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ABSTRACT

The 50-untranslated region (50-UTR) of the genomic
RNA of human immunodeficiency viruses type-1
(HIV-1) and type-2 (HIV-2) is composed of highly
structured RNA motifs essential for viral replication
that are expected to interfere with Gag and Gag-Pol
translation. Here, we have analyzed and compared
the properties by which the viral 50-UTR drives
translation from the genomic RNA of both human
immunodeficiency viruses. Our results showed that
translation from the HIV-2 gRNA was very poor
compared to that of HIV-1. This was rather due to
the intrinsic structural motifs in their respective
50-UTR without involvement of any viral protein.
Further investigation pointed to a different role of
TAR RNA, which was much inhibitory for HIV-2
translation. Altogether, these data highlight import-
ant structural and functional differences between
these two human pathogens.

INTRODUCTION

Most eukaryotic mRNAs contain a 50-terminal m7GpppN
cap structure (where N is any nucleotide) that is
incorporated during transcription (1). Cap-dependent
translation begins with the recognition of the 50 cap struc-
ture by the eIF4F multimeric complex, which is composed
of the cap binding protein eIF4E, the ATP-dependent
RNA-helicase eIF4A and the scaffold protein eIF4G (2).
Then, a 43S complex composed of the 40S ribosomal
subunit and the tRNA initiator anchored to a set of initi-
ation factors such as eIF2, eIF3, eIF1 and eIF1A is loaded
onto the mRNA via multiple protein/protein and protein/
RNA interactions. This results in the formation of the 48S
pre-initiation complex, which scans the 50-untranslated

region (50-UTR) until the initiation codon (generally an
AUG) is encountered (2–4). Several features within the
50-UTR such as, upstream AUGs, nucleotide composition
and the presence of secondary structures have a strong
impact in 48S pre-initiation complex recruitment and,
consequently, translational efficiency (5–7).
More than 20 years ago, study of Picornavirus transla-

tion has defined an alternative mechanism of ribosome
recruitment, which is mediated by cis-acting RNA
elements called Internal Ribosome Entry Sites (IRES)
(8,9). These IRES elements allow cap-independent
internal binding of the 43S pre-initiation complex onto
the mRNA molecule independently from the cap structure
(10). To date, IRES have been found in many viral and
cellular mRNAs and were shown to be functional during
inhibition of cap-dependent translation (10,11).
Human immunodeficiency viruses types-1 and -2

(HIV-1 and HIV-2) belong to the Lentivirus genus of
the Retroviridae family and contain a capped and
polyadenylated positive-stranded RNA molecule as
genome. This genomic RNA (gRNA) is used both as
template for translation of Gag and Gag-Pol precursors
and as viral genome for viral particle assembly (12). The
50-UTR present within the genomic RNA of both HIVs is
organized in highly structured RNA motifs that contain
signals required for most of the viral processes including
trans-activation of transcription (TAR), reverse transcrip-
tion (PBS), splicing (SD), dimerization (DIS) and
packaging (c) (13–16). Interestingly, while the presence
of these signals is conserved between HIV-1 and HIV-2,
the length and folding of the 50-UTR of both viruses
strongly differs (13–15). These differences are particularly
obvious at the level of the structure of the trans-activation
response element (TAR), which is organized in a single
stem–loop in HIV-1, while it is much longer and folded
in a forked structure in HIV-2 (13,16–23). Although the
TAR RNA element of HIV-1 was shown to impair
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ribosome entry at the 50-end in cell-free in vitro systems,
it was recently shown that ribosomal scanning along the
50-UTR can take place in cultured cells (24–27). However,
protein synthesis from the HIV-1 can also occur via an
IRES element that functions under specific conditions
such as G2/M phase of the cell cycle or during cellular
stress (28–30). Interestingly, IRES elements have also been
mapped within the Gag coding region of HIV-1 and
HIV-2 indicating that genomic RNA translation is a
complex process tightly controlled by different RNA
motifs (31,32). In HIV-2, the Gag coding region was
shown to contain three independent IRESes able to
recruit three independent pre-initiation complexes in the
complete absence of the 50-UTR (32–34). This ability relies
in the capacity of RNA structures present within
the Gag coding region to directly recruit the 40S riboso-
mal subunit and eIF3 (35). Despite the fact that
an IRES was also identified within the HIV-1 Gag
coding region, the molecular mechanism of ribosome
recruitment by this RNA element has not been
investigated yet (31).
Given the strong differences in the structure of the

50-UTR of both human immunodeficiency viruses and
the ability to drive ribosome recruitment via multiple
mechanisms, we have analyzed the translational
properties of both gRNAs in cultured cells. Results
presented here show that the HIV-2 50-UTR and specific-
ally the TAR RNA structure slow translation resulting in
low levels of Gag production. This sharply contrasts with
protein synthesis from the HIV-1 gRNA, which occurs
very efficiently despite the presence of a structured
50-UTR.

MATERIALS AND METHODS

DNA constructs

pNL4-3-Renilla construct was obtained by inserting a
HA-tagged Renilla luciferase-coding region in the SpeI
site present in the Gag coding region (1507–1512) of the
infectious HIV-1 molecular clone pNL4-3 (36). Similarly,
pRod10-Renilla was obtained by inserting the HA-tagged
Renilla luciferase-coding region in the HindIII site present
in the Gag coding region (1457–1462) of the infectious
molecular clone pRod10 (37). All pRenilla-derived con-
structs were obtained by inserting the selected region
between the PvuII–BamHI sites of the pRenilla vector
as was previously described (38–40). The 50-UTR and
the 50-UTR-Gag sequences were obtained by PCR using
the pNL4-3 and pROD10 proviral DNA as template
(36,37). The human pRenilla-globin vector was previously
described (40). cDNA sequences for the human GAPDH,
NADH and cyclin D2 50-UTR were obtained by RT–PCR
using HeLa cells total RNA as template. The Line-1
50-UTR was obtained from the pJM101f L1.3 vector
(kindly provided by Dr Gael Cristofari, Université
de Nice, France). HIV-1/HIV-2, HIV-2/HIV-1 and
HIV-2 spliced constructs were obtained by a two-step
PCR strategy. All constructed clones were verified by
sequencing.

