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The effects of shear on double-diffusive fingering and on the settling-driven instability
are assessed by means of a transient growth analysis. Employing Kelvin waves within a
linearized framework allows for the consideration of time-dependent waveforms in uniform
shear. In this way, the effects of boundaries and of shear-driven instability modes can
be eliminated, so that the influence of shear on the double-diffusive and settling-driven
instabilities can be analyzed in isolation. Shear is seen to dampen both instabilities,
which is consistent with previous findings by other authors. The shear damping is more
pronounced for parameter values that produce larger unsheared growth. These trends
can be explained in terms of instantaneous linear stability results for the unsheared case.
For both double-diffusive and settling-driven instabilities, low Pr-values result in less
damping and an increased importance of the Orr mechanism, for which a quantitative
scaling law is obtained.

1. Introduction

When the density of a stably stratified fluid is a function of two scalar fields with
differing diffusivities, and one of these scalars is unstably stratified, there exists the
potential for a double-diffusive instability to evolve (Radko (2013)). A prominent example
concerns the ocean, as heat diffuses one hundred times faster in water than salt. Even if
the two scalars diffuse at identical rates, an instability can form if the unstably stratified
scalar has a settling velocity associated with it (Alsinan et al. (2017); Reali et al. (2017)).
This situation can be encountered in buoyant river outflows, where sediment is unstably
stratified while the overall density gradient is stable due to salinity (Burns & Meiburg
(2012, 2015); Yu et al. (2013, 2014)).

An important feature of river outflows is the presence of shear along the lower boundary
of the river plume. The effect of this shear on the growth of double-diffusive fingering has
been the subject of several studies (Linden (1974); Smyth & Kimura (2007, 2011); Radko
et al. (2015)), which found it to dampen the growth of instability modes with wavenumber
aligned in the direction of the shear, thereby resulting in the formation of salt sheets. In
studying the influence of asymptotically weak Couette flow on double-diffusive fingering,
Linden (1974) found that for large Prandtl numbers shear had a damping influence. For
small Prandtl numbers, on the other hand, shear may amplify the fingering instability.
Smyth & Kimura (2007, 2011) employed hyperbolic tangent temperature, salinity and
velocity profiles within a linear stability analysis as well as direct numerical simulations
(DNS) to analyze the effect of shear on fingering. These authors examined fluxes, the
dissipation ratio and growth rates, and arrived at the conclusion that shear dampens

† Email address for correspondence: meiburg@engineering.ucsb.edu



2 N. Konopliv, L. Lesshafft and E. Meiburg

Figure 1. Background temperature T̄ , particle concentration C̄, density ρ̄ and x-velocity ū.
Within the stable overall density stratification, the particle concentration is unstably stratified.

the fingering instability. Radko et al. (2015) showed that in a DNS, fingering fluxes in
the presence of shear are a factor of 2-3 times smaller than without shear. Here we will
investigate the mechanisms of the effects of finite-strength shear on both the double-
diffusive and the settling-driven instability. Towards this end, we would like to employ
an infinite domain to eliminate the effects of solid boundaries, as well as shear profiles
that avoid the presence of competing shear instabilities. As we will see, all of these goals
can be accomplished by means of a transient growth analysis, which has the added benefit
of providing detailed insight into the physical mechanisms at work.

Section 2 will define the problem and derive the linearized equations describing the
instability growth. In section 3, we describe the adjoint method employed for calculating
the objective gradients for the optimization procedure. Section 4 presents the results of
this analysis, along with their physical interpretation.

2. Problem Formulation

Before presenting the details of our approach, we first provide a quick overview and
justification for it. Several strategies may appear feasible for investigating the effect of
shear on double-diffusive and settling-driven instabilities. Linden (1974) performed a
linear stability analysis for a vertically bounded Couette flow with linear temperature
and salinity gradients, as sketched in figure 1. However, in trying to extend this approach
to the settling-driven instability, we found the eigenvalues and eigenvectors to strongly
depend on the size of the domain, and to be dominated by boundary effects. This
difficulty cannot be eliminated by considering a sedimenting particle concentration field
in an unbounded error function-type background shear instead, as this set-up violates the
quasi-steady base state approximation. For these reasons, we opt to solve an optimization
problem in order to identify the maximum perturbation growth within a linearized
framework. This approach no longer requires a quasi-steady state approximation, and
it allows us to consider a wave-like perturbation with a time-dependent slope in an
unbounded Couette flow. This concept is known as Kelvin waves, and it has been
successfully employed in the study of the planar Couette flow (Kelvin (1887); Rosen
(1971); Shepherd (1985); Craik & Criminale (1986); Knobloch (1984)).

Consider the Navier-Stokes equations in the Boussinesq approximation, along with
convection-diffusion transport equations for temperature T ∗ and particle concentration
C∗, a linear equation of state for the fluid density, and the continuity equation. With



Two-component instabilities and shear 3

asterisks denoting dimensional quantities, these read

∂u∗

∂t∗
+ u∗ · ∇∗u∗ = − 1

ρ∗0
∇∗P ∗ + ν∗∇∗2u∗ +

ρ∗

ρ∗0
g∗ , (2.1)

∂T ∗

∂t∗
+ u∗ · ∇∗T ∗ = k∗T∇∗2T ∗ , (2.2)

∂C∗

∂t∗
+ u∗ · ∇∗C∗ = k∗C∇∗2C∗ + V ∗st

∂C∗

∂z∗
, (2.3)

ρ∗ = ρ∗0(1− α∗(T ∗ − T ∗0 ) + β∗(C∗ − C∗0 )) , (2.4)

∇∗ · u∗ = 0 (2.5)

Here u∗ = (u∗, v∗, w∗) represents the velocity, ρ∗ indicates the density, ρ∗0 is the density
of a reference state with T ∗ = T ∗0 and C∗ = C∗0 , P ∗ denotes the pressure, g∗ = (0, 0,−g∗)
the gravity vector, ν∗ the kinematic viscosity, k∗T and k∗C represent the diffusivity of heat
and particles, and α∗ and β∗ express the density dependence on temperature and particle
concentration. V ∗st is the Stokes settling velocity

V ∗st =
2g∗r∗2p (ρ∗p − ρ∗0)

9µ∗
, (2.6)

where r∗p denotes the particle radius, ρ∗p the particle density and µ∗ the dynamic viscosity.
Each variable q∗ can be thought of as the sum of a background or base state q̄∗, and the
perturbation q∗′ from that state. We assume a background state of the form

ū∗ = (S∗z∗, 0, 0) , (2.7)

T̄ ∗ = T̄ ∗z z
∗ , (2.8)

C̄∗ = C̄∗z (z∗ + V ∗stt
∗) , (2.9)

∂P̄ ∗

∂z∗
= −ρ∗0g∗

[
1− α∗(T̄ ∗ − T ∗0 ) + β∗(C̄∗ − C∗0 )

