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Abstract

Craniosynostosis, a condition that includes the premature fusion of one or multiple cranial sutures, 

is a relatively common birth defect in humans and the second most common craniofacial anomaly 

after orofacial clefts. There is a significant clinical variation among different sutural synostoses as 

well as significant variation within any given single-suture synostosis. Craniosynostosis can be 

isolated (i.e., nonsyndromic) or occurs as part of a genetic syndrome (e.g., Crouzon, Pfeiffer, 

Apert, Muenke, and Saethre-Chotzen syndromes). Approximately 85 % of all cases of 

craniosynostosis are nonsyndromic. Several recent genomic discoveries are elucidating the genetic 

basis for nonsyndromic cases and implicate the newly identified genes in signaling pathways 

previously found in syndromic craniosynostosis. Published epidemiologic and phenotypic studies 

clearly demonstrate that nonsyndromic craniosynostosis is a complex and heterogeneous condition 

supporting a strong genetic component accompanied by environmental factors that contribute to 

the pathogenetic network of this birth defect. Large population, rather than single-clinic or 

hospital-based studies is required with phenotypically homogeneous subsets of patients to further 

understand the complex genetic, maternal, environmental, and stochastic factors contributing to 
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nonsyndromic craniosynostosis. Learning about these variables is a key in formulating the basis of 

multidisciplinary and lifelong care for patients with these conditions.
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Introduction

Craniosynostosis, which always involves the premature fusion of one or more of the 

neurocranial sutures and can include many associated dysmorphologies of the cranio-facial 

complex, is a relatively common congenital malformation [1]. The incidence of 

craniosynostosis is estimated to be in the range of 1 in 2,000–2,500 live births and occurs in 

all ethnic groups [2–5]. Approximately 85 % of cases are nonsyndromic, and 92 % are non-

familial. The other 15 % of cases are defined as having one of the more than 180 known 

craniosynostosis syndromes, at least 50 % of which follow a Mendelian pattern of 

inheritance [6, 7].

The frequency of fusion of each of the cranial vault sutures varies. Sagittal synostosis, the 

most common of the isolated craniosynostoses, occurs in 45–58 % of all craniosynostoses 

with males more often affected than females (M:F ratio of 3.5:1) [3, 8]. The fusion of the 

midline sagittal suture results in scaphocephaly, a skull shape that is relatively longer than 

normal along the anterior-posterior axis and narrowed mediolaterally (Fig. 1a). However, 

there is a great variability in the scaphocephalic morphology of sagittal synostosis that 

involves not only the cranial vault but also the facial skeleton and cranial base [9]. Little is 

known about the sources of this heterogeneity.

Coronal synostosis occurs in 20–30 % of all cases of craniosynostosis with females more 

often affected than males (M:F 1:2) [10, 11]. The overt cranial dysmorphology of coronal 

craniosynostosis varies depending upon whether premature closure of the coronal suture 

occurs bilaterally involving both the right and the left side of the skull (resulting in 

brachycephaly) or unilaterally (resulting in anterior plagiocephaly or asymmetry) (Fig. 1b). 

Unilateral coronal synostosis occurs twice as often as bilateral coronal synostosis. 

Progressive frontal plagiocephaly or flattening sometimes results from the fusion of the 

fronto-sphenoidal or fronto-zygomatic sutures and is detected by the detailed three-

dimensional computed tomography (3D-CT) imaging of the basilar coronal ring sutures 

involving the ethmoidsphenoidal sutures [12, 13]. Metopic synostosis, resulting in 

trigonocephaly (Fig. 1c), had an estimated prevalence of 6–7 in 100,000 live births prior to 

2000, but in the past decade its presentation in some medical centers in Europe and the US 

has increased as much as fourfold for unknown reasons [14, 15]. Approximately 67 % of all 

metopic cases are nonsyndromic, and 92 % are non-familial [16]. Male to female ratio has 

been estimated to be about 3:1. Lambdoid synostosis, resulting in posterior plagiocephaly 

(Fig. 1d), is estimated to represent about 1 % of all craniosynostosis [1].
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Candidate Gene Mutations Found in Nonsyndromic Craniosynostosis

Causative mutations for craniosynostosis have been primarily identified in coronal 

craniosynostosis syndromes most often within the FGFR1, FGFR2, FGFR3, TWIST1, and 

EFNB1 genes, but the list of new genes involved in less common syndromes is growing 

(Table 1), reviewed by Passos-Bueno et al. [17], Wilkie et al. [18], and Jabs and Lewanda 

[19], and there is an association between the pattern of facial dysmorphogenesis and 

causative mutation for some of these syndromes [20•]. However, the genetic etiology of 

nonsyndromic craniosynostosis (NSC) remained poorly understood until very recently. Over 

the last two decades, the search for genetic mutations underlying NSC has focused on 

“hotspots” of genes that are known to cause syndromic craniosynostosis [21]. Rare 

mutations in FGFRs, TWIST1, LRIT3, ALX4, IGFR1, EFNA4, RUNX2, and FREM1 have 

been reported in a minor fraction of NSC cases (Table 1).