In vitro transcription

In vitro transcription was carried as previously described
(38–40). Briefly, pRenilla-derived vectors containing a
100 nt long poly(A) tail were linearized by EcoRI diges-
tion. Capped mRNAs were obtained using 1 mg of linear
DNA template; 80 U of T7 RNA polymerase (Promega);
40U of RNAsin (Promega); 10mM of rCTP, rUTP,
rATP; 0.36mM rGTP; 30mM DTT in transcription
buffer [40mM Tris–HCl (pH 7.9), 6mM MgCl2, 2mM
spermidine and 10mM NaCl] and 1.24mM of
m7GpppG cap analogue (New England Biolabs).
Transcription reaction was carried out at 37�C for 2 h
and mRNAs were DNase treated and precipitated with
1 volume of ammonium acetate 5 M (2.5 M final concen-
tration). The integrity of mRNAs was checked on agarose
gel electrophoresis and their concentration was quantified
by spectrophotometry at 260 nm using Nanodrop
(NanoDrop Technologies, Wilmington, DE, USA).

Cell culture, DNA and RNA transfection

T-lymphocytes (Molt-4 cells) were maintained in RPMI
growth media (Gibco, BRL) supplemented with 10%
FCS and 1% L-glutamine at 37�C in a 5% CO2 atmos-
phere. Cells were transfected with proviral-Renilla DNAs
using the GeneJuice� Transfection Reagent (Novagen,
EMD Chemicals Inc.) as indicated by the supplier.
Cells extracts were prepared at 24 h post-transfection
and used either for Renilla activity or RNA extraction
and RT–qPCR. HeLa cells were maintained in DMEM
growth media (Gibco, BRL) supplemented with 10%
FCS at 37�C and 5% CO2. DNA transfection was
carried out using JetPEITM (PolyPlus Transfection) fol-
lowing supplier’s indications. Cells or supernatants were
recovered at 24 h post-transfection and used either for
Renilla activity, RNA extraction and RT–qPCR, reverse
transcriptase (RT) assay or western blot. For RNA trans-
fection, HeLa, Cos7 and 3T3 cells were maintained in
DMEM growth media (Gibco, BRL) supplemented with
10% FCS at 37�C and 5% CO2. PBMCs-derived human
macrophages were obtained and maintained as previously
described (41). mRNA transfection was carried out using
Mirus mRNA transfection system (Mirus Biosciences) as
previously described (39). mRNA-transfected cells were
incubated for 3 h at 37�C, in a 5% CO2 atmosphere
prior to Renilla activity analysis. When appropriate, cells
were treated with 0.5mM sodium arsenite for 30min at
37�C and 5% CO2 and cells extracts were prepared for
western blot analysis.

RT assay

Supernatants from HeLa cells transfected with proviral
DNA were spin down at 10 000 rpm for 30 s to eliminate
cellular debris and then ultracentrifugated in a Beckman
TL-100 rotor at 75 000 rpm during 1 h at 4�C. Viral par-
ticles were resuspended in RT buffer [60mM Tris–HCl
(pH 8.0), 180mM KCl, 6mM MgCl2, 0.6mM EGTA
(pH 8.0), 0.12% Triton X-100, 6mM DTT, 12 mg/ml
poly rA and 6 mg/ml oligo dT] and RT activity was
determined as described previously (42).
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In vitro translation and complementation assays

All mRNAs were translated in 50% of Untreated Rabbit
Reticulocyte System (Promega Co., Madison, WI, USA)
in the presence of KCl (75mM), MgCl2 (0.5mM), 20 mM
of each amino acid for 30min at 30�C as previously
described (40). When corresponded mRNAs were pre-
incubated for 5min at 37�C with hypotonic buffer
[10mM HEPES-KOH (pH 7.6); 10mM KOAc; 0.5mM
MgOAc and protease inhibitor cocktail (Roche)] or
HeLa cells extracts corresponding to 15 mg of total
protein.

Renilla activity

Renilla activity was measured using the Renilla Luciferase
Assay System (Promega Co., Madison, WI, USA) in a
Veritas Luminometer (TurnerBiosystems) as previously
described (39).

Gag-Renilla-specific activity analysis

HIV-1 and HIV-2 Gag–Renilla fusion proteins were
expressed in the Flexi� Rabbit Reticulocyte System
(Promega Co., Madison, WI, USA) as described above
in the presence of 0.6mCi of [35S]-methionine (Perkin
Elmer) and Renilla activity was measured as indicated
above. Equivalent Gag–Renilla activities were precipitated
with 100% TCA (1 volume TCA for 4 volumes of protein)
for 10min on ice and washed three times with acetone.
TCA-precipitated radioactivity was quantified using the
FLA-5000 PhosphorImager (Fujifilm).

Western blot analysis

Cells extracts were subjected to 10% SDS–PAGE and
transferred to PVDF membrane (Amersham Biosciences,
UK Ltd). The membrane was blocked for at least 2 h with
5% dried milk in TBST 1� and incubated overnight at
4�C with a 1/1000 dilution of antibodies directed against
SIVmac Gag (43), eIF2a-P (US Biological) or actin (Santa
Cruz Biotechnologies). After three washes with TBST 1�,
an antirabbit horseradish peroxidase (HRP)-coupled sec-
ondary antibody was added and incubated for 1 h at RT.
The membrane was washed three times with TBST and
HRP was revealed by using SuperSignal� West Pico
Chemiluminiscent Substrate (Pierce, Rockford, Il, USA).

RNA extraction and RT–qPCR

RNA extraction and RT–qPCR were performed exactly as
previously described (44). Briefly, HeLa cells transfected
with Renilla based in vitro transcribed mRNAs were
washed intensively with PBS and lysed with 200 ml of
RLNa buffer [10mM Tris–HCl (pH 8.0), 10mM NaCl,
3mM MgCl2, 1mM DTT, 0.5% NP40 and 15U/ml of
RNaseOUT (Invitrogen Co.)]. Whole-cell extracts were
recovered and RNA extraction was carried out by
adding 1ml of TRIzol� Reagent (Invitrogen Co.) as
indicated by the manufacturer. Extracted RNAs (200 ng)
were reverse-transcribed using the qScriptTM Flex cDNA
kit (Quanta Biosciences). For quantitative PCR, a 20 ml
reaction mix was prepared with 5 ml of template cDNAs
(previously diluted to 1/10), 10 ml of MESA green SYBR

premix (Eurogentec), 0.2mM of sense and antisense
primers and subjected to amplification using a fluores-
cence thermocycler (Applied Biosystems 7000 Real-time
PCR, Foster City, CA, USA). The housekeeping gene
GAPDH was amplified in parallel to serve as a control
reference. Relative copy numbers of Renilla luciferase
cDNAs were compared to GAPDH using x-DCt (where x
corresponds to the experimentally calculated amplification
efficiency of each primer couple). Primers used to quantify
Renilla and GAPDH mRNAs by qPCR were described
previously (44).