]
, (2.10)

where T̄ ∗z and C̄∗z are positive constants, as sketched in figure 1. We remark that at
a given location, the background particle concentration increases uniformly with time
as a result of particle settling acting on the uniform background particle concentration
z-gradient. The density contributions due to the background profiles, as well as the
reference temperature and particle concentration, can be absorbed into the background
pressure P̄ ∗. By substituting q∗ = q̄∗ + q∗′ into the governing equations, we obtain

Du∗′

Dt∗
+ S∗z∗

∂u∗′

∂x∗
+ w∗′S∗ = − 1

ρ∗0

∂P ∗′

∂x∗
+ ν∗∇∗2u∗′ , (2.11)

Dv∗′

Dt∗
+ S∗z∗

∂v∗′

∂x∗
= − 1

ρ∗0

∂P ∗′

∂y∗
+ ν∗∇∗2v∗′ , (2.12)

Dw∗′

Dt∗
+ S∗z∗

∂w∗′

∂x∗
= − 1

ρ∗0

∂P ∗′

∂z∗
+ ν∗∇∗2w∗′ + g∗(α∗T ∗′ − β∗C∗′) , (2.13)

DT ∗′

Dt∗
+ S∗z∗

∂T ∗′

∂x∗
= k∗T∇∗2T ∗′ − w∗′

∂T̄ ∗

∂z∗
, (2.14)

DC∗′

Dt∗
+ S∗z∗

∂C∗′

∂x∗
= k∗C∇∗2C∗′ − w∗′

∂C̄∗

∂z∗
+ V ∗st

∂C∗′

∂z∗
, (2.15)

∇∗ · u∗′ = 0 , (2.16)

where D/Dt∗ = ∂/∂t∗ + u∗ · ∇∗ denotes the material derivative. We nondimensionalize
the problem using the length, time, temperature and concentration scales according to
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Radko (2013), where we replace salinity with particle concentration

d∗c =

(
k∗T ν

∗

g∗α∗|T̄ ∗z |

)1/4

, t∗c =
(d∗c)

2

k∗T
, u∗c =

k∗T
d∗c

, P ∗c =
ρ∗0ν
∗k∗T

(d∗c)
2

,

T ∗c = d∗c |T̄ ∗z | , C∗c =
α∗

β∗
T ∗c . (2.17)

Representative oceanic values of ν∗ = 10−6 m/s
2
, k∗T = ν∗/7, |T̄ ∗z | = 0.01 K/m and

α∗ = 2.07 × 10−4 K−1 yield d∗c ≈ 1 cm and t∗c ≈ 103 s. After applying these scales and
dropping the apostrophes, we obtain the nondimensional governing equations

∂u

∂t
+ Sz

∂u

∂x
+ wS + u · ∇u = −Pr∂P

∂x
+ Pr∇2u , (2.18)

∂v

∂t
+ Sz

∂v

∂x
+ u · ∇v = −Pr∂P

∂y
+ Pr∇2v , (2.19)

∂w

∂t
+ Sz

∂w

∂x
+ u · ∇w = −Pr∂P

∂z
+ Pr∇2w + Pr(T − C) , (2.20)

∂T

∂t
+ Sz

∂T

∂x
+ w + u · ∇T = ∇2T , (2.21)

∂C

∂t
+ Sz

∂C

∂x
+

w

Rρ
+ u · ∇C =

1

τ
∇2C + Vp

∂C

∂z
, (2.22)

∇ · u = 0 . (2.23)

Dimensionless parameters arise in the form

Pr =
ν∗

k∗T
, τ =

k∗T
k∗C

, Vp =
V ∗st
u∗c

, Rρ =
α∗T̄ ∗z
β∗C̄∗z

. (2.24)

Linearization around the background state, and using the continuity equation to eliminate
pressure results in

∂

∂t
(∇2w) = −Sz ∂

∂x
∇2w + Pr∇4w + Pr

(
∂2T

∂x2
+
∂2T

∂y2

)
− Pr

(
∂2C

∂x2
+
∂2C

∂y2

)
,(2.25)

∂T

∂t
= −Sz ∂T

∂x
− w +∇2T , (2.26)

∂C

∂t
= −Sz ∂C

∂x
− w

Rρ
+

1

τ
∇2C + Vp

∂C

∂z
. (2.27)

We would like to eliminate the terms with explicit dependence on z, so that we can
transform the equations to wave space and assume an infinite domain for the perturbation
fields. Toward this end, we assume that the solution has the form of a plane wave with
time-varying wavenumbers

q(x, y, z, t) = q̃(t) exp[ik(t)x+ il(t)y + im(t)z] . (2.28)
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Substitution into (2.25)-(2.27) yields

d

dt
(K2w̃) +K2w̃

(
i
dk

dt
x+ i

dl

dt
y + i

dm

dt
z

)
= −ikSzK2w̃ − PrK4w̃

+Pr(k2 + l2)(T̃ − C̃) , (2.29)

dT̃

dt
+ T̃

(
i
dk

dt
x+ i

dl

dt
y + i

dm

dt
z

)
= −ikSzT̃ − w̃ −K2T̃ , (2.30)

dC̃

dt
+ C̃

(
i
dk

dt
x+ i

dl

dt
y + i

dm

dt
z

)
= −ikSzC̃ − w̃

Rρ
− 1

τ
K2C̃

+imVpC̃ , (2.31)

where

K2(t) = k(t)2 + l(t)2 +m(t)2 . (2.32)

We now eliminate the explicit dependence on z by strategically choosing

dk

dt
= 0 ,

dl

dt
= 0 ,

dm

dt
= −Sk . (2.33)

Substitution into (2.29)-(2.31) and rearranging into matrix form yields

d

dt



K2w̃

T̃

C̃


 =



−PrK2 Pr(k2 + l2) −Pr(k2 + l2)
−K−2 −K2 0
−R−1ρ K−2 0 −τ−1K2 + i(m0 − Skt)Vp





K2w̃

T̃

C̃




(2.34)
now with

K2(t) = k2 + l2 + (m0 − Skt)2 , (2.35)

where m0 denotes the initial value of m(t). Our objective is to characterize the effect
of shear on the instability modes identified in Alsinan et al. (2017), which are wave-
like in the vertical direction, with time-invariant m. In the present formulation of the
sheared problem, the value of m and the associated instantaneous growth rate varies
in time. In order to reduce the parameter space for the following study, we will seek
the optimal initial wave vector (k, l,m0) that leads to largest growth over a finite time
horizon tend for any given set of flow parameters. We keep in mind that the growth may
not be exponential in time, and that the spatial shape of the mode is time-dependent.
The entire analysis can then be performed in wave space. For added convenience later
on, we rewrite (2.34) as

d

dt



w̃

T̃

C̃


 =



ψ(t) PrK−2(k2 + l2) −PrK−2(k2 + l2)
−1 −K2 0
−R−1ρ 0 −τ−1K2 + i(m0 − Skt)Vp





w̃

T̃

C̃


 , (2.36)

where the notation

ψ(t) = −PrK2 + 2Sk(m0 − Skt)K−2 (2.37)

is employed to save space.
Strong shear in the flow will certainly lead to instability of the Kelvin–Helmholtz type,

modified by stratification and particle settling. The objective of this study is, on the
contrary, to characterize how shear modifies the instabilities that are driven by diffusion
and particle settling; therefore, we wish to stay in a parameter regime where shear-
driven instability does not occur. A sufficient criterion for stability of a stratified flow
with respect to shear mechanisms, according to Howard (1961); Drazin & Reid (1981),
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is that the gradient Richardson number is larger than 1
4 . With the present definitions,

this criterion is written as

Ri = − g∗ρ∗z
ρ0u
∗2
z

= Pr
1−R−1ρ
S2

>
1

4
. (2.38)

