNPO3, importin alpha3 and Importin7 [99–103]. A direct interaction between these 

factors and viral proteins has been evidenced only in the case of Transportin-SR2/TNPO3 and 

Importin7 that associate with IN [104,105]. Although multiple evidence indicates that these two 

cellular proteins are involved in the nuclear import of HIV-1, the importance of IN during this step 

remains uncertain [106], as nuclear import occurs also in the absence of IN [78]. For the other cellular 

factors it remains unclear whether the role played in nuclear import is direct or indirect. In light of the 

functions of these proteins in a key cellular process (nucleo-cytoplasmic transport), this latter 

possibility cannot be excluded. 

2.3. The Conversion of a Lenti-Virus into a Lenti-Vector 

The concept of viral-based tools for gene delivery emerged for the first time in the early 1980s with 

vectors based on the Moloney Murine Leukaemia Virus (Mo-MLV) [107]. Vectors rely on the physical 

separation into different plasmids of proteins required for viral particle formation and infectivity (the 

packaging and the envelope constructs) and of cis-acting sequences sufficient to mobilize the viral 

genome (the transfer vector). The latter constitutes the core of the vector; a mini-viral genome devoid 

of viral open reading frames (ORFs), but carrying an expression cassette for the transgene of interest. 

As a consequence of the deletion of viral ORFs from the transfer vector, virions can undergo a single 

round of infection at the conclusion of which proviral DNA expresses only the transgene of interest. 

Among lentiviruses, HIV-1-based vectors were the first to be developed and gain wide usage for both 

fundamental and applied purposes, so that our description shall mostly focus on them again as a 

paradigm for other lentiviral-derived vectors.  

The first gene delivery systems used replication-incompetent HIV-1 vectors to study different 

aspects of the viral life cycle in the early 1990s [108–113], but the key breakthrough came with the 
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construction of vectors that, in contrast to MLV-derived ones, were capable of transducing  

non-dividing neurons when injected into rat brains [75]. The first vector generation was made of three 

plasmids in which the packaging functions were provided by an Env-coding plasmid and by a 

packaging plasmid expressing all viral ORFs except Env under the control of a CMV promoter (in 

which of course the packaging sequence had been removed). The transfer vector was composed of an 

expression cassette framed by two wild type long terminal repeats (LTRs) and bearing sequences 

required for viral RNA export in producing cells (the Rev-Responsive Element, RRE), genome 

packaging and reverse transcription (Figure 1 and Table 1). In the second generation packaging 

vectors, most accessory genes were eliminated (vif, vpr, vpu and nef) and only Tat and Rev were 

retained [114], while in the third, Tat was also removed and Rev was provided on a fourth plasmid 

[115] (third generation vectors are based on four plasmids instead of three). In the case of transfer 

vectors, a number of modifications contributed to increase the performance of gene transfer, as for 

example the use of post transcriptional regulatory elements that enhance the transgene transcriptional 

expression as the human hepatitis virus post transcriptional element (HPRE) [116,117], or the use of 

heterologous polyadenylation enhancer elements, as those derived from simian virus 40 (SV40) or  

β-globin [118,119], or the use of different internal promoters to express a particular gene (or gene 

products, as shRNAs) of interest.  

Figure 1. Evolution of lentiviral vectors based on HIV-1. The scheme simplifies 

schematically the evolution of packaging and transfer vectors. In the case of transfer 

vectors, only three major evolutions have been depicted, despite the existence of a number 

of modifications that still today continue to ameliorate the vectors performance. LTR, long 

terminal repeat; SA and SD, splice acceptor and donor; RRE, Rev-responsive element. Rev 

associates to the RRE on viral genomic RNA and allows its export from the nucleus and its 

efficient incorporation into virion particles [182].  
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Table 1. Lentiviruses and lentiviral-derived vectors. *: HIV-2 is capable of inducing an 

immunodeficiency that mirrors the one induced by HIV-1, albeit with a prolonged delay 

from the initial infection. /-: SIVs do not cause disease in their natural host, but do so in 

monkeys of different species. #: BIV strains isolated from taurine cattle (Bos Taurus) are 

mostly apathogenic, while those isolated from Bali cattle (named also Jembrana disease 

virus, JDV, in Bos javanicus) induce an acute febrile illness. Vectors have been derived 

from both. The main references are provided for the different packaging vector 

generations. NWM and OWM: new and old world monkeys. For simplicity, restriction has 

been ascribed to one or the other group, although certain species within each group may 

behave differently. NT: not tested. 

