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As usual, denote by P (n) the largest prime factor of the integer n 1 with the convention P (1) = 1. For 0 < θ < 1, define

) and of Fengjuan Chen-Yonggao Chen (2016). As a corollary, we partially prove a conjecture of Chen-Chen about the size of T θ (x). Finally we propose a new conjecture on T θ (x).

Introduction

The distribution of shifted primes with large prime factors is an interesting suject in number theory, which is related to many well known arithmetic problems such as the last Fermat theorem [START_REF] Fouvry | Théorème de Brun-Titichmarsh; application au théorème de Fermat[END_REF], the twin prime conjecture [START_REF] Zhang | Bounded gaps between primes[END_REF], RSA schemes [START_REF] Rivest | Are 'Strong' Prime Needed for RSA ?[END_REF], etc. Denote by P (n) the largest prime factor of n with the convention P (1) = 1. For 0 < θ < 1, we define the quantity (1.1)

T θ (x) := p x : P (p -1) p θ , where and in the sequel the letter p denotes a prime number. We are interested in the following questions:

• non-trivial lower bounds for T θ (x) with θ as large as possible,

• good lower bounds for T θ (x) with fixed θ.

The first problem was initialised by Goldfeld [START_REF] Goldfeld | On the number of primes p for which p + a has a large prime factor[END_REF] and has a rich history. A detailed historical description can be found in [START_REF] Baker | The Brun-Titchmarsh theorem on average[END_REF]. Here we shall treat the second question, i.e. the density of shifted primes with large prime factors. With the help of the Bombieri-Vinogradov theorem, Luca, Menares & Pizarro-Madariaga [START_REF] Luca | On shifted primes with large prime factors and their products[END_REF] proved that for 1 4 θ 1 2 the inequality

(1.2) T θ (x) {1 -θ + E(x)} x log x (x 2)
holds with

(1.3) E(x)        log 2 x log x for 1 4 < θ 1 2 1 (log x) 2/3 for θ = 1 4
where log k is the k-fold iterated logarithm. Very recently, F.-J. Chen & Y.-G. Chen [START_REF] Chen | On the largest prime factor of shifted primes[END_REF] further considered this problem and obtained the following results:

(a) The inequality (1.2) holds for 0 < θ < 1 2 with (1.4) E(x) (log x) -1 (x 2).

(see [2, Theorem 1.1]) (b) For any integer k 2, there exists at most one θ ∈

[ 1 k+1 , 1 k ) such that (1.5) T θ (x) ∼ (1 -θ) x log x for x → ∞. (see [2, Theorem 1.2])
They also proposed the following conjectures [2, Conjectures 1.4 and 1.5]:

(c) For any integer k 1 and any θ ∈ [ 1 k+1 , 1 k ), we have

(1.6) T θ (x) 1 - 1 k + 1 + o(1) x log x ( x 2). 
(d) For any fixed 0 < θ < 1, we have

(1.7) T θ (x) ∼ (1 -ρ(1/θ))
x log x for x → ∞, where ρ(u) is the Dickman function, defined as the unique continuous solution of the equation differential-difference

ρ(u) = 1 (0 u 1), uρ (u) = -ρ(u -1) (u > 1).
The main aim of this paper is to improve the lower bound density 1-θ in (1.2) and further examine the size of T θ (x). As usual, denote by π(x) the number of primes not exceeding x and by π(x; q, a) the number of primes p ≡ a (mod q) not exceeding x. We use Λ(n) to denote von Mangoldt function. Let us consider the following weighted sum

(1.8) T θ (x) := p x P (p-1) x θ log(p -1) = ψ 0 (x) -T c θ (x),
where

ψ 0 (x) := p x log(p -1), T c θ (x) :=
By the formula log(p -1) = q|(p-1) Λ(q), we can write (1.9)

T θ (x) = q x P (q) x θ Λ(q) n x-1 q|n, P (n) x θ n+1 is prime 1.
In order to estimate the last sum, Luca, Menares & Pizarro-Madariaga [START_REF] Luca | On shifted primes with large prime factors and their products[END_REF] and J.-F. Chen & Y.-G. Chen [START_REF] Chen | On the largest prime factor of shifted primes[END_REF] neglected the x θ -friable feature of n (i.e. whose all prime factors do not exceed x θ ), and wrote (1.10)