Parameter values Pr > 0.2 and Rρ > 1.6 will be considered in the following. Therefore,
a constant value S = 0.1 of the shear parameter is chosen such that the criterion (2.38) is
always satisfied. This value is sufficiently large to allow an investigation of the influence
of shear in the present context, and sufficiently small to avoid the Kelvin–Helmholtz
instability.

3. Optimization Procedure

We aim to identify the maximum of the gain

G =
(|w̃|2 + |T̃ |2 + |C̃|2)|t=tend
(|w̃|2 + |T̃ |2 + |C̃|2)|t=0

(3.1)

with respect to k, l, m0, and the complex initial conditions for w̃, T̃ and C̃. In the
absence of shear (S = 0), the equations depend only on k2 + l2 instead of on k and l
independently, so that we can set l = 0 without loss of generality. When shear is present,
its influence is removed if k = 0 so that the unsheared result is recovered, although now
as a function of l instead of k. In a linear stability analysis, growth rates for sheared
double-diffusive fingering are generally lower for k > 0 than for k = 0 (Linden (1974);
Smyth & Kimura (2007)), so that we expect the formation of “salt sheets” aligned in the
direction of the shear, with k = 0. In the present investigation we set l = 0, so that we
can isolate the effect of shear. We note that any problem with l > 0 can be converted to
one with l = 0, although with different S- and k-values, by the transformation

k ←
√
k2 + l2 , (3.2)

S ← Sk√
k2 + l2

. (3.3)

In anticipation of findings to be discussed below, we remark that this transformation
implies the following: if for l = 0, i.e. in the absence of spanwise perturbations, shear is
observed to dampen the growth, we can conclude that the maximum sheared growth will
likely occur for spanwise modes with l > 0 and k = 0, for which the unsheared growth
results are recovered.

Since the ODE for which we optimize is linear, multiplying the initial condition by a
complex constant will not affect the gain in (3.1). To remove this degree of freedom, we
set

(|w̃|2 + |T̃ |2 + |C̃|2)|t=0 = 1 (3.4)

and optimize for

G = (|w̃|2 + |T̃ |2 + |C̃|2)|t=tend . (3.5)

We parameterize the initial condition constraint (3.4) by setting

w̃t=0 = rwe
iθw , (3.6)

T̃t=0 = rT e
iθT , (3.7)

C̃t=0 = rCe
iθC . (3.8)
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Note that these three values can be multiplied by a factor of eiθ for any θ without affecting
(3.4). Consequently we set

θw = 0 (3.9)

and only optimize for θT and θC . Equation (3.4) yields

r2w + r2T + r2C = 1 . (3.10)

These three parameters and one constraint can be reduced to two free parameters φ1
and φ2 by using spherical coordinates

rw = cos(φ1) cos(φ2) , (3.11)

rT = sin(φ1) cos(φ2) , (3.12)

rC = sin(φ2) . (3.13)

To summarize, we need to optimize over the four initial condition variables θT , θC , φ1
and φ2, from which the initial condition can be reconstructed by

w̃ = cos(φ1) cos(φ2) , (3.14)

T̃ = sin(φ1) cos(φ2)eiθT , (3.15)

C̃ = sin(φ2)eiθC . (3.16)

With l = 0 as discussed above, our goal is now to find the total derivative of G with
respect to

p =




φ1
φ2
θT
θC
k
m0




(3.17)

and then employ its gradient in a gradient-based optimization algorithm such as BFGS
or nonlinear conjugate gradient, which is available in Matlab through the fminunc()

function. The default tolerance criterion is used, requiring that the infinity norm of the
cost function gradient falls below 10−6.

We calculate the gradient using the adjoint method, adapted from Gunzburger (2000)
and described in the following. The adjoint method allows us to calculate the gradient
with a computational cost roughly equivalent to two evaluations of G, as opposed to the
finite difference method, which would require O(n) evaluations, were n is the length of
p. We begin by defining a Lagrangian functional L

L = G+

∫ tend

0

(q+)T
(

dq

dt
−A(t)q

)
dt , (3.18)

where q+ is the Lagrange multiplier. We define

A(t) =

(
Re(B(t)) −Im(B(t))
Im(B(t)) Re(B(t))

)
(3.19)

with

B(t) =



−PrK2 + 2Sk(m0 − Skt)K−2 PrK−2(k2 + l2) −PrK−2(k2 + l2)

−1 −K2 0
−R−1ρ 0 −τ−1K2 + i(m0 − Skt)Vp




(3.20)
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according to the system of ODEs in (2.36). The vector q and its initial condition q(0)
are defined as

q(t) =




Re(w̃(t))

Re(T̃ (t))

Re(C̃(t))
Im(w̃(t))

Im(T̃ (t))

Im(C̃(t))



, q(0) =




cos(φ1) cos(φ2)
sin(φ1) cos(φ2) cos(θT )

sin(φ2) cos(θC)
0

sin(φ1) cos(φ2) sin(θT )
sin(φ2) sin(θC)




. (3.21)

In (3.18), the Lagrange multiplier q+ can be chosen freely because we always enforce

dq

dt
−A(t)q = 0 . (3.22)

Because constraint (3.22) is always satisfied, we have

dL

dp
=

dG

dp
. (3.23)

Our goal now is to find this gradient dL/dp in such a way that we will not have to
calculate dq/dp, except at t = 0, which is easily done using (3.21). Since G has no
explicit dependence on p, ∂G/∂p = 0, and we may begin with

dL

dp
=

∂G

∂q(tend)

dq(tend)

dp
+

∫ tend

0

(q+)T
(

d

dp

dq

dt
−A(t)

dq

dp
− dA(t)

dp
q

)
dt (3.24)

and use integration by parts on the term containing dq/dt

∫ tend

0

(q+)T
d

dp

dq

dt
dt =

(
(q+)T

dq

dp

)∣∣∣∣
t=tend

−
(

(q+)T
dq

dp

)∣∣∣∣
t=0

−
∫ tend

0

(
dq+

dt

)T
dq

dp
dt .