Virus Host Disease 
Vector Generation Species Specific 

Restriction 1
st
 2

nd
 3

rd
 

HIV-1 Human Immunodeficiency 
[75,120] [72,73,116] [115] 

OWM, Rabbit, 

Cow 

HIV-2 
Human Immunodeficiency * 

[158–164] [165]  
OWM, Rabbit, 

Cow 

SIVSM Monkey Immunodeficiency /- [166,167] [166,168] [168] NWM, Cow 

SIVAGM Monkey Immunodeficiency /- [169]   NWM 

EIAV 
Horses Infectious anemia 

[170,171] [172] [172] 
OWM, Human, 

Rabbit, Cow 

FIV 
Cats Immunodeficiency 

[173] [174] [174,175] 
OWM, Human, 

Rabbit, Cow 

VNV Sheep Pneumo-encephalitis  [176]  NT 

CAEV Goat Arthritis-encephalitis [177]  [178] NT 

BIV 
Cow -/acute febrile illness

#
 

[179,180] [181] [181] NT 

 

However, three major modifications have shaped the evolution of transfer vectors from their initial 

version [75]. The first is the substitution of the 5’ U3 viral promoter for a heterologous promoter to 

allow the Tat-independent transcription of the transfer vector [115,118,120,121]. The second is a 

deletion of the enhancer/promoter sequence of the 3’ U3 [115,118,120,121]. By the gymnastic of 

reverse transcription, this deleted 3’ U3 sequence is copied at both ends of proviral DNA resulting in a 

provirus that lacks a functional U3 viral promoter. This deletion, at the basis of self-inactivating (SIN) 

vectors, increases the safety of lentiviral vectors due to the lack of expression of ψ-bearing mRNAs in 

transduced cells and to the minimization of gene activation in the proximity of the provirus integration 

site [122]. The third is the inclusion of the cPPT-CTS sequence that exerts a positive effect on 

transduction efficiency, despite controversies over its exact function [72,73,77,123]. 

Overall, the development of lentiviral vectors, that we have simplified here schematically, seeks to 

optimize the efficacy of gene transfer, while eliminating the potential dangers due to the use of 

retroviral vectors. Examples of this constant optimization have been the development of third and 

fourth generation vectors that minimize considerably the risks of generation of replication-competent 
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recombinants (RCR), or the introduction of the SIN mutation that diminishes both the probability of 

RCR formation and impairs the promiscuous enhancer activity of the viral promoter.  

3. Additional Aspects of the Biology of Lentiviral Vectors for Particular Applications 

The notions outlined above have been at the basis of the development of lentiviral vectors. 

However, further efforts are ongoing to improve gene transfer, as for example those directed towards 

the targeting of specific cell types or the increase of the overall efficiency of transduction. These 

efforts aim at achieving the highest percentage of modified cells with the lowest viral input. Below, we 

will describe some of these ongoing efforts. 

3.1. Pseudotyping of Lentiviral Vectors 

Retroviral particles have an extraordinary ability to accommodate heterologous envelope proteins, 

and are referred to as pseudotyping, can acquire novel cellular tropism and intracellular behavior (for a 

review see [124]). Pseudotyping is common to all retroviruses, so that we will mostly outline here a 

few cases that are exclusive to lentiviruses in the transduction of quiescent and differentiated cells.  

The first property specified by envelope proteins is the type of cell recognized by the viral particle. 

In this respect, if pantropic envelopes, such as the vesicular stomatitis virus G protein (VSVg), are 

used to mediate viral entry into a wide variety of cells, more selective Envs must be employed for the 

specific targeting of a particular cell type in the midst of others. When possible, specificity can be 

achieved through the targeting of cellular receptors expressed uniquely on the cell type of interest. This 

is the case for the C-type lectin-like receptor (DC-SIGN) expressed almost exclusively on primary 

DCs [125]. An interesting step forward in the specific transduction of DCs has come through the 

modification of the envelope glycoprotein of the Sindbis virus. In its natural context this envelope is 

not specific, since it binds DC-SIGN on DCs, but also to heparan sulfate moieties present on most cell 

types. However, the removal of the heparan sulfate binding domain from the Sindbis virus envelope 

protein led to a modified glycoprotein that lost its ability to bind heparan sulfate but retained a strong 

DC-SIGN binding. Thus, this modification effectively restricted the tropism of pseudotyped lentiviruses 

(LVs) to DCs both ex vivo and in vivo [126]. Similar strategies may be applied to other cell types and 

may be particularly useful to reduce side effects due to widespread transgene expression [127]. 

