
HAL Id: hal-02322671
https://hal.science/hal-02322671v1

Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-world hydro-power unit-commitment: Dealing with
numerical errors and feasibility issues

Youcef Sahraoui, Pascale Bendotti, Claudia d’Ambrosio

To cite this version:
Youcef Sahraoui, Pascale Bendotti, Claudia d’Ambrosio. Real-world hydro-power unit-
commitment: Dealing with numerical errors and feasibility issues. Energy, 2019, 184, pp.91-104.
�10.1016/j.energy.2017.11.064�. �hal-02322671�

https://hal.science/hal-02322671v1
https://hal.archives-ouvertes.fr

Real-world Hydro-power Unit-Commitment: Dealing
with Numerical errors and Feasibility issues

Youcef Sahraouia,b, Pascale Bendottia, Claudia D’Ambrosio∗,b

aEDF R&D, Département OSIRIS, 92141 Clamart, France
e-mail: pascale.bendotti@edf.fr

bLIX CNRS (UMR7161), École Polytechnique, 91128 Palaiseau Cedex, France
e-mail: {sahraoui,dambrosio}@lix.polytechnique.fr

Abstract

This article deals with feasibility issues of the hydro-unit commitment relative to

units along a valley in the price-taker revenue-maximizing setting. The problem

is formulated as a mixed-integer linear programming model. Besides physical

constraints, we consider two additional specifications that apply to a subset of

units and reservoirs within a valley, namely the power-flow curves of each unit

feature discrete operational points and each reservoir level should meet target

volumes. These specifications, together with the standard issues affecting real-

world data, make our problem harder to solve, often infeasible. We follow a

step-by-step approach to identify and repair one source of infeasibility at a

time, namely numerical errors and model infeasibilities. The former is analyzed

and fixed through tools like an exact solver and a model and data preprocessing.

The remaining infeasibilities are eliminated with a 2-stage method. In the first

stage, a minimal deviation from target volumes, i.e., strategic, thus relaxable,

constraints, is computed to make the problem feasible. In the second stage, the

original problem is solved with a possible deviation from the target volumes as

defined in the first stage. Computational results confirm the effectiveness of the

proposed method to recover feasibility on a challenging real-world test set.

Keywords: integer linear programming, Hydro Unit-Commitment, numerical

errors, feasibility

Preprint submitted to Energy November 6, 2017

1. Introduction

At a large scale, electricity is a commodity that can hardly be stored; this

implies that an electricity producer cannot sit on an inventory of past excess

production to meet the demand for its consumers at every time.

To satisfy the production-demand equilibrium, planning ahead the manage-

ment of production is required, ranging from long-run facility investments to

intra-daily rescheduling. The usual paradigm is to make strategic decisions for

the long-term horizon, tactical planning for the mid-term horizon, and oper-

ational scheduling for the short-term horizon. At the short-term horizon, for

all units, the stake is to schedule which unit to commit such that the over-

all demand is met and that units’ operational constraints are satisfied. This

scheduling problem is referred to as the unit-commitment problem (UCP).

At Électricité de France (EDF), main means of production are thermal power

plants (both nuclear and fossil-fuel) and hydro-power plants. Other means of

production come from wind power, solar energy, bio energy. While thermal

power plants somewhat operate independently from one another, hydro-power

plants are always considered within valleys; a valley is a network of intercon-

nected reservoirs and multi-unit pump-storage hydro-power plants. Then a

power plant consists of one or several units. At the short-term horizon, in-

formation on forecasted demand, unit availability, fuel costs, etc. is assumed

accurate and we consider a deterministic setting. EDF being independent with

respect to the Transmission System Operator, transmission constraints are not

considered.

For the EDF large-scale UCP (see [1] for more details), the solution method

is a price decomposition based on a Lagrangian Relaxation (LR). The main

idea is to take advantage of the special structure of the UCP, where all ther-

mal power plants and valleys are coupled through demand. Basically, coupling

constraints weighted by Lagrangian multipliers are moved to the objective func-

tion, such that the relaxed problem decomposes into independent sub-problems;

Lagrangian multipliers are updated using a subgradient method [2] or a bun-

2

dle method [3]. Each valley (resp. each thermal power plant) is considered as a

sub-problem and is solved using mixed integer programming (resp. dynamic pro-

gramming), as presented in [4]. In an attempt to recover primal feasibility, the

Augmented Lagrangian method as an extension to the standard LR approach is

used as a second stage. The principle is to add a quadratic penalization of the

relaxed constraints alongside the linear weight of standard LR to the objective

function. Since the quadratic term compromises the decomposability property,

a partial linearization as in [5] is used.

Short-term scheduling of hydro-power plants within a valley is referred as

the hydro unit-commitment (HUC) problem (see [6, 7, 8] for surveys). It arises

for example for an independent electricity producer managing a single valley. In

this work, we focus on the valley sub-problem of the LR decomposition scheme

where the constraint on demand has been relaxed and the prices in the objective

function are Lagrangian multipliers. More precisely, we consider a determinis-

tic HUC problem for a revenue-maximizing price-taker scheduler, where power

prices, water usage values, and reservoirs’ external inflows are given parameters.

The objective of this problem is to maximize power revenues and value of water

remaining at the end of the planning horizon. In this model, power output only

depends on water flow and does not depend on reservoirs’ water levels, i.e., head

and tailrace effects are ignored, and power-flow curves feature discrete points

and affine segments.

1.1. Unit-commitment: state of the art

In a broader perspective, the UCP has been subject to a large research activ-

ity due to its practical importance (see surveys [9, 10] and more recently [11]).

However, it can still not be considered as a well-solved problem. To be more spe-

cific, we focus on the HUC sub-problem of the UCP in a deterministic setting.

It involves a time horizon ranging from one to a couple of days, represented

by a discrete set of periods ranging from 24 one-hour periods to a few hun-

dred 5-minute periods, and needs to be solved in a very limited time frame.

The UCP is a large-scale, non-convex optimization problem. For hydro-power

3

plants, non-convexities are induced by, for example, power-flow curves.