(3.25)
We substitute (3.25) into (3.24)

dL

dp
= −q+(0)T

dq(0)

dp
−
∫ tend

0

(q+)T
dA(t)

dp
q dt

−
∫ tend

0

((
dq+

dt

)T
+ (q+)TA(t)

)
dq

dp
dt

+

[(
(q+)T +

∂G

∂q

)
dq

dp

]∣∣∣∣
tend

(3.26)

and pick q+ so that there is only dependence on dq/dp at t = 0. Noting that G =
q(tend)Tq(tend), this yields

q+(tend) = −
(

∂G

∂q(tend)

)T
= −2q(tend) , (3.27)

as well as an ODE for q+

dq+

dt
= −A(t)Tq+ , (3.28)

which we integrate from t = tend to t = 0. This yields the gradient

dG

dp
= −q+(0)T

dq(0)

dp
−
∫ tend

0

(q+)T
dA(t)

dp
q dt . (3.29)
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k (S = 0.1)
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Figure 2. Optimized gain G and corresponding k and m0 as a function of the time interval
[0, tend] for the fingering instability. The other parameters are Pr = 7, τ = 100, Rρ = 2 and
Vp = 0. The dotted lines correspond to linear stability results for the maximum growth rate and
corresponding k-value, in the absence of shear.

The method used to calculate the gradient is now as follows. For a given initial condition
q(0), k and m0, we integrate (3.22) in time from t = 0 to t = tend. We then use the
result q(tend) to calculate q+(tend) using (3.27). With q+(tend) as an initial condition,
we integrate (3.28) from t = tend to t = 0. We then use q(t), q+(t) and q(0) along with
(3.21) to evaluate (3.29).

4. Results

Figure 2 shows a representative set of optimization results for the fingering instability,
with Pr = 7, τ = 100, Rρ = 2 and Vp = 0. It compares the case S = 0.1 with its no-shear
counterpart. For the no-shear case, the dotted lines demonstrate the excellent agreement
between the optimization results for large tend and corresponding linear stability results.
For small times tend 6 5, on the other hand, the optimization results deviate strongly
from the linear stability results. In the following, we will first examine the reasons for
this transient phenomenon in more detail, and then proceed to discuss the effects of Pr,
τ , Rρ and Vp on the fingering and-settling driven instabilities in the presence of shear.

4.1. Initial growth and the Orr mechanism

The initial fast growth seen in figure 2 occurs when k → 0 and m0 → 0. It is present
with and without shear, and as we will see below, it also exists for the settling-driven
instability, cf. figure 8. In this limit, the system of ODEs (2.36) reduces to

∂

∂t



w̃

T̃

C̃


 =




0 Pr −Pr
−1 0 0
−R−1ρ 0 0





w̃

T̃

C̃


 , (4.1)

so that S no longer appears. The fast initial growth occurs when T̃ and C̃ initially have
opposite signs, so they act in phase on the density field, as higher T̃ and lower C̃ both
reduce the overall density. As a result w̃ grows strongly, which in turn will cause T̃ and C̃
to move in the same direction until they eventually are of the same sign and sufficiently
large for the transient growth to decay. A representative example is shown in figure 3,
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Figure 3. The optimally growing solution for tend = 3 with Pr = 7, τ = 100, Rρ = 2, Vp = 0
and S = 0. a) the gain G, and b) the solution components. Here the solution is real.

which displays the overall gain and individual solution components as functions of time
for the optimal solution with tend = 3 and the same parameters as in figure 2. At first, T̃
and C̃ have opposite signs, which causes w̃ to become negative. This negative w̃ causes
both T̃ and C̃ to increase. Since Rρ > 1, w̃ affects T̃ more strongly than C̃. When T̃

and C̃ cross, w̃ stops growing and begins to decay. The overall gain continues to increase
until the point where w̃ = 0, at which point T̃ and C̃ would begin to decrease.

This transient growth mechanism relies on the existence of density gradients, and
it occurs whether or not shear is present. This is in contrast to the Orr mechanism
(Lindzen (1988)), which requires shear and does not depend on density gradients. The
Orr mechanism is related to the tilting of the plane perturbation vorticity wave by the
background shear. If this wave is initially tilted against the shear, its vorticity contours are
relatively close together. As m decreases with time due to the shear and the perturbation
wave tilts into an upright position, the vorticity contours separate. Since the strength
of the perturbation vorticity wave is conserved during this tilting process, the kinetic
energy of the associated perturbation velocity field increases. As the background shear
tilts the wave past the upright position, the perturbation vorticity contours come closer
together again, and the associated kinetic energy decreases. The maximum gain due
to this inviscid Orr mechanism can be found by considering the relationship between
vorticity and vertical velocity, which can be derived from the definition of vorticity and
continuity

∂ω

∂x
= ∇2w . (4.2)

By substituting the time dependent plane wave (2.28) into this equation, we obtain

w̃ = − ik

k2 + (m0 − Skt)2
ω̃ . (4.3)

The maximum w̃ will occur when t = m0/(Sk), i.e. when m = 0 and the wave is vertical.
The associated maximum gain is

Gw =
|w̃|2|t=tend

|w̃|2|t=0
=

(k2 +m2
0)2

k4
, (4.4)

where Gw differs from G in (3.1) in that Gw only contains w̃ and not T̃ and C̃, and the
second equality reflects the fact that the vorticity of a fluid element is conserved over
time. If m0 6= 0, this means that the inviscid Orr mechanism would result in infinite gain
as the optimizer chooses smaller and smaller k, which is the same limit that drives the
transient growth mechanism described earlier. At this point one may wonder why the
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gain does not become infinite for cases with shear as k → 0. To answer this question, we
need to consider the time it takes for shear to tilt the wave into the upright position

t =
m0

Sk
, (4.5)

which is the time it takes for the vertical wavenumber m to decrease from m0 initially
to 0. For any given finite value of m0, we can make k small enough to make the gain as
large as we like. However, as k → 0, the time until the infinite gain is realized becomes
infinite. At this point, it becomes helpful to include the effects of viscosity. Since viscous
forces would have an infinite amount of time to dampen the Orr mechanism, it is not
immediately obvious whether infinite gain can be achieved in the presence of viscosity.
We begin by considering the ODE for w̃ in an unstratified two-dimensional case with
viscosity

dw̃

dt
=

(
−Pr(k2 + (m0 − Skt)2) +

2Sk(m0 − Skt)
k2 + (m0 − Skt)2

)
w̃ . (4.6)

This ODE can be obtained from (2.36) by neglecting T̃ and C̃. The analytical solution
is

w̃(t) = w̃(0) exp

[
−
∫ t

0

Pr(k2 + (m0 − Skt′)2) dt′
]

exp

[∫ t

0

2Sk(m0 − Skt′)
k2 + (m0 − Skt′)2

dt′
]
.