An example of a successful identification of a single point mutation in a candidate gene is 

the fibroblast growth factor receptor 3 (FGFR3) Pro250Arg mutation associated with 

individuals initially diagnosed with isolated coronal craniosynostosis [22, 23]. The 

identification of the FGFR3 Pro250Arg mutation resulted in the definition of Muenke 

syndrome [23] characterized by a highly variable pheno-type with some individuals 

appearing phenotypically normal [24] demonstrating a reduced penetrance of the mutation at 

about 80 % [18]. It has been estimated that the FGFR3 Pro250Arg mutation may account for 

4–12 % of isolated unilateral and 30–40 % of isolated bilateral coronal synostosis cases [25, 

26] with a population prevalence of about 1 case per 30,000 [18].

Other rare gene mutations have been identified for isolated synostosis [27]. However, some 

of these mutations were present not only in the affected probands, but also in other members 

of the family, who had craniofacial dysmorphisms (but not craniosynostosis) or were 

unaffected suggesting incomplete penetrance [28–32]. In one case of sagittal NSC, the 

FGFR2 Ala315Thr mutation was reported [33]. Two cases with sagittal NSC were found to 

carry Ser494Thr and Cys592Tyr mutations in LRIT3, a protein believed to regulate 

maturation and signaling of FGFR1 [28]; another three sagittal NSC cases had Val7-Phe, 

Lys211Glu, and Pro306Leu mutations in ALX4, a homeobox containing transcription factor 

regulating calvarial development through interactions with Wnt and bone morphogenetic 

proteins (BMPs) [31]. TWIST1 mutations, Ala186Thr, Ser201Tyr, and Ser188Leu in the 

TWIST Box domain, were found in two cases of the isolated sagittal synostosis and in one 

case of isolated left coronal synostosis, respectively [29, 30]. Insulin-like growth factor 1 

receptor (IGF1R) mutations, R406H, N857S, and R595H, were found in two cases of 

isolated sagittal and one with coronal synostosis, and rare variants P190S and M446V were 

also detected [34]. For coronal NSC, an FGFR2 Ala315Ser mutation was reported in a 

patient with unicoronal synostosis and a birth history of breech presentation and skull 

compression [35]. EFNA4 His60Tyr, Pro117Thr, and Asn157LysfsX45 mutations have 

been reported in three patients with coronal NSC [32]. An FGFR1 Ile1300Trp mutation was 

found in one case of metopic NSC with facial skin tags [36]. Recently, a 1.1 Mb duplication 

encompassing RUNX2 and mutations in FREM1 has been associated with metopic NSC [37, 

38]. Apart from IGFR1 and FREM1, the above genes can be linked directly to TWIST1 and 

the FGF signaling pathway, which ultimately interact to control the entry of mesenchymal 
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cells into osteoblastic differentiation in the developing suture; it is speculated that FREM1 

may also bind FGFs to modulate the FGF pathway [38].

Novel Genes Identified in Craniosynostosis Using Genomic Technologies

In the past 2 years, important breakthroughs have been achieved with the identification of 

new genes associated with sagittal and coronal NSC. Justice et al. [39••] reported 

susceptibility loci for sagittal NSC near BMP2 and BBS9. Twigg et al. [40••] showed that 

the reduced dosage of ERF causes sagittal, lambdoid, and multisuture craniosynostoses in 

cases diagnosed as isolated or syndromic craniosynostosis. Finally, Sharma et al. [41••] 

identified mutations within TCF12 associated with unilateral and bilateral coronal 

craniosynostosis in patients with isolated or syndromic craniosynostosis. Here, we review 

these mutations in genes that may account for a significant number of patients diagnosed 

with NSC.