T c θ (x) q x, P (q) x θ Λ(q)π(x; q, 1) = π(x) q x θ q is prime log q ϕ(q) + q x θ q is prime (log q) π(x; q, 1) - π(x) ϕ(q) + O(π(x)),
where ϕ(q) is the Euler function and we have used the Brun-Titchmarsh inequality of Montgomery-Vaughan's form [START_REF] Montgomery | On the large sieve[END_REF]:

(1.11) π(x; , a) 2x ϕ( ) log(x/ ) valable uniformly for 1 < x and (a, ) = 1, to bound the contribution of prime powers p ν with ν 2 (see (3.2) below). Thus their results (1.2)-(1.4) follow from the Bombieri-Vinogradov theorem and the prime number theorem.

In this paper, we shall explore the x θ -friable feature of n in (1.9) by the sieve method and theory of friable number (see Proposition 2.1 below). This will be realised with the help of Rosser-Iwaniec's sieve [START_REF] Iwaniec | Rosser's sieve[END_REF][START_REF] Iwaniec | A new form of the error term in the linear sieve[END_REF] and some results of Fouvry-Tenenbaum [START_REF] Fouvry | Répartition statistique des entiers sans grand facteur premier dans les progressions arithmétiques[END_REF] and of Wolke [START_REF] Wolke | Über die mitlere Verteilung der Werte zahlentheorische Funktionen auf Restklassen I[END_REF] on friable integers in arithmetic progressions.

Our results are as follows.

Theorem 1. For x → ∞, we have

(1.12) T θ (x)        1 -4 1/θ 1/θ-1 ρ(t) t dt + o(1) π(x) if 0 < θ < θ 1 , (1 -θ + o(1))π(x) if θ 1 < θ 1 2
, where θ 1 ≈ 0.3517 is the unique solution of the following equation

(1.13) g(θ) := θ -4 1/θ 1/θ-1 ρ(t) t dt = 0.
Remark 1. Let θ 0 ≈ 0.251 be determined by max

0<θ 1 2 g(θ) = g(θ 0 ) ≈ 0.226.
It is easy to see that g(θ) is increasing on (0, θ 0 ] and decreasing on [θ 0 , θ 1 ]. Since lim θ→0+ g(θ) = 0 = g(θ 1 ), Theorem 1 improves (1.2) when 0 < θ < θ 1 .

Theorem 2. Assume the Elliott-Halberstam conjectures for prime numbers and for friable integers * . Then for x → ∞, we have

(1.14) T θ (x)        1 -2 1/θ 1/θ-1 ρ(t) t dt + o(1) π(x) if 0 < θ < θ1 , (1 -θ + o(1))π(x) if θ1 < θ < 1,
where θ1 ≈ 0.4134 is the unique solution of the following equation

(1.15) g(θ) := θ -2 1/θ 1/θ-1 ρ(t) t dt = 0.
Remark 2. Let θ0 ≈ 0.278 be determined by max

0<θ 1 2 g(θ) = g( θ0 ) ≈ 0.245.
It is easy to see that g(θ) is increasing on (0, θ0 ] and decreasing on [ θ0 , θ1 ]. Since lim θ→0+ g(θ) = 0 = g( θ1 ), Theorem 2 gives a better lower bound than Theorem 1 ( conditionally).

As a corollary of Theorems 1 and 2, we can obtain the following result about Conjectures (1.6) and (1.7) of Fengjuan Chen and Yongago Chen and reinforce their Theorem 1.2 of [START_REF] Chen | On the largest prime factor of shifted primes[END_REF] (see also the point (b) above).