(4.7)
We know from our analysis of the inviscid problem that the maximum value of the second
exponential is (k2 +m2

0)/k2 and occurs when t = m0/(Sk). This value is the square root
of the maximum gain from (4.4). We can evaluate the first integral, which expresses the
influence of viscosity, at t = m0/(Sk) to complete the expression

w̃(m0

Sk )

w̃(0)
= exp

[
− (3k2m0 +m3

0)Pr

3Sk

]
k2 +m2

0

k2
. (4.8)

This expression for the growth of the viscous Orr mechanism was also derived by Craik
& Criminale (1986). If we take the limit of (4.8) as k → 0 with m0 > 0, we see that the
gain will become zero because the exponential decay dominates. However, if we choose a
relation between k and m0 of the form

k = Cmn
0 (4.9)

where C and n are constants, and substitute that into (4.8), we obtain

w̃(m0

Sk )

w̃(0)
= exp

[
− (3C2m2n−2

0 + 1)Pr

3SCmn−3
0

]
C2m2n−2

0 + 1

C2m2n−2
0

. (4.10)

The rightmost fraction in this equation shows us that if we wish to obtain infinite gain
as m0 → 0, we need to choose n > 1, but this would mean that infinite time would be
required to realize that infinite gain, seen in (4.5). Alternatively, we can choose n = 1
and have an arbitrarily large gain as C → 0. However, (4.5) shows that after choosing
n = 1 and substituting k = Cm0, infinite time is required to produce the infinite gain as
C → 0. Either way, as long as n < 3, the exponential term will approach one as m0 → 0.
Consequently, viscosity will not prevent the Orr mechanism from producing infinite gain,
but infinite time will also be required to produce the infinite gain.

We can use (4.4), (4.5) and (4.9) to construct a function that gives the maximum
gain from the inviscid Orr mechanism as a function of tend. Substituting (4.9) in (4.5)
gives C = 1/(Stendm

n−1
0 ). This is the C-value that corresponds to the wave with k and

m0 that the Orr mechanism can tilt into a fully upright position by time tend. Setting
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k = Cmn
0 and C = 1/(Stendm

n−1
0 ) in (4.4) gives

Gw = (1 + S2t2end)2 . (4.11)

In this paper, we study the effects of shear by setting S = 0.1. This means that the Orr
mechanism will require a long time to produce large gain as k → 0 and m0 → 0, even in
the absence of viscosity. For the times that we considered, the growth of the settling or
fingering instability was always larger than the growth of the Orr mechanism as k → 0
and m0 → 0. We note that this does not imply that the Orr mechanism is generally
irrelevant, as there are cases when it can enhance the gain caused by the instability. In
order to clarify this issue, the relative importance of the instability growth and the Orr
mechanism will be discussed and compared in the following sections 4.2.2 and 4.3.3.

4.2. Effect of shear on the fingering instability

To study the gain of the fingering instability with and without shear, we analyze the
case of Pr = 7, τ = 100, Rρ = 2 and Vp = 0, for S = 0 and 0.1, respectively. Figure 2
shows the optimal gain G as a function of time tend, along with the k- and m0-values
that produce this gain. Without shear, the optimally growing mode has m = m0 = 0 and
produces roughly exponential growth beyond the transient phase. The growth rate and
most amplified k-value from linear stability theory (Alsinan et al. (2017)), also shown in
figure 2, agree closely with the gain obtained from the present analysis. Since the mode
with m = 0 has no dependence on z, it is commonly referred to as the “elevator mode.”
With shear, the gain is smaller and m0 > 0. Larger times tend result in larger initial
values m0, so that the flow can spend most of the time interval over which the gain
is evaluated near m = 0, where the fingering instability experiences maximum growth.
Having m0 > 0 also allows for the Orr mechanism to provide some additional growth.
Since for l = 0 the shear reduces the gain of modes with k > 0, the discussion at the
beginning of section 3 suggests that for the fingering case with shear optimal growth will
occur for k = 0 and l > 0, which corresponds to a salt sheet. This is consistent with
previous work on the interaction of the fingering instability with shear (Linden (1974);
Smyth & Kimura (2007, 2011); Radko et al. (2015)).

4.2.1. Influence of τ and Rρ

To determine how the damping effect of shear on the fingering instability depends on
τ and Rρ, we calculate the optimal growth for the base case parameters and varying τ -
and Rρ-values, for both S = 0 and 0.1. Figures 4a and b show the ratio of the sheared to
the unsheared gain as a function of tend for different τ - and Rρ-values. Increasing τ from
10 to 1,000 slightly increases the damping influence of shear. Similarly, lower values of
Rρ are affected somewhat more strongly by shear than higher values. Since lower τ and
higher Rρ correspond to weaker unsheared fingering, we can summarize these trends by
stating that weaker fingering generally is affected less by the presence of shear.

These trends can be understood on the basis of the linear stability results for the case
without shear. Figure 5 shows these linear stability results for a) the base case, b) the
base case but with τ = 10, and c) the base case but with Rρ = 3. Without shear, as
tend →∞ the optimal growth will approach the fastest growing linearly unstable mode,
as seen in figure 2. When shear is added, the vertical wavenumber m becomes a function
of t, with m(t) = m0−Skt. For a given time horizon tend, the values that m takes between
t = 0 and t = tend, starting from the optimal m0, are drawn in figure 5. Knowing this
trajectory of m in time, one can attempt a crude approximation of the final gain G(tend)
by integrating the corresponding growth rate σ(k,m(t)) from the unsheared calculations
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Figure 4. Ratio of sheared optimal gain with S = 0.1 to unsheared optimal gain for the fingering
instability. Unless noted otherwise in the legend, the parameter values are Pr = 7, τ = 100,
Rρ = 2 and Vp = 0.

over 0 6 t 6 tend,

G(tend) ≈ exp

[∫ tend

0

2σ(k,m(t)) dt

]
, (4.12)

where the factor 2 is needed in order to account for the definition of G as an energy gain
(3.1). This approximation neglects some non-modal growth effects arising from changes
of the spatial perturbation shape. A damping factor can then be computed as

D(tend) =
G(tend)S=0.1

G(tend)S=0
= exp

[
2

(∫ tend

0

σ(t)− σmax dt

)]
, (4.13)

where σmax is the maximum growth rate from the linear stability analysis and which
serves as an approximation of the unsheared instability growth. Equation (4.13) approx-
imates the damping influence of shear based only on knowledge of the variation m(t)
and of unsheared linear stability results. Figure 6 compares this approximate damping
factor with the actual ratio G(tend)S=0.1/G(tend)S=0 for several variations of the baseline
parameter configuration. Equation (4.13) reproduces the correct trend for the strength
of the damping, which suggests that the trends of figure 4a-b are due to the fact that
those parameter combinations for which σ depends more weakly on (k,m) are damped
less by shear.

