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Abstract

We study a class of bilevel mixed-integer linear programs with the following
restrictions: all upper level variables x are binary, the lower level variables y
occur in exactly one upper level constraint γx + βy ≥ c, and the lower level
objective function is miny βy. We propose a new cut generation algorithm
to solve this problem class, based on two simplifying assumptions. We then
propose a row-and-column generation algorithm that works independently of
the assumptions. We apply our methods to two problems: one is related to
the optimal placement of measurement devices in an electrical network, and the
other is the minimum zero forcing set problem, a variant of the dominating set
problem. We exhibit computational results of both methods on the application-
oriented instances as well as on randomly generated instances.

Keywords: Bilevel MILP, Power edge set, Zero forcing set.

1. Introduction

1.1. Bilevel programming

A Bilevel Mixed-Integer Linear Program (BMILP) is a generalization of a
standard Mixed-Integer Linear Program (MILP), which models a hierarchical
decision process. The general formulation of a BMILP is:

(∗)



min
x

α1x+ α2y

Ax ≥ b
Gx+Hy ≥ c

x ∈ X
y ∈ arg min

y∈Ω(x)∩Y
β(x) y, (LL)

where:

• α1, α2 ∈ Qq, b ∈ Qm, c ∈ Qp;

• A ∈ Qm×n, G ∈ Qp×n, H ∈ Qp×q;
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• β(x) ∈ Qq is a linear function of x;

• Ω(x) is a (lower level) polyhedron for each x;

• X = Nn1 × Rn2
+ , Y = Nq1 × Rq2+ (with n = n1 + n2 and q = q1 + q2).

The decision variables are split into two classes: upper level variables x
and lower level variables y. Similarly, the functions (x, y) 7→ α1x + α2y and
(x, y) 7→ β(x)y, are the upper and lower level objective functions.

The BMILP is a non-convex mixed-integer program, known to be NP-hard
[8] (a thorough study of complexity of the bilevel knapsack problem can be found
in [4]). Application-wise, bilevel and multilevel programming are extremely
useful paradigms as they model dependencies within hierarchically organized
entities (such as, e.g., industrial headquarters and its branches). The bilevel
optimization literature often considers bilevel programming as essentially ill-
defined, since there may be multiple (global) optima at the lower level, and each
might influence the “behaviour” of the upper level as regards its own optimality.
If one defines the upper level optima to be the best possible, given that all
lower level optima are allowed to occur, one can eschew this ambiguity: this is
also sometimes known as the “optimistic strategy” in the bilevel optimization
community, since it is equivalent to the lower level “choosing” the optimum
which “favors” the upper level.

To the best of our knowledge no existing approach is able to solve (∗) in full
generality (again, the special case of the bilevel knapsack problem was addressed
in [5]). Moreover, as the interest in this problem has grown over the past years,
several methods have been developed to solve some sub-classes of (∗). One of
the best studied cases is where the lower level variables are all continuous, i.e.
Y = Rq+ [6]. Under this condition, the lower level problem is convex and regular,
and it can be replaced by its Karush-Kuhn-Tucker (KKT) conditions, yielding
a single level reformulation of the problem. Several methods exist to solve this
variant [1, 21].

Another well studied case is when H = 0 (i.e. the lower level variables do
not appear in the upper level constraints), and β(x) = β (i.e. the lower level
objective function coefficients do not depend on the upper level variables), see
[17, 23, 31]. In this case, at each iteration the decision on the upper level and the
lower level variables is taken separately. Specifically, one can alternate between
solving upper and lower level: solve the upper level first, obtain optimal values
for x, fix them within the lower level polyhedron Ω(x) during the solution of the
lower level, and repeat. This is not the only possible solution approach: in [7],
for example, the authors generalize a MILP branch-and-cut algorithm to the
bilevel setting by introducing integer no-good cuts in order to separate bilevel
infeasible solutions from the convex hull of bilevel feasible solutions. Another
classic separation approach is applied to a relaxation of the problem in [17].
In [23], a basic implicit enumeration scheme is developed in order to find good
feasible solutions within relatively few iterations. In [31], a scheme based on
a reformulation and decomposition strategy is presented. The decomposition
algorithm is based on the row-and-column generation method. The number of
iterations needed for the convergence of this algorithm is shown to be finite.

The case where both sets X and Y are binary and β(x) is a constant is
considered in [29]. The problem is reduced to a multilevel Linear Program (LP)
using a penalty function method. Solving the multilevel LP does not appear to
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offer a practically viable solution method. In [16, 24], the lower level polyhedron
Ω(x) does not depend on x, and the problem is solved using row generation.

More recently, Fischetti et al. [10] proposed a branch-and-cut approach to
solve a fairly large subclass of (∗), i.e. BMILPs with lower level objective function
independent from the upper level constraints.

1.2. Applications

We present two important applications of the BMILP (∗): one from the
energy industry (placement of electrical measuring devices in smart grids, also
discussed in more depth in [28, 26]), and one in graph theory (determination of
the rank of a graph using bilevel programming: this is an original contribution
as far as we know).

1.2.1. Observability in a smart grid

An important problem arising in the design of smart grids is the placement
of various devices in an electrical network. In particular, measuring devices
called Phasor Measuring Units (PMU) are crucial in observing the state (voltage,
current) of the grid. The network is modelled by a graph where edges correspond
to transmission lines between (sub)stations, represented by nodes. The problem
of placing the minimum number of PMUs on the edges of the graph, so as to
be able to observe the state of the whole grid is called the Power Edge Set
(PES) problem [28]. A graph is said to be fully observed if the voltage is known
at each node, and the current known on each edge.

The PES can also be seen as the “edge version” of the Power Dominating
Set (PDS) problem [13], which has been largely studied in literature. The PDS
is shown to be NP-complete even for bipartite, chordal graphs [13] and planar
bipartite graphs [3], and polynomial for trees and grids [9]. Different solution
methods have been proposed to solve the PDS [19, 20].

The PES is also NP-complete [27]. Its bilevel formulation occurs from a
fixed-point condition over the repeated application of two observability rules
over the network [26]. It was the solution procedure proposed in [26] that gave
us the idea for the rather general algorithms proposed in the present paper.

1.2.2. Zero forcing set

We also consider an application of our techniques to the Minimum Zero
Forcing Set (MZFS) problem, introduced in [22], which consists in finding
the minimum set of nodes in a graph that covers all the nodes given a specific
propagation rule. Zero forcing sets are useful when computing the rank of a
graph, i.e. the minimum rank over all its adjacency matrices. By formulating
the MZFS as a BMILP, we will provide the first practically useful method for
solving the MZFS problem.

Let G = (V,E) be a graph where every vertex v ∈ V has to be assigned an
initial color, either in black or white. A zero forcing set (ZFS) of G is defined
as follows [22]:

• Color-change rule: if v ∈ V is a black vertex and all its neighbors (denoted
by N(v)) are black besides one, say u, then change the color of u to black.