Corollary 1. (i) For k 3, there is no θ ∈ [ 1 k+1 , 1 k ) such that (1.5) holds. (ii)
The inequality (1.6) holds for all integers k 3 and all reals θ ∈ [ 1 k+1 , 1 k ). About the size of T θ (x), we propose the following conjecture. Conjecture 1. For x → ∞, we have

(1.16) T θ (x) ∼ D(θ)π(x) with D(θ) :=          1 - 1/θ 1/θ-1 ρ(t) t dt if 0 < θ 1 2 , 2 -2θ - 1/θ 1 ρ(t) t dt if 1 2 < θ < 1.

To sieve shifted friable numbers

The aim of this section is to prove Proposition 2.1 below, which consists one of our key tools for the proof of Theorem 1. It is rather closed to Theorem 4 of [START_REF] Fouvry | Répartition statistique des entiers sans grand facteur premier dans les progressions arithmétiques[END_REF] and the proof also is rather similar. We believe that this should be of independent interest and shall find some others applications.

Let us introduce some standard notation in theory of friable number and in sieve method. For x 1 and y > 1, define

S(x, y) := {n x : P (n) y}, Ψ(x, y) := |S(x, y)|.
Further for (a, q) = 1, we also define

Ψ(x, y; a, q) := n∈S(x,y) n≡a (mod q) 1, Ψ q (x, y) := n∈S(x,y) (n,q)=1
1 and E(x, y; a, q) := Ψ(x, y; a, q) -1 ϕ(q) Ψ q (x, y).

Let f and F be the continuous solutions of the system of differential-difference equations

sF (s) = 2e γ , sf (s) = 0 (0 < s 2) (sF (s)) = f (s -1), (sf (s)) = F (s -1) (s > 2)
where γ is the Euler constant.

We have the following result.

Proposition 2.1. Let 0 < θ 1 2 . Define A q := {n + 1 : n ∈ S(x, y) and q | n}, P q := {p : p q} and S(A q ; P q , z) := a∈Aq (a,Pq(z))=1

1 with P q (z) := p z p∈Pq p.
Then we have

S(A q ; P q , z) Ψ x q , y ϕ(q) q p z p∈Pq 1 - 1 p {F (s) + O(V )} + R q (2.1) S(A q ; P q , z) Ψ x q , y ϕ(q) q p z p∈Pq 1 - 1 p {f (s) + O(V )} -R q (2.2)
uniformly for

(2.3) x x 0 , exp{(log 2 x) 2 } y x θ
and q ∈ S(x, y), z 2, s 1, D = z s x, where

V := 1 3 √ log x + log 2 y log y , (2.4) R q := d D (d,q)=1 µ(d) 2 |E(x/q, y; -q, d)| + |E(x/q, y; -q, 2d)| (2.5)
with qq ≡ 1 (mod d), and µ(d) is the Möbius function.

In order to prove Proposition 2.1, we need a result of Iwaniec [START_REF] Iwaniec | Rosser's sieve[END_REF][START_REF] Iwaniec | A new form of the error term in the linear sieve[END_REF] (see also [START_REF] Fouvry | Répartition statistique des entiers sans grand facteur premier dans les progressions arithmétiques[END_REF]

, Lemme 4.1]). Lemma 2.2. Let D 2. There is two sequences {λ ± d } d 1 , vanishing for d > D or µ(d) = 0, verifying |λ ± d | 1, such that (2.6) d|n λ - d d|n µ(d) d|n λ + d (n 1)
and

d|P (z) λ + d w(d) d p z p∈P 1 - w(p) p F (s) + O e √ L-s 3 √ log D (2.7) d|P (z) λ - d w(d) d p z p∈P 1 - w(p) p f (s) + O e √ L-s 3 √ log D (2.8)
for any z ∈ [2, D], s = (log D)/ log z, set of prime numbers P and multiplicative function w satisfying 0 < w(p) < p (p ∈ P), (2.9) Proof. We shall treat the case where q is odd. The other case is simpler. First we note that the integers counted in S(A q ; P q , z) must be odd since z 2. Thus the inversion formula of Möbius allows us to write S(A q ; P q , z) = 2m∈S(x,y) 2m≡0 (mod q) d|(2m+1,Pq(z)) µ(d).

u<p v, p∈P 1 - w(p) p -1 log v log u 1 + L log u (2 u v z), (2.
By using (2.6) and inverting summations, it follows that S(A q ; P q , z) 2m∈S(x,y) 2m≡0 (mod q) d|(2m+1,Pq(z))

λ + d = d|P 2q (z) λ + d 2m∈S(x,y) 2m≡0 (mod q) 2m≡-1 (mod d)
1.