RNA secondary structure predictions

Secondary structures were predicted online using the
mfold software (45) available at the unfold server
(http://mfold.rna.albany.edu/).

RESULTS

Low Gag synthesis from the HIV-2 provirus
in human cells

The Gag polyprotein is the major structural component of
the retroviral particle and around 5000 molecules of this
polyprotein are contained in an immature virion (46).
However, up to 80% of the Gag polyprotein produced
could undergo degradation in the cytoplasm (47),
placing efficient Gag synthesis as a critical step to ensure
viral production and the spread of infection. Although
HIV-1 and HIV-2 are closely related, they strongly differ
in their replication rates and viral production (48,49).
These data prompted us to study the levels of Gag expres-
sion from the HIV-1 pNL4-3 (36) and HIV-2 pRod10 (37)
molecular clones in cultured cells (Figure 1). As a first
approach, we analyzed the intracellular levels of Gag
polyprotein in extracts derived from HIV-1 and HIV-2
expressing HeLa cells by using an antibody raised
against the matrix portion of the SIVmac Gag (43).
As observed, this antibody recognized both Gag proteins
and its processed forms (Figure 1A, see western blot).
However, results obtained showed that cells expressing
HIV-1 accumulate much more intracellular Gag than
cells expressing HIV-2 suggesting that HIV-2 Gag could
be produced at lower levels. Similar results were obtained
with another antibody recognizing the capsid region of
Gag (data not shown). Then, to rule out the possibility
that lower intracellular levels of HIV-2 Gag reflect a
higher rate of viral particles release, we measured the
RT activity in the supernatant of transfected cells. This
comparison could be possible as both recombinant viral
enzymes were shown to possess similar specific activities
(50). Results obtained showed that cells transfected with
the HIV-1 molecular clone produced more than threefold
RT activity than cells transfected with the HIV-2 clone
suggesting that lower Gag production in HIV-2 expressing
cells is not related to the release of higher amounts of
HIV-2 Gag to the supernatant (Figure 1A, left graph).
However, these results could reflect a different affinity of
the SIV Gag antibody or even differences in the specific
activities of the virion-associated RT enzymes rather than
differences at the transcriptional or post-transcriptional
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level. Thus, to avoid any of the bias mentioned above and
to perform a direct comparison between these two viruses,
we have developed a quantitative system allowing us to
directly analyze Gag production and gRNA levels by

constructing HIV-1 and HIV-2-derived proviral molecu-
lar clones in which the Renilla luciferase reporter gene was
inserted in frame within the Gag coding region (Figure 1B
and ‘Materials and Methods’ section). These modified

5’ LTR 3’ LTR

Pol
EnvGag

pNL4-3 (HIV-1)           
pRod10 (HIV-2)

Translation efficiency

A

5’ LTR 3’ LTR

Pol
EnvRenilla

Gag-Renilla pNL4-3-Renilla (HIV-1) 
pRod10-Renilla (HIV-2)

B

Supernatant RT activity

RT-qPCR

gRNA levels

Renilla activity/gRNA levels

Translation efficiency

Full-length Gag 
p55 & p57

MA p15 & p17

pN
L4

-3

pR
od

10

actin

Intracellular Gag

gRNA levels

Figure 1. Low HIV-2 Gag production in human cells. (A) Wild-type pNL4.3 (HIV-1) and pROD10 (HIV-2) proviral plasmids (upper scheme,
regulatory and accessory proteins were omitted for simplicity) were transfected in HeLa cells and cells extracts from cells expressing HIV-1 and
HIV-2 were prepared and probed against Gag by western blot as described in ‘Materials and Methods’ section. In parallel, viral production was
determined by measuring the RT activity present in supernatant of transfected cells as described in ‘Materials and Methods’ section (left graph).
(B) Schematic representation of the HIV-1 and HIV-2 proviral-Renilla DNA constructs used in this study (regulatory and accessory proteins were
omitted for simplicity). They correspond to pNL4.3 (HIV-1) and pROD10 (HIV-2) proviral plasmids in which the Renilla reporter gene was inserted
in frame within the Gag coding region as described in ‘Materials and Methods’ section. gRNA levels (left graph) and the translation efficiency from
the gRNA (right graph) were determined in T-lymphocytes (black bars) and HeLa cells (gray bars) at 24 hpt as indicated. Results are normalized to
values obtained for pNL4.3-Renilla (arbitrary set to 1) and expressed as mean±SD corresponding to values obtained in three duplicate independent
experiments.
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proviruses are transcribed, spliced, exported and
translated as the wild-type proviruses but they are defect-
ive in budding (data not shown). Thus, by using these
Renilla proviruses we were able to compare side by side
both viruses under similar conditions and have a better
estimation of translational efficiency from the gRNA by
measuring the enzymatic activity of the Gag–Renilla
fusion normalized to the amount of gRNA (determined
by RT–qPCR against the Renilla ORF). Transfection of
these modified proviral DNAs in human T-lymphocytes
or HeLa cells revealed that translational efficiency (Gag–
Renilla activity normalized by gRNA) from the HIV-1
gRNA was three- to fourfold higher than that of HIV-2
gRNA (Figure 1B, left graph). Quantification of the
gRNA levels by RT–qPCR showed no significant dif-
ferences between HIV-1 and HIV-2 indicating that
they could be present at similar levels within the cells
(Figure 1B, right graph). It should be noted that dif-
ferences in translation efficiency were similar in
T-lymphocytes and HeLa cells suggesting that lower
HIV-2 gRNA translation with respect to HIV-1 occurs
in human cells that are permissive for viral replication.

Taken together, these results indicate that HIV-2
produces lower Gag levels than HIV-1 during a single
round replication cycle probably due to a lower transla-
tional efficiency of its gRNA.