A second property specified by some envelope proteins is the ability to influence steps that are 

subsequent to viral entry into target cells. For example, the infection of quiescent B and T cells is 

inefficient with VSVg-pseudotyped LVs. This is not due to a defect in viral entry, but rather to a 

restriction at the step of reverse transcription that is likely a consequence of the poor activation status 

of these cells [128]. Efficient transduction can be achieved upon cell activation, but this may not be an 

option in applications in which the preservation of a quiescent state is sought. To achieve efficient cell 

infection in the absence of major activation signals, a number of strategies have been developed that 

rely on artificially engineered envelopes and on envelopes other than VSVg. A common trait of these 

strategies is that envelope molecules, displayed at the surface of the viral particle, trigger an activation 

signal upon engagement of the cellular receptor. This activates the cell transiently and allows an 

efficient infection. The strategy has been successfully employed in the transduction of quiescent B and 

T cells using the Measles virus (MV) gp protein and cytokine-displaying LVs, respectively [129,130]. 
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In these cases, the intracellular signals conveyed upon the engagement of the signaling lymphocytic 

activation molecule receptor (SLAM) or of the specific cytokine receptor seem sufficient to promote 

LVs infection, at least transiently. A number of other viral particle-delivered signals are being explored 

and in the future we can expect a number of interesting developments along these lines. 

Finally, certain envelope proteins determine a peculiar intracellular behavior of VNCs that is 

particularly interesting, as in the case of the rabies G protein that endows pseudotyped particles with 

the same properties of the rabies virus, namely the ability to undergo retrograde transport along the 

cell’s axons. This extraordinary property has been used for the transduction of motor neurons in an 

animal study for the amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease. In 

this study, EIAV-derived lentiviral vectors were pseudotyped with the rabies G protein and injected in 

limb muscles of mice [131] where, thanks to their envelope, they were able to transduce motor neurons 

of the central nervous system [132]. The possibility of taking advantage of retrograde transport to 

achieve neuron transduction from the periphery is extremely attractive for gene therapy applications of 

the CNS, since this strategy is less invasive than the direct modification of the CNS.  

In conclusion, envelope proteins not only specify the type of cells that are recognized by the viral 

particle, but can also influence the subsequent behavior of the virus inside the cell. In some instances, 

this contributes to remove some of the post-entry obstacles that can be encountered during the 

transduction of a particular cell type.  

3.2. Manipulation of Viral Non-Structural Proteins to Promote Cell Type Specific Targeting: The Case 

of the SIVSM/HIV-2 Vpx Protein and Myeloid Cells 

A further possibility to act on the specificity of LV transduction may come from the use of viral 

proteins that affect the early phases of infection in a cell type dependent manner. One example in this 

direction is provided by the Vpx protein. Vpx is coded by members of the SIVSM/HIV-2 lineage, but is 

absent in most of the remaining lineages of primate lentiviruses. Vpx is a nonstructural viral protein 

that is incorporated into viral particles and is thus present during the early phases of infection, where it 

exerts a positive effect on the process of reverse transcription [133–137]. An interesting feature of the 

action of Vpx is its cell type specificity that is restricted to cells of the myeloid lineage. The exact 

mechanism underlying the positive effect of Vpx on lentiviral transduction is currently under 

investigation. However, multiple lines of evidence suggest that Vpx may act by counteracting a 

restriction factor specifically expressed in myeloid cells, thus explaining its cell type specific effect 

[134,138]. Vpx displays two phenotypes that may be of interest for gene therapy purposes. First, it is 

absolutely required for the infection of myeloid cells with parental SIVSM or HIV-2 viruses, while it is 

dispensable for the infection of other cell types, such as lymphocytes [139]. Second, when provided 

onto recipient cells at the moment of infection, it increases the efficiency of transduction of 

heterologous lentiviral vectors (as HIV-1 and FIV) by at least ten-fold, an effect that is again specific 

to myeloid cells [133,140]. As a consequence, one can imagine that SIVSM or HIV-2 vectors devoid of 

Vpx could be used to transduce preferentially peripheral blood lymphocytes in the blood as opposed to 

monocytes or circulating DCs, thus diminishing anti vector/transgene responses mediated by these 

antigen presenting cells. Conversely, in applications in which specific transduction of myeloid cells is 

required, lentiviral vectors (derived from HIV-1, but also FIV and EIAV) may be used together with 
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Vpx, since this will improve their performance specifically in these cells. As a consequence, efficient 

cell transduction can be achieved even at low viral inputs [133,140], thus avoiding large viral doses 

that in some instances have been shown to be detrimental to the physiology of modified cells 

[141,142]. For the moment, Vpx constitutes the sole example of non-structural viral protein that 

affects, to such a large extent, the efficiency of the early phases of infection in a setup of interest for 

gene therapy. It is possible that other lentiviral proteins exert other interesting effects that could be 

similarly exploited, but whether this is the case remains unknown at present. In the future, 

combinations between specific envelope proteins, viral proteins that have cell type specific properties, 

and the use of cell type specific promoters, may be particularly potent in promoting the selectivity of 

the gene transfer process.  