The effects of transient growth may still play a role in the imperfect agreement of
figure 6, but they do not dominate the overall trends as τ and Rρ are varied. In the
presence of shear, transient growth affects the solution at all times since the local
eigenmodes constantly change as a result of the time dependence of m(t). In addition,
the Orr mechanism provides a boost of w̃ as m crosses zero, and subsequently causes
extra damping of w̃ as m moves away from zero.

According to (4.13), smaller values of σ − σmax reduce the damping effect of shear.
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Figure 5. The unsheared case S = 0: linear stability analysis growth rate vs. horizontal
wavenumber k and vertical wavenumber m for the parameter combinations: (a) base case of
Pr = 7, τ = 100, Rρ = 2 and Vp = 0, (b) decreased τ = 10, (c) increased Rρ = 3, and (d)
decreased Pr = 0.05. The shading is logarithmic, and the maximum growth rates are marked
with an X. The horizontal black lines represent the paths of the non-modal optimal growth from
t = 0 to tend for S = 0.1 according to m = m0 − Skt. (a-c): tend = 40, (d) and tend = 25.

Figures 7a and b show the dependence of σ − σmax on k (for m = 0) and on m (for
k = kmax). Here kmax is the k-value for which σmax occurs. Even though figure 4a
indicates that τ = 10 is damped less than τ = 1, 000, σ is reduced more for τ = 10 along
both of the paths shown in figures 7a and b. This apparent contradiction is resolved
by the fact that for τ = 10 the optimized growth path proceeds along a reduced value
k < kmax, as seen in figure 5b. Although σ is reduced less for τ = 10 along this path
with k < kmax, this would not be hypothesized from figure 7b. The fact that σ is reduced
more for τ = 10 along m = 0 as k is reduced makes it difficult to produce a physical
explanation why σ is reduced less along the optimal path for τ = 10.

In summary, while the linear stability results clearly indicate that parameter combi-
nations giving rise to more vigorous fingering are damped more strongly by shear, the
physical reasons for this stronger damping are not entirely clear.
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4.2.2. Influence of Pr

Figure 4c shows that shear has less of a damping effect on flows with with smaller
Pr-values, and even produces additional transient growth when Pr = 0.05. As indicated
by figure 6, the general trend can once again be explained in terms of linear stability
analysis growth rates, with the exception of Pr = 0.05. Figure 7c shows that σ is more
sensitive to m for high than for low Pr, which is consistent with the fact that high Pr
flows get damped more. This allows us to formulate a physical argument for why there
is less damping by shear when Pr is small.

We recall that the fingering instability is both driven and damped by diffusion, in
the following sense. Deviations from the base state in both T and C contribute to
vorticity generation. Since T is stably stratified, the T -related vorticity is stabilizing.
Correspondingly, since C is unstably stratified, the C-related vorticity has a destabilizing
influence. As the relative importance of diffusion grows with increasing k or m, the larger
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diffusivity of T causes the T -vorticity to be damped more than the C-vorticity, resulting
in a net increase in destabilizing vorticity. In addition, as k is increased independently
of m, the (1, 2) and (1, 3) terms in (2.36) show that vertical velocity generation grows
proportionally to k2/(k2 + m2). This effect is influential since the interaction of the
vertical velocity with the background T - and C-gradients drives the instability.

When Pr is reduced, vertical velocity generation and diffusion are both reduced. As
the top row coefficients in (2.36) show, this results in smaller overall vertical velocity
growth on the left hand side. To compensate, it becomes relatively more advantageous to
increase the double-diffusive effect by increasing |m|. Increasing |m| accomplishes three
things. Firstly, it increases the importance of diffusion, which decreases the growth rate.
Secondly, because of increased diffusion, there is also a stronger double-diffusive effect,
which enhances the growth rate. Thirdly, it decreases the vertical velocity production
terms (1, 2) and (1, 3) in (2.36), which decreases the growth rate. The overall effect of
increasing |m| is to decrease the growth rate. When Pr is small, increasing |m| decreases
the vertical velocity generation terms less relative to the changes in the other terms in
(2.36), reducing the influence of one of the reasons why increasing |m| lowers the growth
rate. The fact that the overall growth rate is less sensitive to m when Pr is small causes
shear to affect the solution growth less when Pr is small.

For Pr = 0.05 the sheared case grows more strongly than the unsheared one, as a result
of the Orr mechanism. The solid black line in figure 5d indicates that for Pr = 0.05
and tend = 25 we have m(tend) = 0. This means that the Orr mechanism growth is
at its strongest for t = tend when Pr = 0.05. The Orr mechanism can play a more
prominent role in determining the optimal growth when Pr is low because this implies
low viscosity. The reduced damping effect of viscosity on the Orr mechanism is reflected
by the exponential term in (4.8). Equation (4.8) can also provide an estimate of the

maximum gain from the Orr mechanism alone. Towards this end, if we assume that T̃
and C̃ are constant in time, the maximum gain from the Orr mechanism would be about
one third the result of (4.8) squared. For the present case with Pr = 0.05 and tend = 25,
this evaluates to about 9, which is consistent with the results in figure 5d. For Pr = 0.2,
the estimate is reduced to about 1.25, meaning that the Orr mechanism would provide
much less of a boost. For Pr > 0.2, optimal growth is achieved by having m(t) spend
roughly equal amounts of time on either side of zero, as seen in figure 5. Since this path
for m(t) is twice as long, larger k can be accommodated with dm/dt = −Sk. Because
these larger k-values produce stronger growth, their overall growth is higher without
relying on the Orr mechanism.

4.3. Effect of shear on the settling instability

In order to investigate the effect of shear on the settling-driven instability (Alsinan et al.
(2017)), we set τ = 1 to eliminate any double-diffusive effects. For the case of Pr = 7,
Rρ = 2 and Vp = 1, figure 8 shows that shear dampens the settling-driven instability, just
as it dampens the fingering instability. Recall that the streamwise salt sheets discussed
above in the context of the double-diffusive instability were oriented vertically, since
the unsheared instability favors the m = 0 mode. For the settling-driven instability the
situation is quite different. Since now m 6= 0 for the unsheared case, the “particle sheets”
will be tilted in the spanwise direction. The linear stability analysis of Alsinan et al.
(2017) furthermore showed that the unsheared case favors two equally unstable modes
with opposite wave slopes for the settling-driven instability. DNS simulations by the same
authors indicated that both of these modes are present, resulting in a criss-cross pattern
of waves. Hence we predict that in a three-dimensional flow with shear acting in the x, z-
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in the absence of shear.

plane the initially dominant settling-driven instability mode will have the shape of this
criss-cross pattern in the y, z-plane, while being invariant in the x-direction. This will give
rise to “tube-like” structures, rather than sheets. In the following sections we examine
the quantitative effect of shear on various aspects of the settling-driven instability.

4.3.1. Influence of Vp

To determine how the effect of shear depends on the setlling velocity, which acts as
proxy for the particle size, we calculate the maximum gain with S = 0 and 0.1, and for
Vp = (1, 1.25, 1.5, 1.75, 2). The ratio of the sheared to the unsheared gain displayed in
figure 9 demonstrates that the effect of shear on the settling-driven instability increases
with Vp.