• Given a coloring of G, the derived coloring is the result of applying the
color-change rule until no more changes are possible.
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• A ZFS for G is a subset of black vertices Z such that, if all the remaining
vertices V r Z are white, the derived coloring of G is all black.

• Z(G) is the ZFS with minimum cardinality |Z| over all ZFSs Z ⊆ V .

In [22], the authors prove that the size of a ZFS gives a bound on the minimum
rank of the graph. We formulate the MZFS as a BMILP in Section 6. The ZFS
can also represent the propagation of various quantities (including influence or
information) in system networks [14].

1.3. Content of the paper

In this paper we propose what we believe to be the first practically viable
method to solve the following BMILP variant: the upper level variables x are
binary, G and H are one-row matrices, and β(x) = β = H>. The crucial
ideas (in preliminary form) can be found in the 2015 technical report [25]. An
important theoretical contribution is that we provide a solution method for the
case where lower level variables appear in the upper level constraints.

We prove that, under certain assumptions, it is possible to reformulate the
BMILP (∗) into a single-level Binary Linear Program (BLP). This BLP, how-
ever, cannot be solved directly since the explicit polyhedral description of its
constraints is not known. We therefore propose a finitely terminating cut gener-
ation algorithm. When the aforementioned assumptions do not hold, we propose
a row-and-column generation framework.

The rest of the paper is organized as follows: in Section 2 we describe the
single-level reformulation under two specific monotonicity assumptions. In Sec-
tion 3 we propose a cut generation algorithm to solve the bilevel problem. In
Section 4 we relax the assumptions, and derive monotonicity from a simple stan-
dard form of (∗). In Section 5, we apply our framework to the PES problem.
In Section 6 we apply our framework to the MZFS problem.

2. Bilevel Binary Linear Program

The standard Bilevel Binary Linear Program (BBLP) formulation we are
interested in is given by the following formulations:

(†)



min
x

αx

Ax ≥ b
x ∈ {0, 1}n
βy ≥ c−Gx

y ∈


arg min

y
βy

y ∈ Ω(x)
y ∈ Y

≡



min
x

αx

Ax ≥ b
x ∈ {0, 1}n
f(x) ≥ c− γx

f(x) =


min
y

βy

y ∈ Ω(x)
y ∈ Y

which are equivalent since we stipulated that G is a one-row matrix. Moreover,
α ∈ Qn, A ∈ Qm×n, b ∈ Qm, G ∈ Q1×n, c ∈ Q, β ∈ Qq, Ω(x) is a (lower level)
polyhedron for each x, γ = G>, and Y = Nq1 × Rq2+ . The x variables are the
upper level variables and the y variables are the lower level variables.
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Notice that here we consider that the optimization is done over the field R
of real numbers, which does not include +∞. Hence we always have f(x) <
+∞, which justifies the fact the two programs above are indeed equivalent. In
particular, if Ω(x) is empty, y does not exist in the lower level of the LHS of
(†), which makes (†) infeasible; likewise, f(x) takes no value in the RHS of (†),
which, again, makes (†) infeasible.

In order to formulate the BBLP as a single level program, we use the fol-
lowing well-known lemma.

Lemma 1 For any X ⊆ {0, 1}n, conv(X) ∩ {0, 1}n = X.

Proof. By definition we have X ⊂ {0, 1}n and X ⊆ conv(X), hence X is a
subset of their intersection. Conversely, let x ∈ conv(X) and x ∈ {0, 1}n; and
suppose, to get a contradiction, that x 6∈ X. Then there must be y 6= z ∈ X
such that x is in the segment between y and z. However, because y, z are
in a hypercube, their linking segment only contains points with at least one
fractional component, which contradicts x ∈ {0, 1}n, as claimed. 2

As a direct corollary, Lemma 1 has the more surprising formulation below.

Corollary 1 Every subset of hypercube vertices has a linear description.

In other words, no matter how many nonlinear terms the original description of
a subset of hypercube vertices might involve, there is always a reformulation of
that description that uses linear forms only.

Let F = {x ∈ {0, 1}n | Ax ≥ b ∧ f(x) ≥ c− γx} be a linear description of
the feasible set of the BBLP. By Lemma 1, the BBLP (†) can be rewritten as
the following Binary Linear Program (BLP):

min
x
{αx | x ∈ conv(F) ∩ {0, 1}n}. (1)

Notice that, in general, a feasible upper level variable x for the continuous
relaxation of the BLP in Eq. (1) will not be feasible for the continuous relaxation
(in the x variables) of (†). More precisely: in general the continuous relaxation
of the BBLP (†) is not convex. However, the continuous relaxation of its linear
reformulation (i.e. the BLP in Eq. (1)) is convex, since its description is linear.
On the other hand, the polyhedral description of conv(F) is unknown, so we
cannot solve the BLP in Eq. (1) using well-known MILP solution methods.

In order to find a polyhedral description of conv(F), we look for a polyhedron
P such that P ∩ Zn = F . In other words, a polyhedron P containing conv(F),
but no other binary point than those in conv(F). The BBLP (†) can thus be
formulated as:

min
x
{αx | x ∈ P ∩ {0, 1}n}.

Next, we consider the Restricted-BBLP, i.e. the BBLP problem under the
two additional assumptions below.

Hypothesis 1 For all x, x′ ∈ {0, 1}n such that Ax ≥ b and Ax′ ≥ b, if x ≤ x′

then the lower level polyhedron Ω(x) is such that Ω(x) ⊇ Ω(x′). In other words,
f is a non-decreasing function over the set of x such that Ax ≥ b.
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Hypothesis 2 For all i ∈ {1, . . . , n}, γi ≥ 0.

We remark that Hypotheses 1-2 were naturally motivated by our applications
(see Sect. 5-6). We shall discuss our most general case in Sect. 4.

Given S ⊆ {0, 1}n, let M(S) be the set of ≤-maximal points in S, i.e.

M(S) = {s ∈ S | ∀t ∈ S (t ≥ s→ t = s)}.

For any v ∈ {0, 1}n, let ζ(v) = {i ≤ n | vi = 0} be the complement of the
support of v, where we recall that the support of a vector is the set of indices
of its non-zero elements. Let

F̄ = {x ∈ {0, 1}n | Ax ≥ b ∧ f(x) < c− γx}

be the subset of {0, 1}n which is feasible w.r.t. the “easy” constraints of the
upper level, but infeasible w.r.t. the “hard” constraints (i.e. those involving
the lower level). If F̄ = ∅, the lower level problem can simply be removed.
Therefore, we assume in the following that F̄ 6= ∅. We prove in the next
section that a polyhedral description of conv(F) is obtained by adding valid
inequalities generated using points in the set M(F̄) of ≤-maximal upper level
points infeasible w.r.t. the lower level.

Motivated by our applications (Sections 5 and 6), we assume, in the next
sections, that the lower level polyhedron Ω(x) is never empty. We will however
also remark how to deal with the case Ω(x) = ∅.

3. A solution method for the Restricted-BBLP

3.1. Strengthening the relaxation of conv(F)

In order to iteratively strengthen the relaxation P of the upper level feasible
set F , we introduce a class of valid inequalities for F .