In view of the Chinese remainder theorem, we have S(A q ; P q , z)

d|P 2q (z) λ + d 2m∈S(x,y) 2m≡-qq (mod dq) 1 = d|P 2q (z) λ + d 2n∈S(x/q,y) 2n≡-q (mod d) 1.
Noticing that 2n∈S(x/q,y) 2n≡-q (mod d) 1 = Ψ(x/q, y; -q, d) -Ψ(x/q, y; -q, 2d) = Ψ d (x/q, y) -Ψ 2d (x/q, y) ϕ(q) + E(x/q, y; -q, d) -E(x/q, y; -q, 2d), we can deduce that (2.11) S(A q ; P q , z) M q + R q ,

where

M q := d|P 2q (z) λ + d ϕ(d) Ψ d (x/q, y) -Ψ 2d (x/q, y)
and we have used the fact that |λ + d | 1 and λ + d = 0 (d > D) for obtaining the expression of R q . By inverting the summations, we have

M q = d|P 2q (z) λ + d ϕ(d) 2m∈S(x/q,y) (2m,d)=1 1 = m∈S(x/2q,y) d|P 2mq (z) λ + d ϕ(d) •
Now we can apply (2.7) with w(p) = p/ϕ(p) to deduce that (2.12)

M q m∈S(x/2q,y) p z, p 2mq 1 - 1 p -1 F (s) + O 1 3 √ log D F (s) + O 1 3 √ log D p z, p 2q 1 - 1 p -1 m∈S(x/2q,y) (m,q)=1 H(m),
where H(m) is the strongly multiplicative function defined by

H(p) = 1 if p = 2 or p > z, p-1 p-2 if 2 < p z.
In order to compute the last sum in (2.12), we define a multiplicative function h by the relation

H = 1 * h. Thus m∈S(x/2q,y) (m,q)=1 H(m) = n∈S(x/2q,y) (n,q)=1 h(n)Ψ q (x/(2nq), y).
We split the sum over n into two parts according to n (log y) 3 or n > (log y) 

H(m) = Ψ x q , y ϕ(q) q n (log y) 3 (n,q)=1 h(n) 2n 1 + O log 2 y log y + O Ψ x q , y ϕ(q) q n>(log y) 3 h(n) n 5/6 .
On the other hand, in view of h = H * µ, a simple calculation shows that

h(p) = 0 if p = 2 or p > z 1 p-2 if 2 < p z and h(p ν ) = 0 (ν 0).
From these, it is easy to see that h(n) n -1/2 for all n 1. Thus

n>(log y) 3 h(n) n 5/6
1 log y and n (log y) 3 (n,q)=1

h(n) n = n 1 (n,q)=1 h(n) 2n + O 1 log y = 2<p z p q 1 + 1 p(p -2) + O 1 log y = 2<p z p q 1 + 1 p(p -2) 1 + O 1 log y ,
where the implied constants are absolute. Inserting these into (2.13), we obtain

m∈S(x/2q,y) (m,q)=1 H(m) = Ψ x q , y ϕ(q) 2q p z p q 1 + 1 p(p -2) 1 + O log 2 y log y .
Combining this with (2.12), we find that (2.14) M q Ψ x q , y ϕ(q) q p z p q

1 - 1 p F + O 1 3 √ log D + log 2 y log y .
Now the required upper bound (2.1) follows from (2.11) and (2.14).

The lower bound (2.2) can be proved in the same way.