In order to explain this trend, we first review the mechanism behind the settling driven
instability as originally discussed in Alsinan et al. (2017). Again we have stabilizing T -
and destabilizing C-vorticity. Since temperature contributes more strongly to the density,
and the overall background density gradient is stable, the T -vorticity will outweigh the
C-vorticity if the T - and C-perturbations have the same phase and diffuse at the same
rate (τ = 1), so that the system will be stable. When Vp > 0, on the other hand, a
phase shift is introduced between the T - and C-perturbations, so that the stabilizing T -
vorticity does not outweigh the destabilizing C-vorticity everywhere. This provides the
conditions for an instability to develop.

Based on this explanation, it would be fair to wonder why Vp > 0 is needed for
this instability to occur. In principle, a phase offset can be introduced in the initial
perturbations of T and C, so that the T -vorticity does not stabilize the flow everywhere
even when Vp = 0. But as we know from linear stability analysis, the resulting flow
is still stable. The reason for this is that, even though an initial phase shift produces
some transient growth, the resulting flow acts in such a way as to gradually reduce the
phase offset between the T - and C-perturbations, so that these perturbations decay for
long times. This is illustrated in figure 10, which shows the gain G and phase angle θ
between the T - and C-perturbations as functions of time for a case with Vp = 0, τ = 1,
k = 0.08, m = 0.2 and an initial phase angle of θ(0) = −π/4. The traditional linear
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There is initial, transient growth that decays as the phase angle decays without any sustained
driving force to maintain it.

stability analysis, such as applied by Alsinan et al. (2017), captures only the long-term
behavior.

We can further examine the source of this phase angle decay by considering an inviscid
case without diffusion of either scalar, and in the absence of settling. In this scenario,
the phase angle will decay initially, overshoot zero, reach a new maximum of opposite
sign, decay again and overshoot zero to return to the initial position, only to restart the
oscillation. Since there is no viscosity or diffusion, this oscillation is undamped. When
viscosity and diffusion are added, the oscillations become damped with a viscous decay
rate of −(k2+m2), according to the eigenvalues of the matrix in (2.36) with S = 0, Vp = 0
and τ = 1. The two oscillatory eigenmodes with phase offset between T and C each decay
with a rate of −(1 + Pr)(k2 + m2)/2. This demonstrates that if k or m are increased
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for the settling-driven instability, not only will viscous forces dampen the instability, but
the phase offset which drives the instability will also have a stronger natural decay and
therefore tend to be smaller.

The settling velocity Vp thus provides the mechanism that sustains the phase shift
between the T - and C-perturbations, against its natural reduction in the absence of
settling. We can get an idea of how strong the effect of Vp is by examining the rate of
change of the phase angle between T and C when the C wave is settling with speed Vp.
Assuming a plane wave of form eikx+imz+σt, in order to obtain a vertical phase speed
of Vp at x=const. we require σi/m = Vp, where the imaginary part of σi of the growth
rate also represents the rate of change of the phase offset. Thus, the driving force for the
phase offset is seen to be proportional to Vpm.

For a given Vp with τ = 1, the growth of the settling instability is then governed by
a balance of three mechanisms: a) the phase offset, governed by the balance of wave
settling with strength Vpm and phase offset decay with strength (1 + Pr)(k2 + m2)/2,
b) viscosity and diffusion, proportional to k2 + m2, which dampen the perturbations,
and c) k2/(k2 +m2), which affects the strength of the vertical velocity generated by the
perturbations, according to (2.36). A smaller k implies an effectively weaker influence of
viscosity along with a larger phase offset, but also weaker velocity generation, and thus
can result in very slow growth.

Figures 11a and b show the linear stability growth rates for Vp = 1 and 2, in the
absence of shear. When Vp increases, for m ≈ const. we can increase k and still have a
sufficiently strong driving force Vpm to maintain the phase offset, even though its natural
decay increases. This larger k increases the effect of viscosity, but also the generation of
vertical velocity. This allows modes with larger k to be unstable when Vp increases, so
that the instability is shifted towards larger k, as seen in figures 11a and b.

We are now in a position to explain why the damping effect of shear is more pronounced
for larger Vp. As for the fingering instability, this can be understood in terms of the linear
stability growth rates for unsheared flows. In order to produce optimal growth, the values
of (k,m) should remain inside the linearly unstable region as m decreases with time.
Figures 11a and b indicate that this is indeed the case for Vp = 1 and 2. These figures
also show that for larger Vp the maximum growth for the unsheared flow occurs at higher
k. Recall that with shear m(t) = m0−Skt, so that m decreases more quickly for higher k,
which means the flow spends less time in the unstable region. Consequently, the optimal
growth with shear is found for k-values somewhat below the maximum unsheared gowth,
for which the flow gets to spend more time in the unstable region. For Vp = 2 and shear,
k decreases farther below the unsheared optimal k than for Vp = 1, so that the growth
is reduced more strongly.

4.3.2. Influence of Rρ

Figure 9b shows that lower values of Rρ are affected more strongly by shear than higher
values. Figures 11a and c indicate that when Rρ is decreased, the linear instability of the
unsheared flow responds similarly to when Vp is increased, and the unstable region shifts
toward larger k. To keep m in the unstable region over time for smaller Rρ when shear
is present, k needs to be reduced further below its unsheared maximum than for larger
Rρ, so that the growth is dampened more strongly.

The only remaining question is why for smaller Rρ the instability shifts to larger
k. Decreasing Rρ increases the strength of the destabilizing C-vorticity relative to the
stabilizing T -vorticity. This means that less phase offset is required to generate an
instability for smaller Rρ. Hence the instability shifts toward larger k-values, which
generate more vorticity and faster growth, as long as k is not so large that viscosity
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Figure 11. Linear stability growth rate vs. horizontal wavenumber k and vertical wavenumber
m in the absence of shear, for parameters (a) base case of Pr = 7, τ = 1, Rρ = 2 and Vp = 1, (b)
increased Vp = 2, (c) decreased Rρ = 1.5 and (d) decreased Pr = 0.05. Shading is logarithmic.
The maximum growth rates are marked with an X. The horizontal black lines represent the
paths of the non-modal optimal growth when S = 0.1 and tend = 100 (a-c), and tend = 60 (d),
as m = m0 − Skt.