Translation of an HIV-2 gag mRNA is inefficient

Although results present above suggest that HIV-2 gRNA
translation is less efficient than that of HIV-1 during a
single round replication cycle, the molecular processes
that precede gRNA translation (i.e. transcription, 30-end
processing and nuclear export) are complex and controlled
by several viral and cellular proteins (51). These processes
are not fully understood and it is unknown whether they
occur at similar rates in both viruses making very difficult
to compare gRNA translation in the context of a
full-length provirus. Thus, an important challenge at this
stage was to determine the most suitable experimental
strategy to better evaluate the gRNA translational
control in a cellular context. To focus exclusively on trans-
lation, we decided to use an mRNA transfection strategy
that allowed us to study different in vitro generated tran-
scripts directly in the cytoplasm of transfected cells.
Compared to other mRNA transfection strategies, our
system was very efficient with a wide range of mRNAs
and allowed us to measure protein product as early as
3 h post-transfection using very low levels of transfected
mRNAs (0.125 pmol, corresponding to 134 ng of the
larger RNA used in this study). This is important as it
allowed us to have a rapid estimation of protein synthesis
rather than a cumulative effect of mRNA and protein
product accumulation and/or degradation.

Thus, we first designed transcripts that contained all the
viral elements involved in translation; these are the
complete viral 50-UTR (starting at the+1 site of transcrip-
tion, HIV-2 Rod10 and HIV-1 NL4-3 strains) followed by
the entire Gag coding region, which were appended in
frame to the Renilla luciferase reporter gene which serves
as a readout of Gag protein expression. These in vitro

transcribed gag mRNAs contained an m7GpppG cap
structure at their 50-end and a poly (A) tail of 100
residues at the 30 extremity as was previously described
(40) (see cartoon in Figure 2A). Equimolar levels of
HIV-2 and HIV-1 gag mRNAs were transfected in HeLa
cells and Gag expression was measured by reading Renilla
activity at 3 h post mRNA transfection. This revealed that
Gag expression from the HIV-2 gag mRNA was much
lower when compared to HIV-1 (Figure 2A, left graph).
RT–qPCR quantification of transfected mRNAs revealed
no major differences in their intracellular levels indicating
that differences in Gag expression might not reflect differ-
ences in transfection efficiency or stability of both gag
mRNAs (Figure 2A, right graph). This is not surprising
as the HIV-1 and HIV-2 genomic RNAs were shown to be
stable for several hours in the cytoplasm of expressing cells
(52). To rule out the possibility that lower Gag–Renilla
levels from cells transfected with the HIV-2 gag mRNA
were due to a lower specific activity of the HIV-2 Gag–
Renilla fusion protein, we generated HIV-1 and HIV-2
35S-labeled Gag–Renilla in vitro and volumes correspond-
ing to equivalent activities for each Gag–Renilla product
were precipitated with TCA and the associated radioactiv-
ity was quantified. As observed, no major differences were
observed indicating that both Gag–Renilla fusions have
similar specific activities (Figure 2B). As an additional
control, we added two HA tags at the C-terminus of
each Gag–Renilla fusion and we detected proteins by
western blotting after mRNA transfection (data not
shown). In agreement with results obtained using the
Renilla activity as a measure, while HIV-1 Gag–Renilla
product was easily detected by western blot, HIV-2
Gag–Renilla was barely detected and only a faint band
was only observed at longer expositions (data not
shown). Then, to rule out the possibility that differences
in HIV-1 and HIV-2 Gag expression could reflect a faster
degradation of the HIV-2 Gag–Renilla product, we
analyzed the stability of both Gag–Renilla fusion
proteins (Figure 2C). For this, HIV-1 and HIV-2 gag
mRNAs were transfected as in Figure 1A and the trans-
lation inhibitor cycloheximide (CHX) was added at 3 h
post mRNA transfection. We observed that both Gag–
Renilla fusion proteins decayed at similar rates and thus
presented the same stability indicating that differences in
Gag expression occur at the level of translation. We were
then interested to determine whether lower expression
from the HIV-2 gag mRNA compared to HIV-1 could
occur in other cell types. For this, we transfected both
gag mRNAs into African green monkey fibroblasts
(Cos7), murine fibroblasts (3T3) or peripheral blood
mononuclear cells (PBMC)-derived human macrophages
and Gag–Renilla expression was determined (Figure 2D).
As it could be observed, no cellular tropism was evidenced
and lower HIV-2 Gag–Renilla expression was reported
in all cell types tested including primary human macro-
phages which are natural hosts for both human
viruses. Interestingly, these differences were not observed
in the untreated rabbit reticulocyte lysate (URRL) in vitro
system (40), suggesting that host factors and/or the cellular
environment rather than differences in the specific activity
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Figure 2. Translation of the HIV-2 gag mRNA is inefficient in cells. (A) About 0,125 pmoles of in vitro transcribed HIV-2 and HIV-1 gag mRNAs
(see cartoon on the graph) were transfected into HeLa cells as described in ‘Materials and Methods’ section. Renilla activity (graph on the left) and
transfected mRNA levels (graph on the right) were measured at 3 hpt. Results were normalized to values obtained for HIV-1 gag mRNA (HIV-1
Gag, arbitrary set to 1) and expressed as mean±SD corresponding to values obtained in three independent duplicate experiments. (B) Specific
activities of in vitro translated 35S-labeled HIV-1 and HIV-2 Gag–Renilla fusion proteins were analyzed as described in ‘Materials and Methods’
section. Results were first normalized by the methionine content and then to values obtained for HIV-1 Gag–Renilla (HIV-1 Gag, arbitrary set to 1)
and expressed as mean±SD corresponding to values obtained in three independent experiments. (C) About 0.125 pmol of HIV-2 and HIV-1 gag
mRNAs were transfected in HeLa cells and 3 hpt CHX was added at 100 mg/ml. Renilla activity was analyzed at 0, 30, 60 and 90min post CHX
treatment as indicated in the figure. Results are normalized to values obtained at time 0 (arbitrary set to 1) and expressed as mean±SD corres-
ponding to values obtained in three independent duplicate experiments. (D) About 0.125 pmol of HIV-2 and HIV-1 gag mRNAs were transfected in
Cos7 cells, 3T3 cells or human macrophages or translated in vitro in the URRL system and Renilla activity was measured at 3 hpt (transfected cells)
or 30min (in vitro translation). Results were normalized to values obtained for HIV-1 gag mRNA (HIV-1 Gag, arbitrary set to 1) and expressed as
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of the Gag–Renilla fusion proteins are critical in
regulating such differences (see below).