Susceptibility Loci for Sagittal NSC Near BMP2 and BBS9

Though sagittal NSC is the most frequent form of craniosynostosis, the genetic basis for 

most cases is unknown, and only rare gene mutations have been identified until recently 

[27]. Justice et al. [39••] conducted a genome wide association study (GWAS) of 130 non-

Hispanic case-parent trios of European ancestry followed by the replication analysis of 172 

unrelated non-Hispanic Caucasian cases and 548 controls to identify susceptibility loci for 

sagittal NSC near BMP2 and within BBS9. The discovery/replication meta-analysis 

demonstrated the combined odds ratios of 4.38 (95 % CI 3.51–5.45; P = 1.1 × 10−39) and 

0.24 (95 % CI 0.17–0.32; P = 5.6 × 10−20), respectively. BMP2 is a member of the TGF-β 

superfamily and a key growth factor regulating osteoblast development [42]. The BMP and 

FGF pathways interact and are important in skull growth [43–45]. BBS9 is a member of the 

BBSome, a multiprotein complex localized in the primary cilium that is involved in 

coordinating many developmentally important signaling pathways including platelet-derived 

growth factor receptor a, sonic hedgehog, and Wnt [46, 47]. The BBSome is also implicated 

in intraflagellar transport [48]. BBS9 loss-of-function mutations have been found in Bardet–

Biedl syndrome (BBS) patients [49]. Although BBS-affected individuals do not present with 

suture phenotypes, there are ciliopathy conditions that have craniosynostosis as a feature 

such as cranioectodermal dysplasia (Sensen-brenner syndrome) [50–53].

As of this writing, no study phenotypically characterizing sagittal NSC cases with or without 

BMP2 or BBS9 variations has been published. Although the morphology of the cranial vault 

has been observed as a defining characteristic in craniosynostosis, qualitative assessments of 

calvarial dysmorphology have shown consistent variability in NSC (Fig. 1) [54], and the 

exact source of this variation remains unknown. A recent quantitative study of craniofacial 

shape in 43 infants with nonsyndromic sagittal synostosis using 3D-CT reconstruction and 

morphometric methods confirmed variation in cranial vault morphology [9]. In all cases 

studied, the central portion of the sagittal suture was the first to fuse (probably prenatally), 

and at least two different developmental paths toward complete fusion of the sagittal suture 

exist either in the anterior section or in the posterior section of the sagittal suture being the 

second to fuse. The analyses showed association between the variation in craniofacial shape 

and the exact path of fusion of the sagittal suture. Comparable morphometric studies should 

Heuzé et al. Page 4

Curr Genet Med Rep. Author manuscript; available in PMC 2015 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be completed using cases carrying either BMP2 or BBS9 NSC-associated variants to 

determine whether or not these genetic influences correspond with specific phenotypes.

ERF and TCF12 Mutations in Patients with Craniosynostosis

Using whole exome sequencing of seven unrelated individuals with bilateral coronal 

synostosis and negative for previously described mutations [55], two additional genes, ERF 

and TCF12, were found to have mutations in two or more patients with craniosynostosis 

[40••, 41••]. Heterozygous mutations in ERF, an inhibitory ETS family transcription factor 

that is negatively regulated by the extracellular signal-related kinases 1 and 2 (ERK1/2) of 

the mitogen-activated protein kinase (MAPK) signaling pathway, were found [40••]. Some 

of the patients with the ERF mutations were syndromic with sagittal or multisuture 

synostosis, craniofacial dysmorphology, Chiari malformation, and language delay, and 

others were nonsyndromic with sagittal, unilateral or bilateral lambdoid, and multisuture 

synostosis. ERF was found to bind close to regulatory sites recognized by RUNX2, an 

essential regulator of osteoblast differentiation, and could interfere with transcriptional 

activation by RUNX2. Thus, loss-of-function mutations of ERF in these patients have a 

similar effect to FGFR-phosphorylated ERK activation observed in FGFR-related 

craniosynostoses. Reduced ERF function in these conditions can result in the upregulation of 

RUNX2 activity, leading to changes in osteoblast differentiation and potential premature 

ossification of cranial sutures.

Heterozygous mutations in TCF12, transcription factor 12, were also identified in syndromic 

and nonsyndromic patients with unilateral and bilateral coronal and multisuture synostoses 

[41••, 56]. Syndromic patients had additional features of craniofacial dysmorphism and 

external ear and minor limb anomalies. TCF12 mutations were found in 32 % of subjects 

with bilateral and 10 % with unilateral coronal synostosis. TCF12 heterodimerizes with class 

II basic helix-loop-helix transcription factors including TWIST1. Loss-of-function mutations 

in TWIST1 have previously been shown to cause the Saethre–Chotzen syndrome, a 

craniosynostosis condition with coronal fusion and minor limb anomalies [57, 58]. The 

TCF12-TWIST1 heterodimer is likely to regulate the specification of the coronal suture 

between the neural crest-derived frontal bones and mesoderm-derived parietal bones [32, 

59]. As in the case of ERF, these dimers may inhibit osteogenic differentiation via actions 

on RUNX2 and FGFR signaling pathways [60].