Dynamic programming (DP) is one of the classical approaches for solving

sub-problems in a decomposition scheme. More specifically for the HUC prob-

lem, a DP scheme is proposed in [12] for an optimal dispatch of turbine units

of the Itaipu hydro-power plant; the hydro-power plant considered is composed

of several parallel turbine units. The results emphasize the importance of con-

sidering individually each turbine unit and its start-up/shut-down. Indeed,

depending on the choice of start-up/shut-down costs, the trade-off solution can

be a schedule with numerous start-up/shut-downs with low power losses or a

flatter but less efficient generation schedule.

Mixed Integer Linear Programming (MILP) is another well-accepted mod-

eling and solving technique used for the HUC problem (see references in sur-

veys [11, 8]), especially since MILP solvers have proven their efficiency. The

nice features for using it are that constraints can be easily added and that

non-linearities can be approximated as piecewise linear functions. We refer the

reader to [13, 14] for a detailed approximation of the head effect for example.

Furthermore, the combinatorial aspects of the problem can be modeled using

discrete variables. However, the inherent complexity of the solution technique

provides no guarantee in terms of time it takes to reach optimality. Even worse,

finding a feasible solution could be just as difficult and could even be impossible

in a given time limit. As reported in [15], most existing MILP models fail when

trying to solve directly a UCP without an initial feasible solution. Models for

unit commitment involve multiple constraints with intricate variables, therefore

it is not always trivial to know whether a problem is feasible or infeasible a

priori. Proving or disproving the feasibility of problems can require a lot of

computational efforts. The reason is that the branch-and-bound algorithm, i.e.,

the classical method used to solve MILP problems, is based on dividing the

MILP in subproblems. The principle is to branch and explore the subproblems

which continuous relaxation is feasible and could potentially contain an integer

feasible solution better than the best found so far. Thus, some subproblems

could be eliminated thanks to the current best feasible solution, but this is not

4

possible when the problem is infeasible as no solution could be found. Con-

sequently, this might end up in exploring a larger feasible space than for the

case of a feasible instance. The status of a problem instance can remain un-

determined when solution methods fail to terminate. For example in [16], the

authors derive a necessary and sufficient condition on the feasibility of HUC

solutions in the case of a single hydro-power plant with one reservoir. Checking

this condition allows to avoid unnecessary computations in case of infeasibility

and also to build a feasible schedule in case of feasibility. This condition is used

within a branch-and-bound scheme to implicitly enumerate feasible schedules or

to prove no feasible one exists. Several units, each with several operating states,

fed by a single reservoir are considered in this HUC problem. The method can-

not however be directly extended to the HUC problem we study as dynamic

constraints such as ramping rates and multi-reservoir interacting flows are not

taken into account.

1.2. Problem statement

In this work, we consider an MILP approach to solve the price-taker revenue-

maximizing HUC problem as proposed in [4] and we focus on feasibility issues.

Firstly, the solution obtained through computations can be affected by numer-

ical errors. Indeed, floating-point representation of large (volumes) and small

(flows) variables introduces rounding errors. Because reservoirs levels can be

regarded as integrators with respect to flows, such errors are amplified and

eventually lead to inaccurate feasibility results. This is confirmed by the condi-

tion number of the constraint matrix as we will discuss in the following. In this

sense the HUC problem is expected to be intrinsically sensitive to numerical er-

rors. Secondly, we try to solve real-world instances, whose consistency needs to

be checked because data happens to be inaccurate. Thirdly, on top of featuring

multiple reservoirs, our model has two additional specifications that are induced

by discrete operational constraints and by water-management policies. Indeed,

the first aforementioned specification requires that the schedule for a subset of

units along a valley should be defined over discrete operational points, while

5

the second specification requires that each reservoir level along a valley should

meet mid-horizon and final target volumes. In practice, these conflicting spec-

ifications cause infeasibility situations. Note that head and tailrace effects are

assumed negligible as water levels in upstream and downsteam reservoirs are al-

most invariant over the planning horizon. Other power efficiency losses that are

not due to water levels are considered through a piecewise linear approximation

(see Section 2.2.2).

As far as we know, most existing work on the HUC either deals with dif-

ferent model features and/or presumes of feasibility and numerical exactness.

In this work, infeasibilities indicate that consistency of data and model needs

to be reviewed so that the problem admits a solution. We analyze precisely

the sources of infeasibilities. Our contribution is to propose a methodology to

classify feasibility issues and a preliminary processing of both model and data

to obtain solutions free from numerical errors and appropriate for the real-world

problem.

A step-by-step approach is taken. The idea is to provide a method to iso-

late the practical difficulties — rounding errors, data errors, data inconsistency,

model infeasibilities — to cope with them one at a time. Firstly, we present a

complete model, which incorporates all operational specifications, and illustrate

through experiments a few of the aforementioned practical difficulties. Sec-

ondly, we derive a simple model to analyze numerical errors; the simple model

preserves the basic continuous characteristics of a standard HUC problem, e.g.

conservation of water and bounds on reservoirs, but removes the discrete oper-

ational requirements. As we focus on feasibility issues, the key idea is to design

the simple model so that its feasible set contains the feasible set of the complete

model. An exact solver is used to check consistency of the results obtained using

a floating-point solver and to detect rounding errors. The effects of data errors

on feasibility is mitigated by the introduction of marginal corrective slacks in the

model. Once numerical issues are dealt with, consistency of model and data is

checked with respect to both additional specifications - discrete operations and

target volumes. The derivation of several relaxations of the complete model al-

6

lows us to analyze and classify infeasibilities. Finally, while data inconsistencies

are discarded, model infeasibilities due to target volumes are eliminated with a

2-stage method. In the first stage, a minimal deviation from target volumes is

computed to make the problem feasible. In the second stage, the original HUC

problem is solved with a possible deviation from the target volumes as defined

in the first stage.

This article is organized as follows. Section 2 is devoted to the description

of the complete model for the considered HUC problem. In Section 3, first

computational tests are performed using an MILP solver as a black box on a test

set of real-world instances, thus illustrating a high occurrence of infeasibilities.