Then, we measured the kinetics of Gag expression from
HIV-2 and HIV-1 gag mRNAs over time (Figure 2E).
Once again, a much lower level of protein synthesis
from the HIV-2 gag mRNA was observed at each time
point suggesting that differences in Gag expression
between HIV-2 and HIV-1 were not due to a delayed
kinetics of HIV-2 translation.

Finally and in order to rule out the possibility that
inefficient translation could reflect a specific feature
of the HIV-2 strain used in these experiments (HIV-2
Rod10), we analyzed translation from HIV-2 gag
mRNA constructs carrying sequences derived from other
isolates. For this, we cloned the 50-UTR-Gag region from
the HIV-2 molecular clone GL-AN, which is able to rep-
licate in a wide variety of lymphocytic cell lines of
human and simian origins (53). We also used sequences
from the primary isolate HIV-2 CDC310319 (54) that were
amplified by using proviral DNA obtained from infected
T-lymphocytes (our unpublished results). As observed
with the Rod10 strain, low Gag expression was re-
ported with these two HIV-2 isolates indicating that
inefficient Gag synthesis (with respect to HIV-1 NL4-3)
is a conserved feature among HIV-2 isolates (Figure 2F).

Taken together, these results indicate that differences in
HIV-1 and HIV-2 Gag synthesis may reflect intrinsic dif-
ferences between both gag mRNA sequence.

The 50-UTR determines lower Gag expression from the
HIV-2 gag mRNA

Then, we went on to characterize the RNA determinants
that could account for low translation of the HIV-2 gag
mRNA. Interestingly, we have previously shown that an
HIV-2 gag mRNA lacking the entire 50-UTR (leaderless
RNA) showed enhanced Gag protein expression in vitro
in a mechanism driven by the IRES located within
the Gag coding region (32–34). These previously pub-
lished observations suggest that ribosomal entry from
the Gag coding region can be competed with ribosomal
entry from the 50-UTR. To address this hypothesis, we
designed chimeric gag mRNAs in which the 50-UTR of
each type of virus was appended to the complete Gag
coding region of the other (see cartoons in Figure 3).
These 50-UTR chimeric gag mRNAs were transfected in
HeLa cells and Gag expression was determined by meas-
urement of the Renilla activity at 3 h post mRNA trans-
fection. Interestingly, when the HIV-2 50-UTR was driving
HIV-1 Gag synthesis, translation was dramatically
reduced (by about 6-fold) compared to the wild-type
HIV-1 gag mRNA (Figure 3). Conversely, when the
HIV-1 50-UTR was driving HIV-2 Gag synthesis,

translation was strongly increased (by 6-fold), suggest-
ing that specific sequences and/or RNA structures
present within the HIV-2 50-UTR may interfere with
translation. It should be noted that replacement of the
HIV-2 50-UTR was not sufficient to reach a level of Gag
synthesis that would be comparable to HIV-1 suggesting
that the HIV-2 50-UTR might compete with the IRESes
present within the Gag coding region for ribosome recruit-
ment (see below).
Taken together, these results strongly indicate that the

50-UTR of HIV-2 interferes with efficient ribosome re-
cruitment onto the gag mRNA.

Figure 2. Continued
mean±SD corresponding to values obtained in three independent duplicate experiments. (E) About 0.125 pmol of HIV-2 and HIV-1 gag mRNAs
were transfected in HeLa cells and Renilla activity was measured at 0, 1, 2, 3, 4 and 6 hpt. Results are normalized to values obtained for HIV-1 gag
mRNA (arbitrary set to 1 at 6 hpt point time) and expressed as mean±SD corresponding to values obtained in three independent duplicated
experiments. (F) About 0.125 pmol of gag mRNAs derived from different HIV-2 strains were transfected in HeLa cells and Gag–Renilla expression
was compared to HIV-1. Renilla activity was measured at 3 hpt. Results are normalized to values obtained for HIV-1 (arbitrary set to 1) and
expressed as mean±SD corresponding to values obtained in three independent duplicate experiments.

Figure 3. The HIV-2 50-UTR impairs Gag expression. About
0.125 pmol of chimeric gag mRNAs in which the 50-UTR of one
virus was appended to the Gag coding region of the other (see
cartoon) were transfected in HeLa cells and Renilla activity was
measured at 3 hpt. In the cartoon, HIV-2/HIV-1 Gag refers to the
RNA that harbors the HIV-2 50-UTR followed by the HIV-1 Gag
coding region. HIV-1/HIV-2 RNA refers to the Renilla RNA that
harbors the HIV-1 50-UTR followed by the HIV-2 Gag coding
region. Results were normalized to values obtained for wild-type
HIV-1 gag mRNA (HIV-1 Gag, arbitrary set to 1) and expressed as
mean±SD corresponding to values obtained in three independent du-
plicate experiments.
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Figure 4. The HIV-2 50-UTR interferes with ribosome recruitment. (A) About 0.125 pmol of Renilla RNAs in which translation was driven by
different 50-UTR (see table on the left) were transfected in HeLa cells as described in ‘Materials and Methods’ section. Renilla activity was measured
at 3 hpt. Results were normalized to values obtained for human b-globin 50-UTR RNA (arbitrary set to 1) and expressed as mean±SD corres-
ponding to values obtained in three independent duplicate experiments. (B) About 0.125 pmol of 50-UTR-Renilla RNAs (see cartoon on the graph)
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Inefficient translation driven by the HIV-2 50-UTR