Proof of Theorem 1

3.1. Beginning of the proof.

Our approach is different from [START_REF] Luca | On shifted primes with large prime factors and their products[END_REF][START_REF] Chen | On the largest prime factor of shifted primes[END_REF]. We shall explore the x θ -friable feature of n in (3.1) below with the help of Proposition 2.1 above. Similar to (1.9), we first write (3.1)

T θ (x) = q x P (q) x θ Λ(q) n x-1 q|n, P (n) x θ n+1 is prime 1 = q x θ q is prime (log q) n∈S(x-1,x θ ) q|n, n+1 is prime 1 + O x log x ,
where we have used the Brun-Titchmarsh inequality (1.11) to bound the contribution of prime powers:

(3.2) q x θ , q is prime q ν x, ν 2 log q p x p≡1 (mod q ν ) 1 q x θ , q is prime q ν x, ν 2

x log q q ν log(2x/q ν ) x log x • Let A q , P q and S(A q ; P q , z) be defined as in Proposition 2.1. Take

(3.3) y = x θ (0 < θ < 1 2 ), D q = (x/q) 1/2 e -(log x) 1/3 , z q = D 1/2 q .
Obviously n∈S(x-1,x θ ) q|n, n+1 is prime 1 S(A q , P q , z).

From (2.1) of Proposition 2.1, we can deduce

(3.4) T c θ (x) M 1 + O (log x) -1/3 + R + O x(log x) -1 ,
where

M := q x θ q is prime (log q)Ψ x q , x θ log q q p zq p q 1 - 1 p F log D q log z q , R := q x θ (log q)R q .
3.2. Estimation for the error term R.

In this subsection, we bound the error term R in (3.4). Our main tool is the mean value theorem of Bombieri-Vinogradov type on friable integers of Fouvry & Tenenbaum [4, (7.1)]. The following inequality is a particular case of their result: For any A > 0 and θ ∈ (0, 1), the inequality

(3.5) x 1/2 e -(log x) 1/3 τ ( ) 3 max (a, )=1 |E(x, x θ ; a, )| A,θ
x (log x) A holds for x 3, where τ (n) is the classic divisor function. This implies immediately

(3.6) R (log x) q x θ d (x/q) 1/2 e -(log x) 1/3 (d,q)=1 |E(x, x θ ; -q, d)| (log x) q x θ d (x/q) 1/2 e -(log x) 1/3 (d,q)=1 max (a,d)=1 |E(x, x θ ; a, d)| (log x) q x θ x q(log x) 3 x log x • 3.3.
Evaluation for the main term M.

According to Hildebrand (cf. [6, Theorem 1]), we have

Ψ(x, y) = xρ(u) 1 + O ε log(u + 1) log y
uniformly for exp{(log 2 x) 5/3+ε } y x, where u := (log x)/ log y. By the fact that F (2) = e γ and the Mertens formula, we have

M = 4x q x θ q is prime ρ log(x/q) θ log x log q q log(x/q) 1 + O 1 log x .
With the help of the prime number theorem, a simple partial integration allows us to deduce that (3.7)

M = 4x x θ 2 ρ log(x/v) θ log x dv v log(x/v) 1 + O 1 log x = 4x 1/θ-(log 2)/ log x 1/θ-1 ρ(t) t dt 1 + O 1 log x = 4x 1/θ 1/θ-1 ρ(t) t dt 1 + O 1 log x .
3.4. End of the proof of (1.14). Inserting (3.7) and (3.6) in (3.4) , we find that

(3.8) T c θ (x) 4 1/θ 1/θ-1 ρ(t) t dt • x 1 + O θ 1 3 √ log x .
This and the prime number theorem imply that

T θ (x) 1 -4 1/θ 1/θ-1 ρ(t) t dt) x 1 + O θ 1 3 √ log x
for x → ∞. In view of T θ (x) T θ (x) log x, it follows that

T θ (x) 1 -4 1/θ 1/θ-1 ρ(t) t dt) x log x 1 + O θ 1 3 √ log x for x → ∞.
This proves the first inequality in (1.14). The second one is (1.2) of Chen-Chen.