The simple model is derived in Section 4 and numerical errors are analyzed by

resorting to an exact solver. In Section 5, an analysis of the different sources

of infeasibilities is carried out and a 2-stage method with feasibility recovery is

proposed. Final experimental results show its effectiveness on the original test

set considered. Some concluding remarks and future directions end the article.

2. Model description

We now present in details the complete mathematical model starting by

introducing some notations. It is denoted complete as opposed to the simple

one introduced in Section 4.1.

2.1. Notations

In this section, we present sets and indices, parameters, and variables, with

International System base units. For proprietary reason, we give neither real

units as used in the data nor orders of magnitude of the parameter values though

unit choice is vital for numerical precision (see Section 4.2.1 for more details).

2.1.1. Sets and indices

T = {1, . . . , t} set of time periods.

7

For simplicity, we assume that the number of time periods t is even.

R set of reservoirs.

RC ⊂ R set of reservoirs without storage capacity.

RT ⊂ R set of reservoirs managed with target values and water usage value.

{RC , RT } is a partition of R. Reservoirs in RC represent structures that con-

tain water but that cannot store it properly like very small basins or canals;

such reservoirs are found upstream of run-of-the-river plants where all incoming

inflow must be discharged; such structures are still referred to as reservoirs for

the sake of simplicity though it is somewhat improper with respect to actual

reservoirs in RT .

I set of units.

IC ⊂ I set of units with continuous operations.

ID ⊂ I set of units with discrete operations.

IG ⊂ I set of generating units.

IP ⊂ I set of pumping units.

{IC , ID} is a partition on I, and {IG, IP } is also a partition of I. Note that the

generating units release water to produce power while pumping units consume

power to pump water. The convention chosen here is to model power with

algebraic values (positive or negative) and flow with absolute values along with

a sign that depends on the direction of the flow. It is worth noting that when a

unit i is located downstream of a reservoir r ∈ RC with no storage capacity, the

unit should allow for instantaneous response for an instance of this problem to

be feasible. Basically, the upstream flow relative to unit i ∈ IC at each period

is equal to its downstream flow. This would be the case for run of the rivers

plants. This explain why units IC are with continuous operations.

IR ⊂ IG × IP set of pump-storage stations.

8

Each station is represented by a couple (i′, i′′) with generating unit i′ and pump-

ing unit i′′ such that both units are between the same upstream reservoir and

the same downstream reservoir.

Jti set of operational points of unit i at time period t (∀t ∈ T, ∀i ∈ I). We

assume w.l.o.g. that |Jti| ≥ 1.

The set of possible operational points may vary in time depending on turbines

availability, for example.

R+
i , R

−
i ∈ R upstream reservoir, downstream reservoir of unit i, respectively

(∀i ∈ I).

I+
r , I

−
r ⊂ I sets of upstream units, downstream units of reservoir r, respectively

(∀r ∈ R).

2.1.2. Parameters

Π period duration [s].

Ωi time lapse for water to flow through unit i ∈ IG to downstream reservoir R−i

once water is released from upstream reservoir R+
i or to be pumped up

through unit i ∈ IP from downstream reservoir R−i to upstream reservoir

R+
i (∀i ∈ I) [expressed in number of time periods].

Ψ0r initial volume in reservoir r (∀r ∈ RT) [m3].

Ψr,Ψr maximum, minimum volume capacity in reservoir r, respectively (∀r ∈

RT) [m3].

Ar, Ar mid-horizon maximum, mid-horizon minimum target volumes in reser-

voir r, respectively (∀r ∈ RT) [m3].

Br, Br final maximum, final minimum target volumes in reservoir r, respec-

tively (∀r ∈ RT) [m3].

Γtr external water inflow in reservoir r during period t, that is to say available

at end of period t (∀t ∈ T, ∀r ∈ R) [m3/s].

9

Inflows can be positive for precipitations or runoff water; inflows are negative

for evaporation or water extraction.

Υi,Υi maximum water flow ramp-up, maximum water flow ramp-down between

two consecutive time periods at unit i, respectively (∀i ∈ I) [m3/s].

Φtij water flow increment released at time period t, through unit i, correspond-

ing to operational point j (∀t ∈ T, ∀i ∈ I, ∀j ∈ Jti,Φtij > 0) [m3/s].

Σti maximum spillage allowed during time period t through unit i (∀t ∈ T, ∀i ∈

I) [m3/s].

To have a consistent notation, spillage is artificially introduced for pumps and

∀t ∈ T, ∀i ∈ IP ,Σti = 0.

Λtij power generated at time period t by unit i corresponding to operational

point j (∀t ∈ T, ∀i ∈ I, ∀j ∈ Jti) [W].

ωr water value of reservoir r (∀r ∈ RT) [currency/m3].

Water value is assumed constant with respect to volume as water volumes in

reservoirs are almost invariant over the planning horizon.

λt proportional price for power at time period t (∀t ∈ T) [currency/W per time

period].

Qti maximum water flow released (or pumped) at time period t, through unit

i (∀t ∈ T, ∀i ∈ I) [m3/s].

Qti =
∑
j∈Jti Φtij

Q
ti

minimum water flow released at time period t, through unit i (∀t ∈ T, ∀i ∈

I) [m3/s].

Q
ti

=

 Φti1 when unit imust operate at t

0 otherwise

P ti maximum power generated during time period t by generating unit i (∀t ∈

T, ∀i ∈ IG) [W].

P ti = maxk∈Jti
∑k
j=1 Λtij

10

P ti its absolute value corresponds to the maximum power consumed during

time period t by pumping unit i (∀t ∈ T, ∀i ∈ IP) [W].