Genetic Risk

To estimate the proportion of craniosynostosis patients that screen positive for a gene 

mutation, a study was conducted on 326 children, who were born from 1993 to 2002 and 

required surgical treatment in a craniofacial unit in Oxford, England [18]. Genetic diagnoses 

were made for 21 % of all craniosynostosis cases, and the FGFR3 P250R mutation was the 

single most common mutation, accounting for 24 % of cases with genetic diagnoses (5 % of 

all cases). Those with genetic diagnoses were associated with increased rates of many 

complications. Children with the clinical diagnosis of non-syndromic unicoronal or 

bicoronal synostosis were more likely to have an identified causative mutation than those 

with other sutural involvement. In the extended Oxford birth cohort (cases born from 1998 

to 2006), TCF12 mutations were identified in approximately 1.0 % of craniosynostosis cases 
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[41]. While the patients with TCF12 mutations had a more benign course than patients with 

FGFR3 P250R or TWIST1 mutations, 14 % had developmental delay or learning disabilities 

and two were diagnosed with autism. ERF mutations explain an additional 1.2 % of etiology 

for the cohort [40].

Cellular and Animal Model Investigations of Craniosynostosis

Both the genome wide expression analysis of primary osteoblasts derived from 

craniosynostosis patients and the creation of mutant mouse models allow experimental 

analysis of craniosynostosis phenotypes and the roles of newly-discovered genes in 

craniosynostosis. Gene expression profiling of human craniosynostosis samples has been 

recently reviewed [61]. As an example, a recent survey of 199 NSC patient-derived 

osteoblasts, including sagittal, metopic, and coronal cases, suggested the common 

involvement of FGF7, SFRP4, and VCAM1 and the role of extracellular matrix interactions 

in the craniosynostosis phenotypes [62].

Mouse models of activating Fgfr mutations and of Twist1 loss-of-function have been 

invaluable in understanding the coronal synostosis and the role of the neural crest/mesoderm 

boundary forming this suture [63•, 64]. Erf was shown to be expressed within calvarial 

sutures in the mouse, and the conditional deletion of Erf demonstrated that loss of Erf was 

causative for craniosynostosis [40]. While heterozygous null Tcf12 mice alone did not show 

craniosynostosis, reduction of Tcf12 significantly increased the incidence and severity of 

craniosynostosis in Twist1 heterozygous null mice, supporting the model of Tcf12 

interaction with Twist1 [41]. Gene expression within sutures can be readily determined in 

mice, and this knowledge is crucial in understanding the connection between gene mutations 

and specific patterns of suture fusion or other resulting craniofacial dysmorphologies, 

exemplified by Fgfrs1–3 and Twist1, which have distinct expression patterns within sutures 

[65]. The restriction of craniosynostosis to specific sutures may reflect the suture-specific 

expression of some genes. For example, in the mouse model of Greig 

cephalopolysyndactyly syndrome, the Gli3 (Xt-J/Xt-J) mouse, the lambdoid sutures fuse and 

interfrontal suture development is anomalous, and these are the sites of strong embryonic 

calvarial Gli3 expression [66]. A comprehensive knowledge of murine sutural gene 

expression, particularly at embryonic stages, would facilitate the identification of human 

craniosynostosis candidate genes. Furthermore, the mouse provides a model for the potential 

therapeutic amelioration of craniosynostosis. Chemical inhibition of Fgfr tyrosine kinase 

activity, or of the activity of effector kinases downstream of Fgfrs, results in reduced 

craniosynostosis in mouse models of Crouzon, Apert, and Beare-Stevenson syndromes [67–

70].

Conclusions

The etiology of approximately three quarters of patients diagnosed with craniosynostosis is 

not known. Thus, much work is needed in the elucidation of causal mutations proximate to 

the BMP2 and BBS9 gene loci and in identifying new genes involved in craniosynostosis. 