Proposition 1 For all x̄ ∈ F̄ ,
∑

i∈ζ(x̄)

xi ≥ 1 is a valid inequality for F .

Proof. Assume there exists x ∈ F such that
∑

i∈ζ(x̄)

xi < 1. Since x ∈ {0, 1}n

we have that
∑

i∈ζ(x̄)

xi = 0, which implies that, for all i ∈ ζ(x̄), xi = 0. Hence

x ≤ x̄ and f(x) ≤ f(x̄) < c − γx̄ by Hypothesis 1. Therefore by Hypothesis 2,
we conclude that f(x) < c− γx, contradicting the assumption. 2

Let
P = {x ∈ [0, 1]n | Ax ≥ b ∧ ∀x̄ ∈M(F̄)

∑
i∈ζ(x̄)

xi ≥ 1}

and PI = P ∩Zn. By Proposition 1, we have that F ⊆ PI . In the following, we
prove that PI = F and that for all x̄ ∈ M(F̄), the constraint

∑
i∈ζ(x̄)

xi ≥ 1 is a

facet of P.

Proposition 2 The following statements hold: (i) PI = F ; (ii) for each x̄ ∈
M(F̄),

∑
i∈ζ(x̄)

xi ≥ 1 is a facet of P.
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Proof. (i) Let x ∈ PI and suppose, to get a contradiction, that x /∈ F . By
definition, x ∈ F̄ . Pick a x̄ ∈ M(F̄) such that x̄ ≥ x. Since x ∈ PI and
x̄ ∈ M(F̄), we have, by definition of PI , that

∑
i∈ζ(x̄)

xi ≥ 1 (¶). However, since

x̄, x are binary vectors and x̄ ≥ x, it follows that xi = 0 for all i ≤ n such
that x̄i = 0. This means that

∑
i∈ζ(x̄)

xi = 0, against (¶). Therefore x ∈ F and

P ∩ Zn = F as claimed.
(ii) Let x̄ ∈ M(F̄). Let us now prove that

∑
i∈ζ(x̄)

xi ≥ 1 (§) is a facet of P.

Suppose, to get a contradiction, that removing (§) from the definition of P
yields P again. Since x̄ ∈ M(F̄), x̄ ∈ F̄ . Note that for any x′ ∈ F̄ we have∑
i∈ζ(x′)

x′i = 0 by definition of ζ. Thus, by Proposition 1 and by definition of

P, x′ 6∈ P and in particular x̄ 6∈ P. Then there must be some inequality in
the definition of P which cuts off x̄, and none of the inequalities in Ax ≥ b
qualify since, by definition of F̄ , Ax̄ ≥ b. Hence it must be one of the other
inequalities, say

∑
i∈ζ(x′)

xi ≥ 1 for some x′ ∈ M(F̄) with x′ 6= x̄. This means

that
∑

i∈ζ(x′)
x̄i = 0 which implies that x̄i = 0 for all i ≤ n such that x′i = 0.

Together with x′ 6= x̄, it follows that x̄ < x′, which contradicts the maximality
of x̄ in F̄ . 2

3.2. A cut generation algorithm

Now that we have a method for strengthening P, we can build a cut gener-
ation algorithm to solve P under Hypotheses 1 and 2.

Algorithm 1 describes our cut generation algorithm for the Restricted-BBLP.
Its main framework is the following: assume that, at step k, we have a set Pk
such that conv(F) ⊆ Pk and let xk be an optimal solution of the relaxed problem

Qk ≡ min
x
{αx | x ∈ Pk, x ∈ {0, 1}n}.

Then xk induces a lower bound for the Restricted-BBLP. Therefore, if xk /∈ F ,
it follows that xk ∈ F̄ . Based on Hypothesis 1, we shall show in the next section
how to formulate and solve an auxiliary MILP, called FM, to find an element
x̄k ∈M(F̄) (the set of ≤-maximal upper level points infeasible w.r.t. the lower
level). Therefore, at each iteration of Algorithm 1, either we find an optimal
solution, or we add a facet of P. Because rational polyhedra possess a finite
number of facets, Algorithm 1 will converge in a finite number of iterations.

3.3. Finding maximal lower level infeasible points

We explain how, for an infeasible solution x̄ ∈ F̄ , we can compute a maximal
infeasible solution x′ ≥ x̄, i.e. x′ ∈ M(F̄). Consider, for a small enough ε > 0,
the following single-level MILP:

(FM)



max
x,y

∑
i∈ζ(x̄)

xi

β y + γ x ≤ c− ε
Ax ≥ b
x ≥ x̄
x ∈ {0, 1}n
y ∈ Ω(x) ∩ Y.
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Algorithm 1 Cut generation algorithm to solve the Restricted-BBLP

P0 ← {x ∈ [0, 1]n | Ax ≥ b}
k ← 0
x∗ ←∞
Condition← False
while Condition = False do

Solve the MILP Qk and let xk be an optimal solution
x∗ ← xk

if f(x∗) ≥ c− γx∗ then
Condition← True

else
Find x ≥ x∗ such that x ∈M(F̄) (solve FM, see Section 3.3)
x∗ ← x
Pk+1 ← Pk ∩ {x |

∑
i∈ζ(x∗)

xi ≥ 1}

k ← k + 1
return x∗

Let x ∈ F . Notice that, as x ∈ {0, 1}n belongs to a finite set, there exists a
small enough ε > 0 such that x satisfies Ax ≥ b but not β y + γ x ≤ c − ε,
for any y. Now, we claim that the optimal solution x∗ of FM is maximally
infeasible, i.e. it belongs to M(F̄). Indeed, since there exists y ∈ Ω(x∗) such
that β y + γ x∗ < c, we have that f(x∗) < c − γ x∗, i.e. x∗ ∈ F̄ . Furthermore,
x∗ ≥ x̄ hence x∗ dominates x̄. If x∗ /∈M(F̄), there must exist x′ ∈ F̄ such that∑
i∈ζ(x̄)

x′i >
∑

i∈ζ(x̄)

x∗i which implies, by the optimality of x∗, that β y+γ x′ > c−ε

for all y. Therefore, by the definition of ε, we have x′ ∈ F which contradicts
the initial assumption.

Notice that if ε is not small enough, then the optimal solution x∗ of FM will
dominate x̄ but may not be maximal.

We now explain how to extend our study to the case where the lower level
polyhedron Ω(x) is empty. Let x̄ ∈ {0, 1}n such that Ω(x̄) = ∅. Then, by
Hypothesis 1, for all x ≥ x̄, Ω(x) = ∅. Hence, similarly to Proposition 1, we
can prove that the inequality

∑
i:x̄=1

xi ≤ −1 +
∑
i x̄i is valid.

4. A solution method for the BBLP

In this section we explain how and to what extent it is possible to generalize
the previous approach when Hypotheses 1 and 2 do not hold. Accordingly, we
shall propose a row-and-column generation algorithm for the BBLP (†).