P ti = mink∈Jti
∑k
j=1 Λtij

2.1.3. Variables

vtr water volume in reservoir r at end of time period t (∀t ∈ T, ∀r ∈ R) [m3].

qti water flow released through unit i during time period t (∀t ∈ T, ∀i ∈ I)

[m3/s].

sti water flow spilled through unit i during time period t (∀i ∈ I, ∀t ∈ T) [m3/s].

pti power generated by unit i during time period t (∀t ∈ T, ∀i ∈ I) [W].

xtij binary activation status of discrete operational point j of unit i during time

period t (∀t ∈ T, ∀i ∈ I, ∀j ∈ Jti).

ytij continuous activation status of operational point j of continuous-operating

unit i during time period t (∀t ∈ T, ∀i ∈ IC ,∀j ∈ Jti)

zti binary variable allowing spillage at unit i in time period t (∀t ∈ T, ∀i ∈ I).

To simplify notation, variables are not defined for initial values (for t ≤ 0) but

they may be introduced when needed with specific values.

2.2. Complete mathematical model

This section is devoted to the description of the complete mathematical

model. We start with bounds on variables, continue with the constraints, and

finally introduce the objective function. By convention, sums on empty sets are

equal to zero.

11

2.2.1. Variable bounds

Now we introduce the simple bounds on variables introduced in the previous

section (∀t ∈ T):

Ψr ≤ vtr ≤ Ψr ∀r ∈ R (1)

0 ≤ Q
ti
≤ qti ≤ Qti ∀i ∈ I (2)

0 ≤ sti ≤ Σti ∀i ∈ I (3)

0 ≤ pti ≤ P ti ∀i ∈ IG (4)

P ti ≤ pti ≤ 0 ∀i ∈ IP (5)

xtij ∈ {0, 1} ∀i ∈ I, ∀j ∈ Jti (6)

ytij ∈ [0, 1] ∀i ∈ IC ,∀j ∈ Jti (7)

zti ∈ {0, 1} ∀i ∈ I. (8)

Note that valves can be modeled with Σti > 0 and Jti = ∅.

2.2.2. Constraints

We start by the constraints modeling the water volume conservation at time

period t and reservoir r (∀t ∈ T, ∀r ∈ RT):

vtr = v(t−1)r + ΠΓtr

+ Π
∑

i∈I+r ∩I
G

t−Ωi≥1

(q(t−Ωi)i + s(t−Ωi)i)

+ Π
∑

i∈I−r ∩I
P

t−Ωi≥1

(q(t−Ωi)i + s(t−Ωi)i)

−Π
∑

i∈I−r ∩I
G

(qti + sti)

−Π
∑

i∈I+r ∩I
P

(qti + sti) (9)

where v0r and (qti, sti)t≤0 are replaced with their initial values.

The water volume in the reservoir is equal to the water volume at the previ-

ous time period plus the external forecasted inflows released from the upstream

12

units (first summation), and pumped from the downstream units (second sum-

mation), minus the outflows released by the downstream units (third summa-

tion) and pumped by the upstream units (fourth summation). The constraints

take into account the time lapse needed for water to reservoir r.

For each reservoir r without storage capacity (∀r ∈ RC), the water volume

conservation constraint at each time period t (∀t ∈ T) is slightly different:

Γtr +
∑

i∈I+r ∩I
G

t−Ωi≥1

(q(t−Ωi)i + s(t−Ωi)i)

+
∑

i∈I−r ∩I
P

t−Ωi≥1

(q(t−Ωi)i + s(t−Ωi)i)

−
∑

i∈I−r ∩I
G

(qti + sti)

−
∑

i∈I+r ∩I
P

(qti + sti) = 0. (10)

Like above without the volume variables, water is conserved: outgoing flows

balance incoming flows, except that water cannot be stored.

On top of the reservoir capacity (1), mid-horizon and final volumes of reser-

voirs r ∈ RT are subject to targets:

Ar ≤ v t
2 r
≤ Ar ∀r ∈ RT (11)

Br ≤ vtr ≤ Br ∀r ∈ RT . (12)

Target bound values are indicators provided by mid-term planning to avoid

being blind to the future in the short-term scheduling. They are border stones

controlling the trajectories of water levels , but they are strategic constraints,

thus relaxable, and not physical constraints, thus unrelaxable, as the others.

We now introduce a system of constraints to express power-flow curves for

units with continuous operations. Constraints (13), (14), (15), and (16) de-

scribe piecewise linear power-flow curves where the breakpoints are the oper-

ational points; the piecewise linear curves are expressed with the incremental

13

formulation, see [17], i.e., ∀t ∈ T, ∀i ∈ IC ,

qti =
∑
j∈Jti

ytijΦtij (13)

pti =
∑
j∈Jti

ytijΛtij (14)

xtij ≤ ytij ∀j ∈ Jti (15)

yti(j+1) ≤ xtij ∀j ∈ {1, . . . , |Jti| − 1}. (16)

We prefer this formulation over the standard convex-combination formulation

as it is known to have nice theoretical and computational properties (e.g., it

is locally ideal, see [17] for details). For the discrete-operating units, flow and

power can only take a set of discrete values as modeled by constraints (17),

(18), and (19); the formulation is a simplified restriction of the incremental

formulation in order to express variables that only take a set of discrete values.

∀t ∈ T, ∀i ∈ ID,

qti =
∑
j∈Jti

xtijΦtij (17)

pti =
∑
j∈Jti

xtijΛtij (18)

xti(j+1) ≤ xtij ∀j ∈ {1, . . . , |Jti| − 1}. (19)

Note that the set of available operational points are chosen by operators ac-

cording to operating conditions. Note also that, as putting together constraints

(17)-(19) with (9), (11), and (12) might lead to infeasibilities for some instances,

we will allow in the following “limited” violations of constraints (11) and (12)

(see Section 5.2).

We next introduce the set of constraints related to spillage:

sti ≤ ztiΣti ∀t ∈ T, ∀i ∈ IG (20)

zti ≤ xti(|Jti|) ∀t ∈ T, ∀i ∈ IG. (21)

Constraints (20) imply that spillage through unit i during time period t can be

non-zero only if variable zti = 1. Constraints (21) translate an operational rule

14

stating that spillage is allowed through each unit only if the last operational

point is reached, i.e., xti(|Jti|) = 1. Note that, as no start-up/shut-down cost is

considered, the objective function does not discard solutions with positive value

for spillage and non-maximal operational points for the same unit and period,

thus we need to force this thanks to binary variables z.