Since craniosynostosis is a complex heterogeneous condition, the interplay between genetic 

variants and environmental exposures may explain the low heritability for NSC, and their 
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combined action may elucidate processes underlying the variable dysmorphogenesis of the 

facial skeleton and cranial base, portions of the skull that do not encompass the cranial vault 

sutures. These factors may also contribute to the lack of distinct disease phenotypes across 

diagnostic groups and the current lack of identified molecular causes in some cases. 

Mutations in genes initially identified in syndromic cases may contribute to causation in 

milder phenotypes including nonsyndromic or non-penetrant cases. The large population of 

patients with nonsyndromic craniosynostosis embodies a fundamental need for more work, 

as well as a fertile research area for the discovery of novel genetic, maternal, and 

environmental factors. Harnessing next generation sequencing technology and 

bioinformatics analysis with our understanding of the genome, transcriptome, and 

epigenome will help to elucidate the etiology of craniosynostosis, both syndromic and 

nonsyndromic.

As noted previously, although sutural fusion is the most frequent feature studied and treated, 

craniosynostosis also refers to the abnormal development of the bones of the skull associated 

with dysmorphic skull shape. In animal models for human craniosynostosis syndromes, the 

abnormal skull shape can be detected before the premature closure of cranial vault sutures 

71•, 72•]. The development of animal models for craniosynostosis [70, 73, 74] has already 

revealed many molecularly driven three-dimensional morphological changes in soft tissues 

of the head and skull that were not apparent in humans [71•, 75, 76•, 77]. These changes are 

more difficult to evaluate quantitatively in humans where observations are routinely made 

postnatally and there is a lack of appropriate morphological control data sets to make 

meaningful comparisons to abnormal phenotypes. Human cases provide access to 

population-based molecular screens, and more recently the chance to link genotype with 

phenotype [20], but do not provide easy access to the molecularly-based processes that 

result in the highly variable, abnormal cranial morphology of syndromic and nonsyndromic 

cases of craniosynostosis. This access will be necessary in order to understand what unites 

the various molecular causes of craniosynostosis (Table 1) at the genomic and phenotypic 

levels. Mouse models provide access to both the processes that underlie these integrated sets 

of anomalies and the networks that produce them. Emerging technologies (e.g., optical 

projection tomography [78]) allow direct study of the correspondence between the 

spatiotemporal dynamics of gene expression patterns, morphogenesis, and morphological 

diversity.

The coordinated assimilation of results from human- and animal model-based research that 

build on respective discoveries is crucial to understand the variation in the integrated 

anomalies that together define craniosynostosis conditions. These associated anomalies 

contribute to additional health issues critical to effective clinical care of people with 

craniosynostosis conditions including type and timing of surgery, treatment of 

comorbidities, and long-term effects on neuropsychological aspects and quality of life. 

Future research applied to large molecular datasets, analysis of pathways and networks, and 

the complexity of the craniosynostosis phenotype will require integrative analyses by 

multidisciplinary teams of physicians and scientists including system and developmental 

biologists, quantitative anatomists, epidemiologists, geneticists, medical specialists, and 

surgeons.

Heuzé et al. Page 7

Curr Genet Med Rep. Author manuscript; available in PMC 2015 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

The work was supported in part by Grants NIH/NIDCR 1 R01 DE022988, R01 DE018500, and 3 R01 
DE18500-02S1.

Human and Animal Rights and Informed Consent All studies by Y Heuzé, G Holmes, I Peter, JT Richtsmeier, 
and EW Jabs involving animal and/or human subjects were performed after the approval by the appropriate 
institutional review boards. When required, written informed consent was obtained from all participants.

Abbreviations

NSC Nonsyndromic craniosynostosis
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TCF12 Transcription factor 12
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Fig. 1. 
Variation in cranial vault shape depicted by three-dimensional computed tomography (CT) 

reconstructions of infants with various types of single-suture craniosynostosis (superior and 

inferior (i.e., ectocranial) views; anterior aspect of skull at top, posterior aspect of skull at 

bottom). Those pictured are cases of single-suture craniosynostosis from our archive of 3D 

CT images and include skulls of infants with a sagittal craniosynostosis; b bicoronal, right 

unicoronal, and left unicoronal craniosynostoses (from top to bottom); c metopic 

craniosynostosis; d bilateral, right unilateral, and left unilateral lambdoidal craniosynostoses 

(from top to bottom); e unaffected individual. The black arrow heads indicate the sutures 

that are prematurely closed. Though most attention has been focused on cranial vault shape, 

the cranial base and facial skeleton are also dysmorphic in craniosynostosis conditions. Not 

to scale
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