4.1. Generalized domination in F̄
Let B ∈ Qr×q, C ∈ Qr×n, and d ∈ Qr such that for all x ∈ {0, 1}n the lower

level polyhedron is

Ω(x) = {y ∈ Rq+ | By ≥ d+ Cx}. (2)

Consider now x̄ ∈ F̄ . In the following, we first prove that binary vectors dom-
inated by x̄ with respect to C and γ are infeasible. We also develop some
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nonlinear inequalities to separate these infeasible points from the feasible region
F . We then present a linear reformulation of these inequalities.

Lemma 2 Let x̄ ∈ F̄ . For all x ∈ {0, 1}n such that Ax ≥ b, Cx ≤ Cx̄ and
γx ≤ γx̄, we have that x /∈ F .

Proof. Let ȳ ∈ Ω(x̄) such that f(x̄) = βȳ < c− γx̄. Since Cx ≤ Cx̄, we have
that Bȳ ≥ d + Cx. Hence ȳ ∈ Ω(x). Therefore f(x) ≤ f(x̄) < c − γx̄ (]).
However, since γx ≤ γx̄ and x̄ is subtracted from c in the RHS of (]), we deduce
that f(x) < c− γx and therefore x /∈ F . 2

Let C(x̄) = {x ∈ Rn | ∃z ∈ Rn (x = x̄ + z ∧ Cz ≤ 0 ∧ γz ≤ 0)}. It is easy
to see that Cx ≤ Cx̄ and γx ≤ γx̄ if and only if x ∈ C(x̄). Let x̄ ∈ F̄ and
∆x̄ : {0, 1}n 7→ R+ be the function defined by min

x′
{‖x̄− x′‖1 | x′ ∈ C(x̄)}.

Lemma 3 Let x̄ ∈ F̄ . ∆x̄ defines a semimetric to the set C(x̄), i.e. for all
x ∈ {0, 1}n, ∆x̄(x) ≥ 0 and ∆x̄(x) = 0 if and only if x ∈ C(x̄).

Proof. The function ∆x̄ is positive by definition. Assume that there exists
x ∈ {0, 1}n such that ∆x̄(x) = 0 and let x∗ be the optimal solution of the
optimization problem associated to ∆x̄(x). By definition, x = x∗, and then
x ∈ C(x̄). Conversely, if x ∈ C(x̄) then we can set x′ = x which concludes the
proof. 2

The optimization problem associated to ∆x̄(x) can be rewritten as follows:

∆x̄(x) =



min
z,e,f

n∑
i=1

ei +
n∑
i=1

fi

x̄+ z + e− f = x
Cz ≤ 0
γz ≤ 0

e, f ∈ Rn+, z ∈ Rn.

4.2. Valid nonlinear cuts

Proposition 3 If x̄ ∈ F̄ then there exists δx̄ > 0 such that inequality ∆x̄(x) ≥
δx̄ is valid for F .

Proof. Let δx̄ = min
x∈F

∆x̄(x). Since F is a finite set, δx̄ exists. Suppose, to

get to a contradiction, that δx̄ = 0. Then there must exist x ∈ F such that
∆x̄(x) = 0, which implies that x ∈ C(x̄) by Lemma 3. Also, since x ∈ F , we
have in particular that Ax ≥ b. However, Lemma 2 states that for each x̄ ∈ F̄
and x ∈ {0, 1} with Ax ≥ b, if x ∈ C(x̄) then x 6∈ F , which contradicts the
assumption x ∈ F ; hence δx̄ > 0. Furthermore, by definition of δx̄, we have that
the inequality ∆x̄(x) ≥ δx̄ is valid for F . 2
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We now show how to compute δx̄. Let x̄ ∈ F̄ , ε > 0, and consider the
following equivalent programs:

Dx̄(ε) =


min
x

∆x̄(x)

Ax ≥ b
∆x̄(x) ≥ ε
x ∈ {0, 1}n

≡



min
x∈{0,1}n
e,f∈Rn

+

n∑
i=1

ei +
n∑
i=1

fi

Ax ≥ b

ε ≤ min
e,f,z∈Rn

n∑
i=1

ei +
n∑
i=1

fi

x̄+ z + e− f = x
Cz ≤ 0
γz ≤ 0.


It is easy to see that taking ε ≤ δx̄ will give an optimal solution (x∗, z∗, e∗, f∗) of

Dx̄(ε) such that
n∑
i=1

e∗i +
n∑
i=1

f∗i = δx̄. Therefore, if for some ε we have Dx̄(ε) ≤ ε,

then we can decrease the value of ε and repeat the process until Dx̄(ε) > ε, in
which case Dx̄(ε) = δx̄ holds.

Notice that the mathematical program above is written as a bilevel program,
however, since all the lower level variables, z, e and f are continuous, it can be
rewritten as a MILP (see Problem (3) in Section 4.3 below).

4.3. Linearizing the cuts

Our inequalities are nonlinear since they are expressed as minimization prob-
lems. However, since these problems are LPs, we can replace them by their
duals.

Proposition 4 Let x̄ ∈ F̄ . The constraint ∆x̄(x) ≥ δx̄ is equivalent to the
system of inequalities: (x− x̄)(C>σx̄ + γϑx̄) ≥ δx̄

−1 ≤ C>σx̄ + γϑx̄ ≤ 1
σx̄ ∈ Rr+, ϑx̄ ∈ R+.

Proof. Let us recall the LP formulation of ∆x̄(x):

∆x̄(x) =



min
z,e,f

n∑
i=1

ei +
n∑
i=1

fi

x = x̄+ z + e− f
Cz ≤ 0
γz ≤ 0
e, f ∈ Rn+, z ∈ Rn.

For all x ∈ {0, 1}n, we introduce its dual, Πx̄(x):

Πx̄(x) =


max
σx̄,ϑx̄

(x− x̄)(Cσx̄ + γϑx̄)

−1 ≤ Cσx̄ + γϑx̄ ≤ 1
σx̄ ∈ Rr+, ϑx̄ ∈ R+.

Since ∆x̄(x) has always a finite optimal solution, by the strong duality theorem
of LP, we have that the optimal values of the primal and of the dual are equal.
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Therefore the constraint ∆x̄(x) ≥ δx̄ is equivalent to Πx̄(x) ≥ δx̄. However,
given the expression of the dual, we conclude that Πx̄(x) ≥ δx̄ if and only if
there exist σx̄ ∈ Rr+, ϑx̄ ∈ R+ such that:

V(x̄) =

{
(x− x̄)(C>σx̄ + γϑx̄) ≥ δx̄
−1 ≤ C>σx̄ + γϑx̄ ≤ 1

is verified, as claimed. 2

Notice that, if x is not fixed, the constraint (x − x̄)(C>σx̄ + γϑx̄) ≥ δx̄ is
not linear. Nevertheless, x is a binary variable, and we can reasonably assume
that σx̄ and ϑx̄ are bounded, so we can reformulate the products xiσx̄j , xiϑx̄
exactly by means of the Fortet reformulation [11].