Rρ Vp |θ|
2 1 0.42
2 2 0.50

1.5 1 0.30

Table 1. Phase angle (radians) between temperature and particle concentration waves for the
most unstable mode from linear stability analysis. Other parameters are Pr = 7 and τ = 1.

becomes dominant or the phase offset too small. This relationship is reflected by table 1
which shows that, compared to the base case of Rρ = 2 and Vp = 1, reducing Rρ
to 1.5 decreases the phase offset between the temperature and particle concentration
perturbations for the most unstable mode. By contrast, holding Rρ = 2 constant and
increasing Vp to 2 drives the phase offset to larger values. This is consistent with the
arguments of the previous section.
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4.3.3. Influence of Pr

Figure 9c indicates that the strength of the shear’s damping effect depends on Pr in a
non-monotonic fashion.The damping is most pronounced for Pr = 1, while it decreases for
both smaller and larger Pr-values. Consistent with our earlier observations, for Pr = 0.05
shear even causes additional growth for a range of tend. We note that for some Pr-values
the settling instability grows quite slowly, so that for tend < 60 the initial transient growth
mechanism is responsible for the maximum gain. Our interest, on the other hand, focuses
on the effect of shear on the settling instability, so that we choose the range of tend in
figure 9c as [60, 120] instead of [0, 100].

The reduced damping when Pr is increased from 1 can be explained on the basis of
arguments from the earlier sections. Recall that the strength of the natural phase offset
decay is (1+Pr)(k2 +m2)/2. This means that increasing Pr-values will result in smaller
phase offsets and maximum growth rates for lower k-values. Although this is not shown
in figure 11, we confirmed that as Pr increases from 1 to 7 to 50, the k-value of the
fastest growing mode in the linear stability analysis decreases from 0.140 to 0.0557 to
0.0279. As before, a lower k for the unsheared instability leads to less damping in the
presence of shear, as m = m0 − Skt is able to remain inside the linearly unstable region
for longer times.

When Pr is decreased from 1, the reduced damping results from a combination of
effects. Firstly, the k-value of the fastest growing linearly unstable mode decreases from
0.140 for Pr = 1, to 0.111 for Pr = 0.05. Velocity generation increases with k, but this
effect is multiplied by Pr. When Pr becomes very low, increasing k no longer results in
as large of an increase in velocity generation relative to the other terms in (2.36). While
velocity diffusion also decreases with decreasing Pr, (2.36) shows that the overall growth
of the velocity wave in the time derivative scales with Pr. It is important to keep in mind
that while velocity diffusion decreases, scalar diffusion does not decrease. If this seems
surprising, it is because of the way we have scaled the problem. The length scale is a
diffusive scale based on the temperature diffusivity. Hence for a constant problem size,
varying Pr means changing the viscosity of the fluid, not the diffusivity of the scalars.
Since scalar diffusion is constant as Pr is decreased and velocity generation is less effective
at large k for low Pr, it becomes relatively more costly for the instability to have a higher
k. As k becomes smaller, the phase offset decay decreases. Consequently, the effect of
diffusion can be further reduced by making m smaller as well, since less driving from
the settling is needed to maintain the phase offset. In turn, smaller m results in stronger
velocity production, which scales with k2/(k2 + m2), as mentioned earlier. The overall
effect of making Pr very small is to shift the unsheared instability toward slightly smaller
k and significantly smaller m, as seen in figure 11d.

This leads to the second reason why damping is decreased for smaller Pr-values. Recall
that the Orr mechanism produces maximum gain for m = 0 at t = tend. Because for
Pr = 0.05 the instability is located closer to m = 0 than for Pr = 1, as seen in figure 11d,
it becomes easier for the Orr mechanism to have an impact, as m does not have to
spend much time outside of the region of instability in order to reach zero. This is also
illustrated in figure 11d, which shows the range of m-values over time for the optimally
growing solution with tend = 60 and Pr = 0.05. For the fingering instability the unstable
region extends all the way to m = 0, as seen in figure 5. Nevertheless, the Orr mechanism
is weaker for the fingering instability than for the settling-driven instability, since k is
much larger for the fingering case. Equation (4.4) indicates that this limits the growth
due to the Orr mechanism. Equation (4.8) furthermore shows that the viscous decay of
the Orr mechanism is reduced for smaller Pr, which further enhances its importance. For
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Pr = 0.05 and tend = 60, the estimate from section 4.2.2 of the maximum gain due to
the Orr mechanism yields about 400. This suggests that, even though shear may dampen
the settling-driven instability, the Orr mechanism may still result in enhanced overall
growth for small Pr-values, consistent with figure 9c. For Pr = 0.2, the estimate yields
a gain from the Orr mechanism alone of about 90. In summary, for Pr < 1 a further
decrease of Pr will result in less damping, because the instability is located at lower k
and the Orr mechanism will contribute more to its growth, thereby leading to the larger
gains seen in figure 9c.

5. Discussion and Conclusions

The present investigation assesses the effects of shear on double-diffusive fingering
and on the recently identified settling-driven instability by means of a transient growth
analysis. Towards this end, it employs Kelvin waves within a linearized framework, so
that the evolution of time-dependent waveforms in uniform shear can be considered. This
approach allows us to eliminate the effects of boundaries and of shear-driven instability
modes, so that the influence of shear on the above-mentioned instabilities can be analyzed
in isolation.

Our analysis uses transient Kelvin waves to shed new light on the interaction of shear
with the double-diffusive fingering instability. Consistent with previous analyses by other
authors, we find that shear dampens the fingering instability. Our analysis is also ex-
tended to the settling-driven instability, where it shows that shear again has a dampening
effect. For both of these, the shear damping is stronger for parameter combinations that
produce larger unsheared growth. These trends can largely be explained in terms of
instantaneous linear stability results for the unsheared case. As the vertical wavenumber
m(t) changes with time, the path of (k,m(t)) taken by the tilting Kelvin wave results in
lower average growth as compared to the maximum growth rate of the unsheared case.
For both instabilities, low Pr-values result in less damping and an increased importance
of the Orr mechanism. This stronger influence of the Orr mechanism can be traced to
the smaller viscosity at lower Pr. For the settling-driven instability, lower Pr-values
furthermore move the region of linear instability closer to m = 0, which strengthens the
ability of the Orr mechanism to reinforce the instability.

We emphasize that the present study is limited to the linear regime, and that nonlin-
earities are expected to introduce new coupling mechanisms which cannot be accounted
for by a lineared investigation. In particular, if the imposed shear velocity profile itself
is unstable with regard to Kelvin-Helmholtz instabilities, these instabilities will likely
trigger novel effects that are not captured here. The present linear analysis provides
insight into the mechanisms governing the previously know damping effect of imposed
shear on double-diffusive fingering, and it demonstrates that shear also stabilizes the
recently identified settling-driven instability.

Although shear dampens the growth of both the double-diffusive and the settling-
driven instabilities, substantial growth may still occur during the linearized phase, as
seen in figures 2 and 8, so that initially small perturbations can become sufficiently
large for nonlinear effects to take over. This is consistent with the findings of Radko
et al. (2015) and Smyth & Kimura (2011). We expect a similar situation for the settling-
driven instability, for which the shear dampening effect is of the same order, as seen in
figures 4 and 9. However, this scenario will have to be analyzed in more depth by means
of nonlinear simulations.
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