Next, we have monotonicity constraints together with disjunctive constraints

relative to the simultaneous use of pump and turbine, ∀t ∈ T ,

1 + x(t−1)ij ≥ x(t−2)ij− + xtij+ ∀i ∈ ID,∀j ∈ Jti (22)

x(t−1)ij ≤ x(t−2)ij− + xtij+ ∀i ∈ ID,∀j ∈ Jti (23)

xti′1 + xti′′1 ≤ 1 ∀(i′, i′′) ∈ IR (24)

xti′1 + x(t−1)i′′1 ≤ 1 ∀(i′, i′′) ∈ IR (25)

x(t−1)i′1 + xti′′1 ≤ 1 ∀(i′, i′′) ∈ IR, (26)

where (j−, j, j+) ∈ J(t−2)i×J(t−1)i×Jti are the indices pointing at the same op-

erational point at three consecutive time periods (t−2, t−1, t), i.e.,
∑j−

k=1 Φ(t−2)ik =∑j
k=1 Φ(t−1)ik =

∑j+

k=1 Φtik. Also, x0ij , x(−1)ij are replaced with their initial

values. Constraints (22)-(23) ensure smooth operations to maintain a sustain-

able level of stress and wear for the turbine unit within a power plant. If one

turbine were to correspond to one operational point, the monotonicity con-

straints would reduce to 2-period min-up/min-down constraints on operational

points instead of minimum uptime and minimum downtime of each unit as

studied in [18, 19]. Note that no start-up costs have been considered in this

model. Instead, start-ups/shut-downs over two consecutive periods are pro-

hibited through constraints. Constraints (24)-(26) impose that the pump and

turbine of a reversible station cannot operate at the same time and consecutive

operations require a one-period transition.

Finally, we present the ramp-up and ramp-down constraints, ∀t ∈ T, ∀i ∈ I,

(qti + sti)− (q(t−1)i + s(t−1)i) ≤ Υi (27)

(qti + sti)− (q(t−1)i + s(t−1)i) ≤ −Υi (28)

15

where q0i, s0i are replaced with their initial values. Like monotonicity con-

straints (22)-(23), ramp-up and ramp-down constraints protect excessive tear

and wear of turbines, especially as no start-up/shut-down costs are considered.

Also, ramp-up and ramp-down constraints prevent large drift changes in flows

that could have harmful downstream effects. The restriction on flow changes

dependent on the use of water downstream, for example safety reasons whenever

the water flow involves the level of water in rivers used for leisure activities as,

for example, fishing or kayaking.

2.2.3. Objective function

Our aim is to maximize the revenues given as:

% = max
∑
t∈T

∑
i∈I

λtpti +
∑
r∈RT

ωr(vtr −Ψ0r −Π
∑
t∈T

Γtr). (29)

The first summation gives the profit/cost due to power generation/consumption

during the planning horizon (recall that λ is the proportional price vector), while

the second summation gives the net value of the water volume remaining at the

end of the planning horizon for reservoirs r ∈ RT . Prices can originate from

market forecasts or they can also correspond to Lagrangian multipliers. Water

values are dummy opportunity costs: they reflect the value of the optimal use

of water in the future instead of using it now. They are indicators provided by

mid-term planners. Different ways to derive water values that take into account

uncertainty of water inflows to manage reservoirs in the mid-term are presented

in [20] for example.

3. First computational tests

In this section, we present characteristics of the test set and first computa-

tional results with the complete model presented in Section 2.

3.1. Test set and configuration

Our test set is composed of 66 real-world instances corresponding to all

combinations of 6 valleys at 11 dates. For all instances, t = 96 time periods

16

are considered. Table 1 summarizes instance characteristics per valley. First

column gives valley name and other entries are:

|R| number of reservoirs

|I| number of units

|IR| number of pump-storage stations

|IC | number of continuously-operating units

#bin vars average number of binary variables per valley over the 11 dates and

standard deviation in parenthesis

#vars average number of variables per valley over the 11 dates and standard

deviation in parenthesis.

Valley topographies - order and structure of reservoirs and units along streams

- remain unchanged across instances of each valley. Operating conditions vary

from one date to another, therefore data such as initial values, volume bounds,

water inflows, water values, electricity prices, sets of operational points vary.

The number of variables changes as well as the sets of operational points change

over the time horizon and from one date to another. The variations in valley

topography and date for our test set were chosen to be representative of possible

configurations. Since we have a compact formulation where binary variables cor-

respond directly to operational points, the average number of binary variables

is somewhat an indicator of the combinatorial difficulty of the instances.

Tests were executed on 64-bits Intel Xeon CPU E5504 running at 2.00 GHz

x8 cores with Linux and 11.7 GB of RAM. The mathematical programming

modeling language AMPL Version 20121017 was used to run the MILP solver

IBM ILOG Cplex 12.4.0.0, see [21]. For each instance, a time limit of 1200

seconds was imposed. Tolerance parameters were left to their default values:

(linear) feasibility εf = 10−6, integer feasibility εi = 10−5, (linear) optimality

εo = 10−6.

17

3.2. Test results

Table 2 summarizes the solution obtained by Cplex for the 66 instances

presented in Section 3.1 with the complete model described in Section 2. Cplex

solution status of an MILP instance can be integer infeasible when the instance

is proved infeasible, feasible when a feasible solution is found, or intractable

when no integer solution is found within time limit, leaving feasibility of the

instance an open question.

Table entries are:

v valley label

time average wall-clock solution time and standard deviation in seconds.

#nodes average number of branch-and-bound nodes and standard deviation

in thousands

#inst feasible number of feasible instances

gap (%) average relative gap and standard deviation (only for feasible in-

stances)

‖%‖ (%) average normalized revenues and standard deviation (as derived in

(30) and only for feasible instances)

#inst-no sol. number of instances with no solution as solution is found integer

infeasible or intractable within the time limit.