Notice that the above linearization of ∆x̄(x) ≥ δx̄ can be applied to linearize
the constraint ∆x̄(x) ≥ ε in Dx̄(ε) (for the computation of δx̄). Hence the bilevel
formulation of Dx̄(ε) can be reformulated into the following program:

min
x,z,e,f

n∑
i=1

ei +
n∑
i=1

fi

Ax ≥ b
n∑
i=1

ei +
n∑
i=1

fi = (x− x̄)(C>σx̄ + γϑx̄)

(x− x̄)(C>σx̄ + γϑx̄) ≥ ε
−1 ≤ C>σx̄ + γϑx̄ ≤ 1

x̄+ z + e− f = x
Cz ≤ 0
γz ≤ 0

x ∈ {0, 1}n, z ∈ Rn, e, f ∈ Rn+,
σx̄ ∈ Rr+, ϑx̄ ∈ R+.



(3)

Again, by integrality of x and boundedness of σ, ϑ, we can linearize Problem (3)
to a MILP.

It is not difficult to generalize the cut to include the case where the lower level
polyhedron Ω(x) is empty. Indeed we notice that for all x such that Cx ≥ Cx̄,
Ω(x) = ∅. Hence we could apply the same framework as above to derive valid
inequalities for x̄.

4.4. Row-and-column generation algorithm for BBLP

We can now solve the BBLP in the general case using the same iterative
framework as in Section 3. Assume that, at step k, we have a relaxation Pk of
conv(F) obtained by adding new variables σ, ϑ and constraints V(x̄) to F . Let
xk be an optimal solution of the relaxed problem

Qk = min
x,σ,ϑ
{αx | (x, σ, ϑ) ∈ Pk, x ∈ {0, 1}n},

which generalizes the corresponding relaxed problem introduced in Section 3.2.
We remark that Qk is a relaxation of Problem (1).

The above discussion proves the following result.

Theorem 1 For each k ∈ N, the optimal solution xk of Qk induces a lower
bound for the original bilevel problem P independently of Hypotheses 1 and 2.
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Therefore, if xk ∈ F , i.e. f(xk) ≥ c − γxk, we know that xk is an optimal
solution of P . Otherwise, by Proposition 4, we add a set of new variables σ, ϑ
and a set of new valid inequalities V(x̄k) to Pk cutting all the binary points in
C(x̄k), where x̄k is chosen from xk in a similar way as in Section 3.

4.5. Finding ≤C-maximal lower level infeasible points

Let ≤C be the partial preorder relation on {0, 1}n such that x1 ≥C x2 if
and only if Cx1 ≥ Cx2 and γx1 ≥ γx2. In order to determine ≤C-maximal
elements of F̄ , we proceed as in Section 3. From an infeasible element x̄ ∈ F̄ we
find another element x′ ∈ F̄ for which C(x′) is largest (so as to cut the largest
number of infeasible points); or, in other words, a C-maximal element x′ ∈ F̄
which dominates x̄. Analogously to M(S), for any set S ⊂ {0, 1}n, we define
MC(S) as the set of maximal elements in S under ≤C , in view of considering
≤C-maximal upper level points infeasible w.r.t. the lower level.

Let us consider the following optimization problem :

FMC =



max
x,y,e,f

m∑
i=1

ei + f

β y + γ x ≤ c− ε
Cx− e = Cx̄
γ x− f = γ x̄

Ax ≥ b
e, f ≥ 0
x ∈ {0, 1}n
y ∈ Ω(x) ∩ Y

for ε > 0 small enough.
As in the previous section there exists ε > 0 small enough such that if x

satisfies Ax ≥ b, but is infeasible in FM, then x ∈ F . We claim that an optimal
solution x∗ of FMC belongs to MC(F̄). Notice first that by the second and
third constraints of FMC , we have that x∗ ≥C x̄. Furthermore, since there
exists y ∈ Ω(x∗) such that β y + γ x∗ < c, we have that f(x∗) < c − γ x∗, i.e.
x∗ ∈ F̄ . If x∗ /∈MC(F̄), there must exist x′ ∈ F̄ and (e′, f ′) such that

m∑
i=1

e′i + f ′ >

m∑
i=1

e∗i + f∗,

which implies by the optimality of x∗ that β y+ γ x′ > c− ε for all y. Hence by
definition of ε, we have that x′ ∈ F , contradiction.

5. The power edge set problem

Let G = (V,E) be a graph modelling an electrical network where V =
{1, . . . , n} is the set of nodes representing the (sub)stations and E the set of
edges corresponding to transmission lines. For i ∈ V , N(i) = {j | {i, j} ∈ E}
is the set of neighbours (adjacent nodes) of i. For graph-theoretical notions,
see [12, 30]. PMUs are physically placed on edges close to one of the adjacent
nodes. From a modelling point of view, the fact that PMUs are placed close to
a node is irrelevant. We shall therefore simply assume that placements occur on
edges. A graph is said to be observable if all node voltages and current edges are
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known either measured by a PMU or estimated using electrical laws. We denote
by Ω the set of observed nodes: the ambiguity with the lower level polyhedron
Ω(x) of (∗) is only apparent, since it will turn out that the lower level problem
will yield the nodes which can be observed from a given set of placed PMUs.

The problem is formally defined as follows.

Power Edge Set problem. Given a graph G = (V,E), find a
subset Π ⊆ E of minimum cardinality such that, if PMUs are placed
on edges in E, the graph G is fully observable.

It is important to remark that observability is defined using the two rules below,
which encode Ohm’s and Kirchoff’s laws.

R1: If a PMU is placed on an edge {i, j}, then nodes i and j are observed,
i.e. {i, j} ∈ Π implies i, j ∈ Ω.

R2: If all the neighbors of an observed node i are observed but one, then this
node is also observed, i.e. i ∈ Ω ∧ |N(i) r Ω| ≤ 1 implies N(i) ⊆ Ω.

By rule R1 and Ohm’s law, the PMU placed at {i, j} measures the voltage
at i and j and the current on {i, j} (so i and j are observed). By rule R2, if a
node i and all its neighbors k ∈ N(i) are observed, except a single node j, then
using Ohm’s law we can determine the current on {i, k} for k ∈ N(i) r {j};
knowing the currents on all {i, k} (for k 6= j) we can deduce the current on
{i, j} using Kirchoff’s law. Then, knowing the voltage at i and the current on
{i, j}, we determine the voltage on j using Ohm’s law. Hence, j is observed.
More details can be found in [28].

We introduce two sets of binary decision variables: x defining Π, and y
defining Ω, as follows.

• For each i ∈ V and j ∈ N(i), let xij = 1 iff a PMU is placed on edge
{i, j}, i.e. if {i, j} ∈ Π.

• For each node i ∈ V let yi = 1 iff i is observed, i.e. i ∈ Ω.

We remark that, to ease notation, there is some redundancy in the x vari-
ables: more precisely, we define both xij and xji for the same (undirected) edge
{i, j} ∈ E. Since we want to minimize the number of installed PMUs, we will let
the minimization direction assign the value 1 to at most one variable in xij , xji
at the optimum.