Results presented above suggest that inefficient transla-
tion of HIV-2 gag mRNA could be attributed to a
negative effect of the 50-UTR rather than any effect of
the Gag coding region. To further confirm these observa-
tions, we have compared translation driven by the
50-UTR of both human viruses in the absence of
any further viral sequences (see cartoon, Figure 4A).
To place our comparison in a more physiological
context, we also included Renilla mRNAs bearing the
50-UTR from different cellular transcripts. These cellular
50-UTRs were selected on the basis of their length
and complexity and included human b-globin, GAPDH,
NADH, cyclin D2 and Line-1. As such, while the
human b-globin 50-UTR is short (52 nt long) and relative-
ly unstructured, the length and complexity increased
through GAPDH, NADH, cyclin D2 to Line-1 50-UTR,
which is longer (909 nt long), GC-rich and highly
structured (see table on the left of Figure 4A). To our
surprise, translation driven by the HIV-1 50-UTR was
very efficient and even higher than that of classical
cellular 50-UTR (Figure 4A). This contrasts with transla-
tion driven by the HIV-2 50-UTR which was extreme-
ly low and only comparable to that of a Renilla
transcript containing a 48 nt-long synthetic 50-UTR
forming an inhibitory stem–loop structure of �35 kcal/
mol (SL-35 in Figure 4A). Similar to results obtained
with gag mRNAs in Figure 2A, lower translation
driven by the HIV-2 50-UTR in HeLa cells (Figure 3B,
left graph) may not reflect differences in transfected
mRNA levels (Figure 4B, right graph) and were independ-
ent of the cell type (Figure 4C) and the HIV-2 strain
used (Figure 4D) confirming that the HIV-2 50-UTR
is less efficient than that of HIV-1 to drive protein synthe-
sis. However, it could be argued that high transla-
tion conferred by the HIV-1 50-UTR was a peculiar
feature of the NL4-3 molecular clone. Thus, 50-UTRs
from different HIV-1 clinical isolates obtained from a
cohort of patients from the Croix Rousse Hospital in
Lyon (France) were analyzed and compared to HIV-2
(Figure 4E). Interestingly, translation driven by the
50-UTR of HIV-1 primary isolates was comparable to
that of b-globin and NL4-3 and always higher than
protein synthesis driven by the HIV-2 50-UTR.

Taken together, these results confirm that the 50-UTR
present within the HIV-2 gRNA is very inefficient in
support translation.

The TAR RNA structure interferes with HIV-2
translation

We then wanted to determine whether lower translation of
HIV-2 could be attributed to any specific RNA determin-
ant present within the 50-UTR. For this, we have
introduced 50 and 30 deletions within both viral 50-UTRs
and analyzed expression of the resulting Renilla tran-
scripts (see cartoon in Figure 5). It should be mentioned
that all these transcripts contains the same context sur-
rounding the AUG start codon to avoid any bias due to
differences in start site recognition. As observed in Figure
5, a mutant in which a 30 deletion was introduced from the
end of PBS to the AUG start codon (called 30 del) did not
significantly alter expression driven by the 50-UTR of
HIV-1 or HIV-2 indicating that the 30 end of the HIV-2
50-UTR is not responsible for inefficient translation.
However, when the TAR RNA element was deleted
from the HIV-2 50-UTR, translation was massively
increased rendering Renilla expression as efficient as that
driven by the HIV-1 50-UTR indicating that HIV-2 TAR
interferes with translation (compare HIV-1 50-UTR and
HIV-2 �TAR in Figure 5A). Several studies have
determined the conformation of the HIV-1 and
HIV-2 TAR structures (13,16–23). As such, while
the HIV-1 TAR structure forms a single stem loop, the
HIV-2 TAR structure can adopt two different conform-
ations that are longer and more complex than that of
HIV-1 (Figure 5B). Nevertheless, the stability of such
structures could be sufficient to interfere with translation
(55–57). Indeed, HIV-1 TAR was shown to be a potent
inhibitor of translation in cell-free systems and Xenopus
oocytes (24,26,27). However, such an effect has been
shown to be much smaller in intact cells (58–60).
Interestingly, we observed that deletion of HIV-1 TAR
structure in cells did not have a strong effect on translation,
thus pointing out for a specific role of HIV-2 TAR in in-
hibiting translation (Figure 5A). The poor inhibitory effect
of HIV-1 TAR that we observed in cells compared to
previous studies could be mostly attributed to the context
on which its effects were analyzed. Most of the previous
studies were based on the addition of a TAR
structure-containing region (usually nucleotides +1 to
+81, +111 or +282 from the HIV-1 50-UTR) in front of
a reporter gene (CAT for instance). Then, translational ef-
ficiency of these TAR-containing mRNAs was compared
with translation of CAT mRNAs that are devoid of any
RNA secondary structure (24,26,27). In this present study,

Figure 4. Continued
were transfected in HeLa cells. Renilla activity and transfected RNA levels were determined at 3 hpt as described in ‘Materials and Methods’ section.
Results were normalized to values obtained for HIV-1 50-UTR RNA (arbitrary set to 1) and expressed as mean±SD corresponding to values
obtained in three independent duplicate experiments. (C) About 0.125 pmol of 50-UTR-Renilla RNAs (see cartoon on the graph) were transfected in
Cos7 and 3T3 cells or human macrophages as described in ‘Materials and Methods’ section. Renilla activity was measured at 3 hpt. Results were
normalized to values obtained for HIV-1 50-UTR RNA (arbitrary set to 1) and expressed as mean±SD corresponding to values obtained in three
independent duplicate experiments. (D) About 0.125 pmol of Renilla mRNAs containing the 50-UTR derived from different HIV-2 strains were
transfected in HeLa cells and Renilla expression was compared to HIV-1. Renilla activity was measured at 3 hpt. Results were normalized to values
obtained for HIV-1 50-UTR RNA (arbitrary set to 1) and expressed as mean±SD corresponding to values obtained in three independent duplicate
experiments. (E) About 0.125 pmol of Renilla RNAs in which translation was driven by the 50-UTR of different naturally occurring HIV-1 isolates
(indicated as Pat#4, 8, 15, 18, 21) together with b-globin, HIV-1 NL4-3 and HIV-2 Rod10 (used as control references) were transfected in HeLa cells
as described in ‘Materials and Methods’ section. Renilla activity was measured at 3 hpt. Results were normalized to values obtained for human
b-globin 50-UTR RNA (arbitrary set to 1) and expressed as mean±SD corresponding to values obtained in three independent duplicate experiments.
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we have compared the effect of TAR deletion from the
viral 50-UTR. As such, TAR deleted constructs do still
contains an important region of the viral 50-UTR. These
differences in experimental design may explain some of the
functional differences that we observed.
However, we were still surprised by this result and we