3.5. Computation of θ 0 . For 0 < θ 1 2 , we have

g (θ) = 1 + 4 θ ρ 1 θ - 4 θ(1 -θ) ρ 1 θ -1 .
By the changement of variables u = 1/θ -1, we have

h(u) := g (θ) = 1 + 4(u + 1)ρ(u + 1) -4(u + 2 + u -1 )ρ(u).
With the help of the relation uρ (u) = -ρ(u -1) (u > 1), we can deduce that On the other hand, by noticing that ρ (u) < 0 (u > 1) implies that

uρ (u) = -ρ (u) -ρ (u -1) > 0 (u > 2),
for any u > 2 there is some

ξ 1 ∈ (u -1, u), ξ 2 ∈ (u, u + 1) and ξ ∈ [ξ 1 , ξ 2 ] such that ρ(u + 1) -2ρ(u) + ρ(u -1) = ρ (ξ 2 ) -ρ (ξ 1 ) = ρ (ξ) > 0.
Combining it with the precedent relation, we have h (u) > 0 (u > 2). This implies that g (θ) < 0 for θ < 1 3 . Thus g (θ) is decreasing on (0, As before, the function

g (θ) = 1 + 2 θ ρ 1 θ - 2 θ(1 -θ) ρ 1 θ -1 .
is decreasing on (0, 1 3 ). We can check

g ( 1 4 = 1 + 8ρ(4) -32 3 ρ(3) > 1 + 8 × 0.0049 -32 3 × 0.0487 > 0.519, g ( 1 3 = 1 + 6ρ(3) -9ρ(2) < 1 + 6 × 0.0487 -9 × 0.3068 > -1.469. Thus θ0 ∈ ( 1 4 , 1 3 
). A numerical computation shows θ0 ≈ 0.278 and g( θ0 ) ≈ 0.245. When 0 < θ θ1 , the proof is the same as Theorem 1. The only difference is that we can take (4.1) y = x θ (0 < θ < 1 2 ), D q = (x/q)e -(log x) 

T c θ (x) 2 1/θ 1/θ-1 ρ(t) t dt • x 1 + O θ 1 3 √ log x .
If θ1 < θ < 1, in view of (1.10), the Elliott-Halberstam conjecture for prime numbers and the asymptotic formula (4.3) p x θ , q is prime log q ϕ(q) = log x + O(1)

allow us to deduce that First we consider the case of 0 < θ < 1 2 . From the proof of (4.2), we know that the constant factor 2 comes from application of sieve method. Thus the expected result should be where T c 1-θ,θ (x) :=

x 1-θ <q x θ q is prime log q n∈S(x-1,x θ ) q|n, n+1 is prime 1 =

x θ 0 <q x θ q is prime (log q)π(x -1; q, 1).

Similar to (4.5), the expected result for T c 1-θ (x) should be

T c 1-θ (x) ∼ 1/θ 1 ρ(t) t dt • x as x → ∞.
On the other hand, (4.4), we should have, under the Elliott-Halberstam conjecture for prime numbers, that T c 1-θ,θ (x) ∼ (2θ -1)x Inserting these into (4.6), we find that

T c θ (x) ∼ 2θ -1 + 1/θ 1 ρ(t) t dt x.
This implies (1.16) as before.

Proof of Corollary 1

Next we prove Corollary 1.(ii).

If k 3 and 1 k+1 θ < 1 k , we have, as before,

1 -θ + g(θ) = 1 -4 1/θ 1/θ-1 ρ(t) t dt 1 -4ρ(k -1) log k k -1 > 1 -4 ρ(k -1) k -1 > 1 - 4 (k -1) • (k -1)! 1 - 4 k + 1 ,
where we have used the fact that ρ(k) 1/k! (see [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]Theorem 5.(iv)]). This completes the proof of Corollary 1.(ii).
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	g ( 1 4 = 1 + 16ρ(4) -64 3 ρ(3)				
	> 1 + 16 × 0.0049 -64 3 × 0.0487 > 0.039,
	g ( 1 3 = 1 + 12ρ(3) -18ρ(2)				
	< 1 + 12 × 0.0487 -18 × 0.3068 < -3.937.

Thus θ 0 ∈ ( 1 4 , 1 3 ). A numerical computation shows θ 0 ≈ 0.251 and g(θ 0 ) ≈ 0.226.
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