Note that while R1 gives a direct dependency between x and y, which can
be written as

∀i ∈ V, j ∈ N(i) yi ≥ xij + xji (4)

R2 defines a “dynamic” relationship between x and y variables: we can only
know if j ∈ V is observed if we previously knew that some adjacent node i and
all of its neighbours but j were observed. Moreover, once i ∈ Ω, i “stays” in Ω,
which can be interpreted as saying that, if R2 is used iteratively to construct Ω,
the set Ω can only increase its cardinality. This monotonicity makes it possible
to define an “observability propagation” function of which Ω represents the fixed
point, which turns out to have the following properties [28]:

1. it is a minimum fixed point, namely |Ω| =
∑
i∈V

yi is minimum;
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2. for each i ∈ V, j ∈ N(i), the following fixed point invariant holds:

yi − yj ≥
∑

k∈N(j)
k 6=i

yk + 1− |N(j)|. (5)

This allows us to define Ω for a given Π by means of a BLP which minimizes
|Ω| subject to Eq. (4)-(5).

The PES can therefore be formulated as a BBLP, as follows:

min
x

∑
i∈V

∑
j∈N(i)

xij

∀i ∈ V, j ∈ N(i) xij ∈ {0, 1}

|V | ≤ |Ω(x)| =


min

y∈{0,1}|V |

∑
i∈V

yi

∀i ∈ V, j ∈ N(i) yi ≥ xij + xji
∀i ∈ V, j ∈ N(i) yi − yj ≥

∑
k∈N(j)

k 6=i

yk + 1− |N(j)|.


(6)

Proposition 5 The BBLP (6) satisfies Hypotheses 1 and 2.

Proof. Hypothesis 1 requires that, given feasible upper level vectors x, x′, if
x ≤ x′ then the feasible region of the lower level problem in function of x contains
the corresponding set in function of x′. This is readily seen using Eq. (4): for
any {i, j} ∈ E such that xij +xji = 0, the corresponding y variable on the LHS
can be set at either 0 or 1. On the other hand, if x′ij + x′ji = 1, then the LHS
can only take value 1, which proves the claim. Hypothesis 2 is trivially verified
since γ = 0 in Eq. (6). 2

By Prop. 5, Eq. (6) is a Restricted-BBLP, so we can use the cut generation
algorithm as detailed in Section 3.

6. The minimum zero forcing set problem

In the MZFS problem, the color change rule is applied until a stable con-
figuration is reached (see Section 1.2.2). We exploit the monotonicity of the
color change rule dynamics to derive a fixed-point condition, which we describe
by means of a BLP. We can then formulate the MZFS problem by means of a
BBLP.

Let Z ⊆ V be a set of vertices of G colored in black and let us define S0 = Z.
For each t = 1, . . . , |V |, we define the set St ⊆ V as the set of vertices u ∈ V
that are either in St−1 or such that their color can be changed from white to
black by an application of the color-change rule to a vertex v ∈ St−1. Notice
that the derived coloring can be deduced from S|V |.

Let x ∈ {0, 1}|V | be the binary variable corresponding to the characteristic
vector of Z (i.e. xv = 1 ⇔ v ∈ Z), and let f(x) denote the size of the black
vertices in G in the derived coloring. The MZFS problem can be modeled as
the following program:

min
x∈{0,1}|V |

∑
i∈V

xi

f(x) ≥ |V |.

}
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We now derive a fixed point condition similarly to Section 5 above. Given a
characteristic vector x ∈ {0, 1}|V |, we introduce the function

θx : {0, 1}|V | 7→ {0, 1}|V |

given by

∀v ∈ V, θxv (y) = max

xv, yv, max
u∈N(v)

1− |N(u)|+ yu +
∑

v′∈N(u)

v′ 6=v

yv′


 .

We aim to show that the stable configuration reached by a repeated application
of the color change rule to the configuration x is the minimum fixed point of θx.

For all t = 1, . . . , |V |, let yt ∈ {0, 1}|V | denotes the characteristic vector of
the set St. We have the following lemma.

Lemma 4 For all t = 1, . . . , |V | we have yt = θx(yt−1) where y0 = x.

Proof. Let v ∈ V . By definition, θxv (yt−1) = max(xv, y
t−1
v , Q) where Q =

max
u∈N(v)

(1−|N(u)|+yt−1
u +

∑
v′∈N(u)

v′ 6=v

yt−1
v′ ). We have Q ≤ 1, hence θxv (yt−1) ∈ {0, 1}.

• If xv = 1 or yt−1
v = 1, then v ∈ St−1 and hence v ∈ St. Therefore

ytv = θxv (yt−1) = 1.

• Assume now that xv = yt−1
v = 0. We prove that Q = 1 if and only if the

color of v can be changed from white to black using a vertex u ∈ N(v).
Indeed, Q = 1 if and only if there exists a vertex u ∈ N(v) such that
yt−1
u = 1 and yt−1

v′ = 1 for all v′ ∈ N(u) with v′ 6= v. Such a case happens
when v has a neighbor u colored in black with all its other neighbors
v′ ∈ N(u) r {v} colored in black. Then v ∈ St. Therefore the function
θx models the color-change rule of G when the initial vertices colored in
black are modeled by x.

Therefore, yt = θx(yt−1). 2

Let y = y|V |, i.e. y models the final colors of the vertices in the derived coloring,
i.e. 1 if black, 0 otherwise. From Lemma 4, we deduce that y = θx(y). Hence y is
a fixed point of θx. Furthermore y is a smallest fixed point of θx since if ∃ y′ < y
such that y′ = θx(y′) then the color-change rule cannot be applied further from
the set S′ characterized by y′. Hence |S′| < |S| which is a contradiction.

From these observations, it follows that the value of f(x) can be obtained
by solving the following BLP:

f(x) =


min

y∈{0,1}|V |

∑
i∈V

yi

y ≥ x
∀v ∈ V, u ∈ N(v) yv − yu ≥

∑
v′∈N(u)

v′ 6=v

yv′ + 1− |N(u)|.

Notice furthermore that Hypotheses 1 and 2 are satisfied, similarly to Prop. 5.
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7. Computational results

The purpose of this section is to test two variants of a cutting plane algorithm
for solving instances of Problem (†), namely BBLPs having binary variables
only in the upper level subproblem, a row β y + γ x ≥ c in the upper level
subproblem, and a lower level subproblem having β y as the objective function
to be minimized w.r.t the lower level variables y. We do present comparative
results with another bilevel MILP solver (see Section 7.5 below).

The first variant, presented in Section 3, addresses Restricted-BBLP in-
stances (i.e. instances satisfying Hypotheses 1 and 2). The second variant,
presented in Section 4, is independent of these hypotheses.

Both variants are iterative in nature (as all cutting plane algorithms are).
The upper level subproblem is used as a “master problem”, producing solutions
which may violate the lower level subproblem constraint β y ≥ c − γ x. At
each iteration the lower level subproblem solution is exploited to derive a cut,
which is then added to the master problem. Termination occurs where the
master problem produces a solution which satisfies the lower level subproblem
constraint.