wanted to analyze it further. Thus, we used the Renilla
mRNAs bearing the wild type and the �TAR 50-UTRs
of HIV-1 and HIV-2 to program in vitro translation reac-
tions in the untreated rabbit reticulocytes lysate (40).
In agreement with previous observations, the TAR struc-
tures of both HIV-1 and HIV-2 were indeed potent inhibi-
tors of translation in vitro (Figure 5C). The discrepancies
between results observed in cells and in vitro could be
attributed to the absence or limiting concentration of
cellular factors such as Lupus autoantigen, Staufen1 or
TRBP, which are able to stimulate HIV-1 translation by
acting on TAR (61–63). Thus, to determine whether the
lack of a strong inhibitory effect observed with HIV-1
TAR in cells could be attributed to the action of cellular
factors, we complemented in vitro translation reactions
with cell extracts derived from HeLa cells. Strikingly,
addition of HeLa cell extracts to the rabbit reticulocyte
lysate nicely recapitulates what was observed in cells.
Whereas translation driven by the HIV-1 50-UTR was
stimulated by 5-fold by the addition of HeLa cells
extract, HIV-2 50-UTR driven translation was rather in-
hibited by 2-fold (Figure 5D). As such, while the inhibi-
tory effect of HIV-1 TAR in vitro was almost completely
lost in the presence of HeLa cells extracts, HIV-2 TAR
still exerted a strong repression of translation.
Taken together, these results suggest that HIV-1 may

have evolved the use of host factors to overcome the in-
hibitory effect of TAR on translation while HIV-2 TAR
did not.

HIV-2 TAR stability impairs ribosome recruitment

Results presented above prompted us to investigate the
mechanism by which HIV-2 TAR could affect translation.
One possibility would be that inhibition was exerted
through the induction eIF2a phosphorylation due to
TAR-dependent activation of PKR (64,65). Another pos-
sibility is that the higher stability of the HIV-2 TAR struc-
ture interferes with entry of initiation complexes at the
50-end.
To test the first hypothesis, phosphorylated eIF2a was

visualized by western blot in extracts derived from cells
previously transfected with a control Renilla mRNA
(b-globin-Renilla) or with the Renilla mRNAs carrying
the HIV-1 50-UTR, HIV-2 50-UTR or HIV-2 �TAR
(Figure 6A, lanes 2–5). As controls mock transfected
cells untreated or treated with sodium arsenite were
also included (Figure 6A, lanes 1 and 6, respectively).
Although phosphorylated eIF2a was detected after trans-
fection of all the mRNA tested, these levels were similar to
the basal levels of phosphorylated eIF2a observed in mock
transfected cells and lower to that observed in cells treated
with sodium arsenite suggesting that induction of eIF2a
phosphorylation was not dependent on HIV-2 TAR
(Figure 6A, compare lanes 1–5 with line 6). Moreover,

it should be mentioned that treating the cells with
sodium arsenite virtually killed translation driven by the
b-globin or the HIVs 50-UTRs indicating that phosphor-
ylation of eIF2a could not benefit translation of any of the
mRNAs used in this study (data not shown).

As showed in Figure 5B, and references herein, HIV-2
and HIV-1 50-UTRs strongly differ in the length and pre-
dicted folding of their TAR structures. Although both
motifs are expected to be in close proximity to the
cap structure, the much stronger stability of HIV-2
TAR could be responsible for reduced translational effi-
ciency. However, the HIV-2 50-UTR contains a 140 nt
intron that is removed in multiple spliced transcripts
(66). Interestingly, Lodmell and colleagues (67) recently
showed that this intron could also be removed from the
gRNA 50-UTR resulting in an mRNA with enhanced
translation. Removal of this intron results in the destabil-
ization of the TAR RNA structure as at least half of
its sequence is contained in the intron (see cartoon in
Figure 6B). Given the results obtained so far by our
group and these new data from Lodmell’s lab, we
created a Renilla mRNA carrying the spliced version of
the 50-UTR present within the HIV-2 gRNA as recently
described (67). This HIV-2 50-UTR spliced mRNA was
transfected in HeLa cells and translational efficiency was
compared to that of Renilla mRNAs carrying the
wild-type HIV-2 and HIV-1 50-UTRs (Figure 6B, left
panel). Similar to results obtained with the HIV-2
�TAR Renilla RNA and in agreement with previous
results (67), destabilization of HIV-2 TAR resulted in an
enhanced translation that reached the high levels of the
HIV-1 50-UTR, confirming that the higher stability of the
HIV-2 TAR structure strongly interferes with ribosome
recruitment at the 50-end.

Then, we wanted to determine the effects that such a
splicing event could have in the context of an HIV-2 gag
mRNA (Figure 6B, right panel). Interestingly, and in
agreement with data obtained with the HIV-1/HIV-2
Gag chimera (Figure 3), removal of the 50-UTR intron
resulted in 5-fold stimulation of Gag expression.
However, this enhancement was not sufficient to reach
the levels of HIV-1 Gag production further indicating
that ribosome recruitment at the 50-end may interfere
with the IRES located within the Gag coding region.

DISCUSSION

The molecular mechanism controlling HIV-1 translation
has been a matter of debate for many years (68). While
some people have found that cap-dependent ribosomal
scanning is the major mechanism taking place (25,69,70),
others have demonstrated the presence of a functional
IRES element within the 50-UTR (28–30,71,72) and the
Gag coding region (31). In the case of HIV-2, IRES
elements have only been described within the Gag
coding region (32–35) and the role of the 50-UTR
remained largely unknown. Although a large number of
these studies have focused on the molecular mechanism
of ribosome recruitment (i.e. IRES-driven versus cap-
dependent) none of them have investigated how overall
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Figure 5. TAR interferes with ribosome recruitment onto the HIV-2 gRNA. (A) About 0.125 pmol of Renilla mRNAs containing the wild-type viral
50-UTR or 50 and 30 deletions (see cartoon on the graph) were transfected in HeLa as described in ‘Materials and Methods’ section. Renilla activity
was measured at 3 hpt. Results were normalized to values obtained for HIV-1 50-UTR RNA (arbitrary set to 1) and expressed as mean±SD
corresponding to values obtained in three independent duplicate experiments. (B) Secondary structure prediction and stability of HIV-1 and HIV-2
TAR RNA structure using the mfold software as indicated in ‘Materials and Methods’ section. (C) The untreated rabbit reticulocyte lysate was
programmed with 0.125 pmol of wild-type or �TAR Renilla mRNAs and Renilla activity was measured after 30min. Results were normalized to
values obtained for HIV-1 50-UTR RNA (arbitrary set to 1) and expressed as mean±SD corresponding to values obtained at least in three
independent experiments. (D) The untreated rabbit reticulocyte lysate was programmed with 0.125 pmol of wild-type or �TAR Renilla mRNAs
in the presence of buffer or HeLa cells extracts as described in ‘Materials and Methods’ section. Renilla activity was measured after 30min. Results
were normalized to values obtained for HIV-1 50-UTR RNA in the presence of buffer (arbitrary set to 1) and expressed as mean±SD corresponding
to values obtained at least in three independent experiments.
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translational efficiency of these two related viruses would
be compared. This is probably due to the fact that a side-
by-side comparison is technically difficult to perform in the
context of viral infection as the viral life cycle and the
nature of the proteins produced by each virus are very
different. To circumvent some of these problems, we
have used a very efficient mRNA transfection strategy of
different synthetic constructs carrying the different RNA
elements that have been shown to be involved in gRNA
translation (i.e. the 50-UTR and the Gag coding region).
Results presented herein show that expression from the