4. Particular Considerations on the Use of Lentiviral Vectors  

4.1. The Problem of Cross-Species Usage of Lentiviral Vectors: The Tripartite Motif 5α Protein 

Cells possess several intrinsic defense mechanisms against pathogens. The key determinant for 

these defenses is the recognition of features that are shared by classes of pathogens, or pathogen 

associated molecular patterns (PAMPs). For retroviruses, two key features are the reverse transcription 

process and viral capsids that can be truly defined as PAMPs. These are recognized by two 

prototypical antiviral factors: by members of the APOBEC3 family and by the Tripartite motif 5α 

protein (TRIM5α), respectively [143,144]. For gene therapy purposes, the classical antiviral effect of 

APOBEC3s may be neglected using virus-producing cells in which these proteins are absent, as 293T 

cells. However, the same is not true for TRIM5α that recognizes incoming viral particles in target cells 

[145–147]. TRIM5α proteins recognize incoming VNCs via CA, triggering their premature 

disassembly and thus impairing reverse transcription and infection [148]. It is unclear whether this 

process involves direct degradation of viral components and/or trafficking of VNCs, in particular 

intracellular locations [149,150], but the result of this impairment can be particularly strong (from 2–3 

to 100 fold in a single round infection) (reviewed in [151]). As a general rule, viruses that thrive in one 

species are not recognized by the TRIM5α ortholog of that species. This is intuitive; to succeed 

infection a virus must have evolved to bypass this block. On the other hand, TRIM5α orthologs act as a 

potent barrier in cross-species transmission and can antagonize viruses, and thus vectors, of different 

species as summarized in Table I [152–157]. Thus, the TRIM5α effect must be carefully weighted 

when using LVs derived from different species, considering that even a moderate inhibition by 

TRIM5α may considerably reduce the proportion of successfully transduced cells. One of the features 

of the restriction mediated by TRIM5α is the fact that it can be saturated with high viral inputs. 

Generally, saturation is observed within the high viral doses used in gene therapy, suggesting that 

infection could be achieved with LVs of different species even in the presence of a restricting 

TRIM5α. However in this case, the need to saturate TRIM5 with high viral inputs may contrast with 

the requirement to use low viral doses to minimize modifications of the cell physiology or to diminish 

immune responses directed against the vector [141,142]. In cells exquisitely susceptible to the presence 

of pathogens, such as myeloid cells, a correct balancing between the requirement for efficient  
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cell modification and the need to avoid gross modifications of the cell physiology may be  

particularly important.  

4.2. The Yin and the Yang of Integration 

Although the main interest of retroviral vectors for gene therapy purposes lays in the integration of 

their genome, this very feature is intrinsically dangerous. The potential drawbacks of integration have 

not received much attention in the past, probably because no adverse effects had been observed in 

retroviral-mediated gene therapy trials started more than two decades ago (as, for example, in the 

severe combined immunodeficiency syndrome due to a deficiency in the adenosine deaminase enzyme, 

SCID-ADA, [183]). However, serious side effects were observed in a proportion of SCID-γC patients 

undergoing retroviral mediated gene replacement. The SCID-γC syndrome is a lethal 

immunodeficiency in which T cells cannot develop due to the absence of the γC gene and the gene 

therapy approach in this trial consisted of a simple gene replacement in hematopoietic stem cells. The 

results of this clinical trial best illustrate the benefits and the potential dangers linked to retroviral 

mediated gene therapy. On one hand, the gene replacement trial was a success because modified 

hematopoietic stem cells functionally replenished the patients’ immune system and about half of the 

patients maintained the use of immune functions for over 10 years. On the other hand, a proportion of 

patients developed leukemia as a consequence of the deregulated expression of proto-oncogenes 

adjacent to the retroviral vector integration sites [184]. 

This finding spurred a series of studies on the features that govern retroviral integration on a 

genome wide scale. These studies revealed that retroviral integrases display strong differences in the 

selection of chromosomal integration sites (in active transcriptional units for HIV-1 and close to 

transcriptional start sites for MLV) [185,186]. In the case of HIV-1, a further bias toward regions 

containing recognition sequences for cellular co-factors that associate to IN, such as the lens epithelial 

growth factor p75, (LEDGF) has also been described [187]. LEDGF is a cellular DNA binding factor 

that associates to HIV-1 IN and that is required for viral DNA integration [188,189]. It is thus not 

surprising that HIV-1 integration favors sites in which LEDGF is enriched.  