For proprietary reasons, we do not show explicitly values of revenues and

deviations. For indication, we show normalized values:

‖%‖ =


%−%
%−% if % > %

0 if % = %

(30)

where % is the revenues given by the best solution found for a specific instance

while % and % are the maximum and minimum revenues found as best solution

values of all instances. The norm of deviations ‖ε‖ is computed by normalizing

by the maximum sum of deviations ε over all instances.

18

In addition to the numerous infeasible and intractable cases, several messages

from the solver indicate numerical problems: bad average condition numbers and

rounded integer variables. Numerical problems , such as rounding errors, data

errors, data inconsistency, and model infeasibilities, may indicate inaccurate

solutions.

When working with this real-world optimization problem, we run into spe-

cific practical difficulties, namely numerical problems and infeasibilities. Firstly

we must ensure numerically-computed results are affected neither by the errors

inherent to floating-point computations nor by noisy data from real-world in-

stances. Then, since we are considering a real problem that we want to model

so as to be feasible, we must update our model and/or adjust our data so as to

recover feasibility.

4. Dealing with numerical errors

A numerical error is observed at the end of a computation when a numerically-

computed result is different from the exact solution.

For an optimization problem, a major kind of error we can run into is when

feasibility is altered. Two cases may happen: either computations find a problem

infeasible while exact feasible solutions exist, or computations provide a solution

said to be feasible while the exact feasible set is empty. This kind of errors is

denoted as feasibility inconsistency. In this work, given the large occurrence of

infeasibilities, as shown in Table 2, we will focus on identifying and mitigating

feasibility inconsistencies.

Most standard MILP solvers - like Cplex - are based on floating-point arith-

metic; such arithmetic allows fast computations but inherently incurs rounding

errors, which may lead to feasibility inconsistency. The use of an exact solver

based on rational arithmetic should guarantee the exactness of our solution (see

Section 4.2.2 below for more details). Unfortunately, exact solvers are too slow

to get results within satisfactory time on large-scale instances.

In Section 4.1, we introduce a simple version of the model presented in

19

Section 2 to work with a model tractable with both types of solvers and avoid

undecidable situations where no solution is found within time limit.

Once feasibility consistency is dealt with: either an instance is known to be

exactly infeasible or an instance is known to be exactly feasible. In the former

case, infeasibility becomes a cause for modeling concern since we are dealing

with a real-world problem that should be modeled so as to be feasible (see

subsequent Section 5). In the latter case, numerical errors related to the feasi-

bility (optimality) certificate of the computed feasible (optimal) solution must

be checked. For linear programs, they respectively correspond to satisfaction

of linear constraints and non-negativity of reduced costs - when minimizing.

For mixed-integer programs, errors on feasibility certificate can be observed

by checking integrality of integer variables on top of satisfaction of linear con-

straints; errors on optimality are less trivial to check. These kinds of errors are

not studied in this work.

4.1. Mathematical formulation of a simple model

This section is devoted to the description of a simple version of the model

presented in Section 2.2. The idea is to work with a more tractable model and

avoid undecidable situations where no solution is found within satisfactory time.

Assuming the solution process is slow mainly because of the combinatorial

difficulties in the complete model, no binary variable is considered in the simple

model. Instead of considering a standard linear relaxation of the complete

model, we prefer to remove all constraints involving binary variables, including

the disjunctive constraints (22)-(23) relative to the simultaneous use of pump

and turbine.

Following same notation as in Section 2, the mathematical formulation of

the simple model is as follows:

20

- bounds

(1)

0 ≤ qti ≤ Qti + Σti ∀t ∈ T, ∀i ∈ I (31)

(4)− (5)

- constraints

(9)− (12)

pti =

∑
j∈Jij Λtij

Qti + Σti
qti ∀t ∈ T, ∀i ∈ I (32)

(27)− (28)

- objective

(29)

In the simple model, we get rid of spillage (no variables sti are considered)

and aggregate it with the water flow whose domain is extended accordingly, see

(31). Simply put, the power curve (32) is a linear segment between (0, 0) and

the last operational point with maximum spillage (Qti + Σti,
∑
j∈Jij Λtij).

For a given instance, the feasibility set of the simple model strictly includes

the feasibility set of the complete model since constraints (17)-(26) involving

binary variables are removed. Therefore less infeasibilities will happen with the

simple model. As for the objective function, the simple model is not strictly

speaking a relaxation of the complete one because the expression of the power-

flow curve (18)-(14) is given by constraint (32). Note that the power variables

pti are dependent variables which appear only in the objective function.

All in all, the simple model enables us to get rid of intractabilities, and a

few infeasibilities, to focus on numerical errors.

4.2. Dealing with floating-point rounding errors

As defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754),

the binary double-precision format is a floating-point system in base 2 with a

21

52-bit precision. It is a commonly-used format for numerical computations. The

set of possible representations in that format is noted F. A number a ∈ R∗ is

represented by fl(a) ∈ F such that:

fl(a) = (−1)s(a) ·m(a) · 2e(a)−53 (33)

where sign s(a) ∈ {0, 1} is expressed with 1 bit, significandm(a) ∈ {252, . . . , 253−

1} is expressed with 52 bits, exponent e(a) ∈ {−1021, . . . , 1024} is expressed

with 11 bits.

Floating-point representations are not exact, F R and it may happen

that fl(a) 6= a. For any real a such that |a| ∈ [2−1022, 21023], unit roundoff

u = 2−53 ≈ 10−16 in double precision is an upper bound on the relative error

Er(fl(a)) of the approximation of a by fl(a):

Er(fl(a)) =
|a− fl(a)|
|a|

< u (34)

and an equivalent definition is Er(fl(a)) = |γ| < u, where fl(a) = a(1+γ). Note

that the following modified version of the approximation also holds: fl(a) =

a
1+γ , |γ| < u (see Theorem 2.2 and 2.3 in [22]). Also absolute error Ea(fl(a))

on the floating-point representation is defined as and bounded by:

Ea(fl(a)) = |a− fl(a)| < u|fl(a)|. (35)

The first rounding error happens when representing a real number in a

floating-point format. Other rounding errors occur with calculations. Indeed F

is not closed under the basic arithmetic operations: even if the operands lie in F,

the result of such operations may need to be rounded to lie in F. The rounding

error on the result of a single operation is also bounded by u. The composition of

several operations may propagate small rounding errors into larger errors. The

study of such errors incurred by implementations of algorithms is an important

subject of numerical analysis, see [22].