HIV-1 gag mRNA was higher than that of the HIV-2 gag

mRNA in different cell lines including T-lymphocytes and
PBMC-derived human macrophages (Figures 1 and 2).
Importantly, no evident differences in the levels of trans-
fected mRNAs or the specific activity and stability of both
Gag–Renilla fusion proteins were observed indicating
that differences in expression between HIV-1 and HIV-2
gag mRNAs were exclusively at the level of translation.
Switching the 50-UTR of both gag mRNAs and the use of
reporter constructs bearing the 50-UTR in the absence of
any further viral coding region showed that lower trans-
lational efficiency of the HIV-2 gag mRNA was merely
due to the presence of its highly structured 50-UTR

A

B

Figure 6. HIV-2 TAR stability impairs ribosome recruitment. (A) HeLa cells were transfected with equal molar quantities of Renilla mRNAs as
indicated in the figure and cells extracts were prepared at 3 hpt for western blot analyses. In parallel, cells extracts from mock transfected cells or
mock transfected cells treated with sodium arsenite during 30min were also prepared and used as controls. (B) HeLa cells were transfected with
0.125 pmol of a control RNA or with HIV-1 50-UTR, HIV-2 50-UTR or HIV-2 �TAR-Renilla RNAs and whole cellular extracts were prepared at 3
hpt and probed against eIF2a, eIF2a phosphorylated and PABP by western blot as described in ‘Materials and Methods’ section. (C) Schematic
representation not at scale of the HIV-2 50-UTR indicating the position of the alternative splice donor (SD0) and splice acceptor (SA0) that results in
the removal of the 50-UTR intron described by Lodmell et al. (67). About 0.125 pmol of wild-type or 50-UTR spliced HIV-2 Renilla mRNA (left
graph) or 50-UTR spliced HIV-2 Gag–Renilla mRNA (right graph) were transfected in HeLa cells together with the corresponding HIV-1 Renilla
mRNA and Renilla activity was measured at 3 hpt. Results were normalized to values obtained for HIV-1 mRNAs (arbitrary set to 1) and expressed
as mean±SD corresponding to values obtained in three independent duplicate experiments.
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(Figures 3 and 4). This was confirmed by deletion experi-
ments pointing out a specific role of the HIV-2 TAR RNA
structure (Figure 5). We observed that complementation
of in vitro translation reactions with HeLa cells extracts
was rather inhibitory for translation driven by the HIV-2
50-UTR (Figure 5), indicating that host factors may con-
tribute to the low translation observed from the HIV-2
gRNA in intact cells. Moreover, we observed that
swapping the 50-UTR (Figure 3) or destabilizing TAR
(Figure 6) did not result in HIV-2 Gag levels resembling
those observed with HIV-1 despite similar properties of
both Gag–Renilla fusions. Interestingly, the activity of
the HIV-2 gag IRES was increased by several folds
when the entire 50-UTR was removed from the mRNA
(32–34). These results suggest that ribosomal entry at
the 50 end could potentially interferes with ribosome re-
cruitment from the Gag IRES and both mechanisms may
be tightly regulated during viral replication.

Although a strong inhibitory effect of TAR was seen for
both viral mRNAs in vitro, such a strong effect of TAR
was only seen with HIV-2 in intact cells in a mechanism
that was dependent on its intrinsic stability rather than
PKR activation (Figures 5 and 6). As such, protein syn-
thesis driven by the HIV-1 50-UTR was very efficient and
even higher than translation driven by short and unstruc-
tured cellular 50-UTR such as b-globin, GAPDH or
NADH (Figure 4). Several host RNA-binding proteins
including Staufen1, La autoantigen and TRBP were
shown to stimulate HIV-1 translation by acting at the
level of the TAR RNA structure, and thus may contribute
to alleviate TAR interference (61–63). In fact, complemen-
tation of the rabbit reticulocyte lysate in vitro system with
HeLa cells extracts resulted in an important loss of inhib-
ition by TAR and the concomitant stimulation of HIV-1
translation (Figure 5). Interestingly, addition of HeLa
cells extracts to in vitro translation reactions had no the
same effect on HIV-2 translation. To date, it is unknown
whether cellular factors participate in the regulation of
HIV-2 translation through TAR. However, destabiliza-
tion of the TAR structure by removal of an intron
present within the 50-UTR (66,67) and the use IRES
elements within the Gag coding region (32–35) confers two
alternative ways to overcome TAR constraints and allow
Gag and Gag-Pol production. Thus, the direct binding of
eIF3 and the 40S ribosomal subunit to the Gag IRES (35)
may allow the full-length unspliced HIV-2 gRNA to be
associated with polysomes. Nevertheless, the poor
translation of the HIV-2 genomic RNA provides an
explanation for limited Gag production observed during
viral replication (Figure 1) and may be required for cis
co-translational packaging of the gRNA (73,74).
Interestingly, the lack of splicing event in the HIV-2
50-UTR or mutations in TAR from the closely related
virus SIVmac were shown to not impact viral replication
despite its ability to increase translation of a reporter gene
(67,75). Moreover, the HIV-2 50-UTR spliced gRNA was
shown to be excluded from the viral particles despite the
presence of all packaging signals (67) (and our unpub-
lished data), further supporting a physiological role for
slowed translation and gRNA packaging during the
HIV-2 replication cycle.
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