The difference between the two variants is in how they derive the cut at
each iteration. The Restricted-BBLP variant can exploit more structure, and
constructs a cut at the expense of solving an auxiliary cut generation MILP.
The second variant needs to find an appropriate threshold prior to solving the
cut generation MILP, and valid thresholds can be found by solving a further
MILP. From the NP-hardness point of view, BBLP is as hard as MILP, so
these solution strategies appear to make little sense. From a practical point of
view, as we shall see, our algorithms are able to solve bilevel MILP instances of
considerable size.

7.1. Test set

Our test set consists of PES instances (Section 5) and MZFS instances (Sec-
tion 6) over standard IEEE networks, as well as instances generated randomly
in the following way:

• generate appropriately sized matrices A,B,C with uniformly chosen inte-
gers in {−100, . . . , 100}

• generate a random binary vector x0 and let b = Ax0 (so the upper level
constraints Ax ≥ b are feasible)

• generate appropriately sized vectors d, α, γ, again with random integers in
{−100, . . . , 100}

• generate β with random integers in {0, . . . , 100}

• generate a random scalar c in {50, . . . , 150}.

The decision variable types are generated in the most general possible way for
our code to work, i.e. the upper level variables are binary, and the lower level
can be of any type (binary, general integer, continuous). Specifically, lower level
variables may not have explicit lower and upper bound constraints. Note that
the lower level problem can obviously be infeasible, as no effort is made towards
feasibility. The upper level might also be infeasible because of the constraint
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γx+βy ≥ c. We constructed two sets of these random instances: with C, γ ≥ 0
to ensure that Hypothesis 1 is satisfied (prefixed by hyp in Table 1), and without
this further condition (prefixed by rnd in Table 1).

Our instance collection is described in Table 1, organized in six columns
giving a description summary: name number of upper level, lower level and
total binary variables followed by upper level and lower level constraints, and a
flag indicating whether the instance is a Restricted-BBLP (“Y”) or a general one
(“N”). The cardinality symbols n, q,m, p (number of upper/lower level variables,
number of upper level constraints) are mentioned in Problem (∗), with the
provision that p = 1 as per Problem (†); the symbol r (number of lower level
constraints) is mentioned in Eq. (2). PES instance names are prefixed by pmu,
MZFS by 0fc, random Restricted-BBLP instances by hyp and general random
BBLP instances by rnd. We remark that the numbers appearing in the names
of the randomly generated instances can be ignored, as they are concerned with
the input of our instance generator.

7.2. Test platform

The tests have been run on a mid-2015 MacBook Pro with 16GB RAM and a
3.1GHz i7 dual core CPU, virtually configured as a quad-core CPU, with 16GB
RAM. The MILP subsolver called on the auxiliary subproblem is CPLEX 12.6.2
[15]. The coding language is Julia [2], using the JuMP [18] module with the
CPLEX API.

7.3. Measuring CPU time

When solving large instances, most of the CPU time is spent solving the
MILP subproblems using the CPLEX solver, which is configured to use as many
threads as the number of virtual cores (i.e. four). Our Julia code makes no ex-
plicit use of parallel computation. Moreover, all Julia code is Just-in-Time (JiT)
compiled, which means that the first iteration of each run takes considerably
more time to complete since it needs to compile the “macro” parts of the code
(which vary with the instance).

For these reasons, every attempt to a meaningful “user CPU time” evaluation
is prone to criticisms: do we count JiT compilation time or not? How would one
define the user CPU time for parallel codes, since interprocess communication,
considered system (rather than user) time by the OS, is a necessary part of
the code run? These are all interesting questions that attract a lot of attention
in the language design community. In these tests we chose to measure “wall
clock time”, which is the actual number of seconds elapsed to complete the run.
We were careful to avoid running other processes at the same time on the test
machine, so as to not invalidate our time measures, but of course some of the
service/daemon software might have also used a hopefully irrelevant fraction of
the clock cycles.

Auxiliarily, the use of the Julia language penalizes our CPU measures in
two ways. On the one hand, the JiT compilation time appears to take the vast
majority of the total time for small instances. On the other, the JuMP/CPLEX
API appears to be slower than having the CPLEX command line tool. We
believe these are acceptable trade-offs for the flexibility of the Julia language,
but it must be kept in mind that our results could be vastly improved for small
instances, and marginally improved for large instances.
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Name n q #bin m+ p r Restricted?

pmu IEEE 5 12 5 17 14 24 Y
pmu IEEE 7 16 7 23 18 32 Y
pmu IEEE 14 40 14 54 42 80 Y
pmu IEEE 24 68 24 92 70 136 Y
pmu IEEE 30 82 30 112 84 164 Y
pmu IEEE 39 92 39 131 94 184 Y
pmu IEEE 57 162 57 219 164 324 Y
pmu IEEE 118 358 118 476 360 716 Y
0fc IEEE 5 5 5 10 1 17 Y
0fc IEEE 7 7 7 14 1 23 Y
0fc IEEE 14 14 14 28 1 54 Y
0fc IEEE 24 24 24 48 1 92 Y
0fc IEEE 30 30 30 60 1 112 Y
0fc IEEE 39 39 39 78 1 131 Y
0fc IEEE 57 57 57 114 1 219 Y
0fc IEEE 118 118 118 236 1 476 Y
hyp 5 20 15 30 30 20 60 50 6 15 Y
hyp 10 30 2 20 10 30 30 50 11 2 Y
hyp 5 30 10 20 20 30 40 50 6 10 Y
hyp 10 35 15 10 10 35 20 45 11 15 Y
hyp 5 35 2 0 30 35 30 35 6 2 Y
hyp 10 35 15 25 10 35 35 60 11 15 Y
hyp 5 40 2 10 10 40 20 50 6 2 Y
hyp 10 40 5 15 15 40 30 55 11 5 Y
hyp 20 40 10 30 10 40 40 70 21 10 Y
hyp 10 50 10 50 0 50 50 100 11 10 Y
rnd 2 10 2 10 10 10 20 20 3 2 N
rnd 5 10 5 10 10 10 20 20 6 5 N
rnd 1 10 6 20 10 10 30 30 2 6 N
rnd 5 10 4 20 10 10 30 30 6 4 N
rnd 2 20 8 20 10 20 30 40 3 8 N
rnd 0 20 10 20 20 20 40 40 1 10 N
rnd 4 20 8 40 0 20 40 60 5 8 N
rnd 15 25 2 30 5 25 35 55 16 2 N
rnd 15 25 10 10 20 25 30 35 16 10 N
rnd 10 30 2 0 30 30 30 30 11 2 N

Table 1: Instance statistics.

7.4. Results

We have two sets of results. In Table 2, we showcase the performance of
the two code variants (Restricted-BBLP and general BBLP) on instances which
are actually Restricted-BBLPs. This gives us an indication about the “cost
of generality” in terms of CPU time. In Table 3, we only report results from
solving general BBLP instances.