4.2.1. Tolerances, scaling, and floating-point-based solvers

As stated in [23], solvers based on floating-point representations, such as

Cplex, introduce tolerances in order to deal with the rounding errors that are

22

inherent to such representations.

To avoid detrimental errors on the feasibility set, linear constraints are

marginally relaxed with the introduction of absolute feasibility tolerance εf .

For instance, for a variable x and a right-hand-side (RHS) parameter b: while

we model a constraint as x ≥ b, solvers see x ≥ fl(b)− εf . Since RHS terms are

indicators of the orders of magnitude of contraints, we will consider rounding

errors on RHS terms in our reasoning for the sake of clarity.

Provided Ea(fl(b)) ≤ εf is satisfied, solvers ensure that a less restrictive

constraint x ≥ fl(b)− εf is considered with floating-point representation:Ea(fl(b)) ≤ εf

fl(b) ≤ b+ Ea(fl(b))

⇒ b ≥ fl(b)− εf .

Indeed, it is better to slightly extend the feasible set than to arbitrarily restrict

it because of rounding errors.

If we scale down the unit of the left-hand-side (LHS) term, for example:

x := x/10 then x ≥ b becomes x ≥ b/10

and the rounding error on the RHS

Ea(fl(b/10)) ≈ Ea(fl(b))/10.

Of course, an experienced modeler would intuitively select suitable units but we

find it useful to state this simple rule of thumb.

When providing an instance to a floating-point-based solver, we should make

sure that the following condition holds:

Ea(fl(b)) < u|fl(b)| ≤ εf . (36)

Usually the solver’s feasibility tolerance is uniquely set across constraints and

εf = 10−6 by default for Cplex. Orders of magnitude should be of the range

of 1010 so that condition (36) holds, which could be rewritten as:

|fl(b)| ≤ εf/u ≈ 1010. (37)

23

Let us consider a simple example limited to some linear constraints to illus-

trate the complementary effect of scaling to avoid detrimental errors on feasi-

bility:

x = 1012y (38)

x ≥ 0

y = fl(c)

where c is a value very close to 0, with fl(c) = −10−16. In this case x = −10−4

and | − 10−4| > εf is infeasible. If we scale down the unit of variable x, for

example x := x/106, then equation (38) becomes x = 106y. In this case x =

−10−10 and | − 10−10| < εf , thus is feasible.

In our problem, volumes and related bounds are the numbers with the great-

est magnitude. In addition, recursive constraints (9) show that volumes result

from several intermediary operations, which often lead to error propagation.

Volumes are therefore the most likely to be subject to substantial rounding er-

rors. For this reason, we decide to study the effect of scaling volume-related

parameters and variables.

Note that tuning directly the solver’s feasibility tolerance could be an option

if all constraints’ RHS terms were of the same magnitude. As this is not the case,

we rather rescale each variable individually so that the constraints in which they

are involved are not disturbed by rounding error. In particular, let us consider

variables v and q and their respective bounds (1) and (2). The magnitude of their

bounds can be very different. Thus, rescaling them individually or not could

highly influence the potential rounding error on constraints where both sets of

variables appear like (9). This is especially true for instances with Ar = Ar

and/or Br = Br.

4.2.2. Computational results

Standard floating-point solvers feature default scaling routines, which are

kept activated for the computational tests. Moreover, we find it useful to scale

24

variables and constraints known to be sensitive, thus rescaling the instance

before providing it to the solver.

For volume variables v, we test 5 scalings - denoted with letters from A

to E - which correspond to increasing volume units we do not express here

for proprietary reasons. Volume-related parameters (Ψ,Ψ, A,B,A,B,Γ, ω) and

constraints (1), (9), (11), (12) are affected. For example, if we scale volumes by

a factor 10, we reformulate (∀t ∈ T, ∀r ∈ R):vtr ≤ Ψr

vtr = v(t−1)r + ΠΓtr . . .

into

vtr ≤
Ψr

10

vtr = v(t−1)r + ΠΓtr

10 . . .

The scaling factor (10 in this example) is computed according to the scaling we

want to test and the original units of parameter values. Given volumes’ orders

of magnitude, the feasibility set, as represented by Cplex, is expected to be

altered when using scalings A and B, because condition (37) is not satisfied.

In order to identify situations where the feasibility status computed by

Cplex is incorrect, Cplex’s results are compared with results of an exact solver.

Namely, we use QSoptEx, an LP solver based on rational arithmetic, instead of

floating-point arithmetic [24]. Note that the solution obtained with a rational-

based solver is left unchanged by scaling as there is no feasibility tolerance.

Table 3 summarizes feasibility consistency for the Cplex solution results

with QSoptEx’s exact result. The experiment is performed for the 66 instances

presented in Section 3.1 with the simple model described in Section 4.1 according

to scalings A to E. With regards to feasibility, the Cplex solution results of a

problem formulated with different volume scalings are said to be:

- consistentF if instances with all scalings are found feasible in agreement

with QSoptEx’s exact result

- consistentI if instances with all scalings are found infeasible in agreement

with QSoptEx’s exact result

- inconsistentF if at least one instance with one scaling is found infeasible

in contradiction with QSoptEx’s exact result

25

- inconsistentI if at least one instance with one scaling is found feasible in

contradiction with QSoptEx’s exact result.

Condition (37) with scaling A and B is not satisfied for volume variables

as, decreasing the unit scale from scaling E to A, their corresponding bounds

take larger values. The limit defined by inequality (37) is exceeded with scal-

ing A, thus, with it Cplex’s solution is wrongfully found infeasible for the 32

inconsistentF instances. Note that scaling A and B are characterized by large

right-hand-side values, whereas the constraints matrix features a large condi-

tion number, i.e., using the 2-norm for matrices, the ratio between the maximum

and the minimum singular value of the parameters characterizing the instance.