Overall, these studies highlighted the fact that in its natural configuration, the integration process is 

largely stochastic and that the result of integration may just as likely be with or without consequences. 

This is shown by the different outcomes observed in patients participating in the same clinical trial, as 

well as by the findings that particular chromosomal features are preferentially, but not exclusively, 

selected during integration [185,186].  

To more selectively target proviral DNA integration, a number of efforts are now being directed 

either at engineering modified IN fused to well characterized heterologous DNA binding domains or at 

modifying IN-associated cellular co-factors [190–192]. The efforts to achieve site directed retroviral 

integration, or chosen integration, are at their infancy and for the moment the results obtained are 

rather disappointing because of the relative abundance of similar DNA binding sites spread over the 

genome. To date, a single virus has been shown to be capable of site specific integration: the 

adeno-associated virus (AAV) that integrates a small fraction of its genomes into the human 

chromosome 19q13.42 (although more recent data seems to question this specificity, [193,194]. The 

specificity of this integration is mediated by the Rep 78/68 proteins that recognize a sequence called 
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AAVS1 that is present both on the viral genome and in this region of the human genome. Future 

strategies aimed at directing retroviral integration may possibly take advantage of the mechanism 

provided by this virus and transpose it to lentiviruses. Alternatively, site specific integration may be 

achieved by engineering IN fusion proteins to meganucleases; DNA nucleases that have the peculiarity 

to recognize long, and thus rarer, DNA binding sequences that can be theoretically present only once 

in the human genome [195,196]. Whether these approaches are feasible remains to be determined. 

4.3. Non-Integrative Lentiviral Vectors 

An alternative strategy to circumvent the negative effects of integration, is represented by 

non-integrative LVs that have been developed by a number of laboratories [197–200]. These are 

vectors bearing inactivating mutations in IN that inhibit the integration of viral DNA [198,201,202]. 

During the early phases of infection, viral DNA can either integrate into the host genome or exist in the 

form of episomal DNA bearing one or two long terminal repeats (the so called 1 and 2LTRs circles). 

These episomes originate in the nucleus upon viral ends joining by cellular ligases (2LTRs), or through 

the recombination of the two identical ends (1LTRs). Both forms are competent for gene expression in 

their natural context (for example during wild type HIV-1 infection) [203], as well as in the context of 

lentiviral vectors. However, due to their lack of origin of replication, these episomes are gradually lost 

during cell division. On the contrary, viral DNA episomes are stable in non-dividing cells, the 

preferred targets for lentiviral mediated transduction. Thus, non-integrative LVs could provide a safe 

setting in gene delivery at least in non-dividing or differentiated cells.  

5. Conclusions and Perspectives 

Lentiviral vectors bears an obvious advantage over other retroviral vectors in that they offer the 

possibility to efficiently target non-dividing and differentiated cells, such as DCs or neurons. As such, 

these vectors are of extreme interest for a multitude of gene therapy applications. Although the basics 

of retroviral and lentiviral vectors are now firmly established, specific applications require careful 

tailoring of several elements to ameliorate the efficiency of gene transfer. Indeed, the transduction of 

non-dividing cells cannot be resumed to the mere phase of nuclear import, and several additional 

obstacles are encountered by viral vectors in a number of differentiated and quiescent cell types. In 

some instances, these barriers can be overcome through the use of envelope proteins conferring 

particular properties to the vector or that transiently stimulate the target cells. In others, the same goal 

can be achieved through the use of viral elements that facilitate transduction of the particular cell type 

of interest.  

Paradoxically, the use of retroviral vectors is hindered by the same process that makes them 

interesting for gene therapy, i.e., integration. This process is largely nonspecific and, as it has been 

shown in vivo, may either be of no consequence to the cell or lead to serious drawbacks. Although this 

problem may in theory be minimized in gene therapy applications targeting terminally differentiated 

cells, the problem of integration is serious. To this end, a number of alternative strategies have been 

developed, ranging from the redirection of retroviral integration to particular chromosomal locations, 

to the ablation of the integration process altogether. Although in its infancy, the efforts to redirect 

retroviral integration must be pursued and researchers may possibly transpose to lentiviruses a 
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mechanism of specific integration used by other viruses. As in the past, all the ameliorations of 

lentiviral vectors will be the fruitful transposition of basic research discoveries in virology to the field 

of gene therapy.  
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