In Table 2, each row of which corresponds to the performances relative to
a named instance. The first three columns refer to the Restricted-BBLP code
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variant, and the remaining three to the general variant. For each instance
and variant, we report the optimal (upper level) objective function value, the
number of cutting plane algorithm iterations, and the wall clock CPU time. As

Restricted General
Name obj #itn CPU obj #itn CPU
pmu IEEE 5 1.0 0 5.11 1.0 0 4.70
pmu IEEE 7 2.0 4 6.10 2.0 4 12.40
pmu IEEE 14 2.0 6 7.77 2.0 3 13.26
pmu IEEE 24 3.0 7 6.49 3.0 4 17.51
pmu IEEE 30 5.0 12 6.86 5.0 13 820.96
pmu IEEE 39 6.0 12 6.43 6.0 9 193.86
pmu IEEE 57 6.0 24 8.74 – 19 14832
pmu IEEE 118 18.0 216 50.33 – – –
0fc IEEE 5 2.0 4 6.31 2.0 5 13.09
0fc IEEE 7 2.0 5 5.96 2.0 6 12.43
0fc IEEE 14 4.0 18 6.45 4.0 17 20.68
0fc IEEE 24 6.0 15 6.25 6.0 16 38.21
0fc IEEE 30 7.0 43 7.41 7.0 44 3117.47
0fc IEEE 39 7.0 28 7.24 7.0 22 289.16
0fc IEEE 57 9.0 248 47.28 – 248 20721
0fc IEEE 118 – 1251 83120 – – –
hyp 20 40 10 30 10 -267.0 3 7.59 -267.0 2 15.27
hyp 10 35 15 25 10 -354.0 14 6.93 -354.0 6 30.97
hyp 10 30 2 20 10 -452.0 31 8.52 -452.0 5 23.41
hyp 5 20 15 30 30 -214.0 33 7.29 * * *
hyp 5 40 2 10 10 -531.0 68 9.48 -531.0 3 30.10
hyp 5 35 2 0 30 -96.0 79 14.28 -96.0 2 34.19
hyp 10 35 15 10 10 -707.0 79 14.77 * * *
hyp 5 30 10 20 20 -376.0 114 11.86 * * *
hyp 10 50 10 50 0 -797.0 193 68.94 * * *
hyp 10 40 5 15 15 – 1067 7482 * * *

Table 2: Computational results comparing Restricted and general BBLP code variants. Some
of the largest instances (those with statistics typeset in italics) remain unsolved at termination,
enforced by the operating system for resource exhaustion. In the instances marked with *,
CPLEX yielded errors when solving the auxiliary subproblem Dx̄(ε) (see p. 10), causing a
default value ε = 0.001 to be used, and hence very shallow cuts, yielding in turn a very slow
convergence.

is apparent from Table 2, bypassing Hypotheses 1 and 2 adversely impacts the
capacity of the code to scale.

Table 3 is not comparative: it simply validates the claim that our general
method is able to find solutions for some problems not satisfying Hypotheses 1
and 2.

7.5. Comparative results

To the best of our knowledge, only one software package for solving bilevel
MILPs is actually available: MibS [7]. Very recently, in a recently published
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Name obj #itn CPU
rnd 10 30 2 0 30 -251.0 3 26.86
rnd 1 10 6 20 10 3.0 7 15.58
rnd 15 25 2 30 5 -325.0 8 15.39
rnd 2 10 2 10 10 52.0 9 12.25
rnd 0 20 10 20 20 -475.0 9 86.74
rnd 5 10 5 10 10 73.0 12 14.76
rnd 2 20 8 20 10 -546.0 15 36.69
rnd 5 10 4 20 10 -151.0 16 15.27
rnd 4 20 8 40 0 -599.0 38 181.05
rnd 15 25 10 10 20 ∞ 51 2737.39

Table 3: Computational results on the general BBLP code variant on non-restricted random
instances; ∞ marks an infeasible instance.

paper [10], another technique is described for solving bilevel MILPs, with cor-
responding computational results.

MibS is limited to integer variables only (in both levels) and integer input
data, whereas our code is constrained to take binary variables in the upper level,
but whatever type of variable in the lower level, and whatever type of rational
data. We used MibS on our test-set, and managed to obtain solution statistics
for the application-related instances (PES and zero forcing). MibS, however,
failed on all our randomly generated instances — either because the instance
was not successfully read, or because it was wrongly deemed infeasible. See
Table 4 for more details. It is evident from Table 4 that our method outperforms
MibS on our test set, other than on very small instances (on which our language
choice, Julia, penalizes us because of the JiT compilation). Some interaction
with one of the authors of MibS led us to believe that a new release, which
might change this situation, is imminent.

The method described in [10] is more general than ours in a few respects:
it accepts any number of upper level constraints involving variables from both
levels (instead of just one); the lower level objective function is independent from
the upper level constraints (ours is not); the upper level objective function can
involve lower level variables (ours does not); and the upper level variables need
not be binary (ours do). The code relative to [10], however, was not publically
available at the time of writing this paper. The results obtained in [10] relate to
a different hardware and software platform than ours. In short, even though we
exchanged a few instances with the authors of [10], no meaningful comparison
has been possible.

8. Conclusions

We proposed a new practically useable cutting plane algorithm for solving
a large class of bilevel MILPs. With respect to the most general class of bilevel
MILPs, we impose the following restrictions: the upper level objective function
only involves upper level variables x; there is exactly one constraint γx+βy ≥ c
in the upper level involving variables x, y from both levels; and the objective
function of the lower levels is precisely miny βy. We modelled two applications,
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CutGen MibS
Name obj CPU obj CPU
pmu IEEE 5 1.0 5.11 1.0 0.00
pmu IEEE 7 2.0 6.10 2.0 0.01
pmu IEEE 14 2.0 7.77 2.0 0.26
pmu IEEE 24 3.0 6.49 3.0 1.87
pmu IEEE 30 5.0 6.86 5.0 1315.79
pmu IEEE 39 6.0 6.43 – 3625.08
pmu IEEE 57 6.0 8.74 – 3822.31
pmu IEEE 118 18.0 50.33 – 7204.92
0fc IEEE 5 2.0 6.31 2.0 0.00
0fc IEEE 7 2.0 5.96 2.0 0.01
0fc IEEE 14 4.0 6.45 4.0 0.50
0fc IEEE 24 6.0 6.25 6.0 125.26
0fc IEEE 30 7.0 7.41 7.0 3632.64
0fc IEEE 39 7.0 7.24 – 3632.64
0fc IEEE 57 9.0 47.28 – 3630.64
0fc IEEE 118 – 83120 – 3148.00

Table 4: Comparative results between our cut generation algorithm (version for Restricted-
BBLP) and the MibS solver. Statistics in italics indicate termination for resource exhaustion
or time limit.

one about measuring the state of smart grids, and the other about computing
the rank of a graph, as bilevel problems of the given form, and tested two
variants of a cut generation algorithms. We then tested these two algorithms
on a benchmark including instances from both applications as well as randomly
generated and compared our approach against MibS, an open-source solver for
bilevel programming. Our cutting plane methods appear to be more efficient
on medium to large instances.
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