It is well-know that a high value of the condition number corresponds to ill-

conditioned instances. An appropriate scaling would limit the effect of input

rounding errors on the solution.

Let us now consider the 44 (=12 consistentF + 32 inconsistentF) instances

that are rightfully found feasible and solved to optimality by Cplex for scalings

B to E. For each instance, the relative objective error %∆ is computed as the

relative difference between the objective value found by both solvers. Table 4

summarizes statistics on relative objective error according to scaling. Maximum

(max), average (avg), and standard deviation (std) of the relative objective error

%∆ are computed over the 44-instance set for each scaling.

Even though condition (37) with scaling B is not satisfied, there is hardly

no feasibility inconsistency observed for the considered test set. However, the

errors on the computed objective value for scaling B appear to be much larger

than those obtained with scalings C to E. This indicates that rounding errors

are more likely to have an impact on the quality of the solution.

To return to the 4 (=1+1+2) inconsistentI instances of Table 3, the results

illustrate there is a limit for the use of scalings with Cplex. Indeed, when a

relatively large scaling is used, significant digits of handled variables and param-

eters are neglected as they become lower than the absolute feasibility tolerance.

Therefore, the relaxation introduced by the standard feasibility tolerance for

26

rounding errors becomes too loose and exactly infeasible instances (as seen by

QSoptEx) are seen as feasible.

An approximate computation with inaccurate data might recover feasibility

by chance, whereas an exact computation with inaccurate data cannot. How-

ever, the combination of large scalings and feasibility tolerance for an approx-

imate computation might over-relax the problem. For this reason, scaling E,

being too large, is discarded for future computations with CPLEX, while data

errors are dealt with in the subsequent section.

4.3. Dealing with data errors

Another kind of numerical error may be observed when inaccurate input

data, or data errors are involved. As pointed above in Section 4.2.2 (see the

inconsistentI case), even an exact computation may lead to an incorrect result

if data is inaccurate.

If input value â is read for parameter a, the absolute error on data â is:

Ea(â) = |â− a|.

The problem instances were obtained by manipulating raw data. Such ma-

nipulation could have introduced errors of various types. We, thus, recovered

exact values of a by going back to raw data and checking manually the cor-

rectness of the data for some of the instances. This enabled us to derive upper

bounds on the relative data error Er by rounding Er up to the next order of

magnitude:

|â− a|
â

= Er(â) . Er(â)

for all parameters:

- Ψ0,Ψ,Ψ, A,B,A,B,Γ regarding reservoirs,

- Υ,Υ,Σ,Φ,Λ regarding units.

In the general case since only â is given, we assumed the previously derived

upper bounds on relative data errors Er were valid to obtain upper bounds on

27

absolute data errors Ea:

Ea(â) ≤ Ea(â) ≈ Er(â) · |â|.

Feasible regions are sometimes improperly restricted and found empty be-

cause of data errors. To recover feasibilty, we suggest a data correction that

takes into account upper bounds on data errors to guard against the worst

case. More specifically, within each constraint we correct parameters by adding

or subtracting the upper bound on the error in the direction that relaxes the

constraint. Assuming w.l.o.g. a ≥ 0, b ≥ 0, x ≥ 0, the exact constraint:

ax ≥ b,

where a ∈ [â − Ea(â), â + Ea(â)] and b ∈ [b̂ − Ea(b̂), b̂ + Ea(b̂)], is no longer

represented by the inexact constraint:

âx ≥ b̂,

but is relaxed into the following corrected constraint:

(â+ Ea(â))x ≥ b̂− Ea(b̂). (39)

While inequality (39) is valid only for x ≥ 0, we can similarly derive a corrected

constraint for any a, b, and x.

This data correction is carried out for all inequality constraints; equality

constraints being considered as two opposite inequalities. The exact feasible

region is extended because we are bound to consider the worst-case errors for

all parameters: better consider a marginally extended feasibility region than an

empty one.

Note that our primary goal is to deal with infeasibilities, that is why we

focus on constraints. As the feasibility region is enlarged and the objective

coefficients are not adjusted accordingly, it is possible that a greater objective

value is found with data correction.

Note also that we propose to use scalings to deal with rounding errors (as

described in Section 4.2.1) and data correction to handle data errors. It seems

28

like we could have used scalings for both. However, using scalings would not

work with an exact solver because no feasibility tolerance is used. Moreover, fea-

sibility tolerance can handle only cumulative errors on all terms of a constraint,

while the proposed data correction handles each term individually.

We consider the simple model presented in Section 4.1. We choose to keep

scaling C for volumes for all reservoirs of all instances as it was shown to be a

suitable scaling. We sort the instances based on the following case disjunction:

- case 1 if QSoptEx and Cplex reach a feasible solution without data

correction;

- case 2 if QSoptEx and Cplex find no solution with data correction;

- case 3 if QSoptEx and Cplex find no solution without data correction,

but both solvers reach a feasible solution with it;

- case 4 if QSoptEx finds no solution without data correction, but Cplex

reaches a feasible solution without it, and both solvers reach a feasible

solution with data correction.

Table 5 summarizes feasibility consistency of the solutions obtained by Cplex

and QSoptEx without data correction (noDC) and with data correction (wDC)

for the 66 instances presented in Section 3.1.

Firstly, comparing QSoptEx results without or with data correction (second

and fourth columns) shows that 11 (= 9+2) instances were infeasible because

of data errors and become feasible with data correction. Secondly, QSoptEx

and Cplex solutions disagree without data correction for 2 instances (case 4),

whereas they now agree with it. All in all, the proposed data correction is

shown to be effective as feasibility consistency between solvers is recovered and

feasibility is also recovered for 11 more instances.

Let us compare relative objective error between solvers for the instances that

are rightfully found feasible and solved to optimality: the 44 feasible instances

without data correction, relative to case 1, and the 55 feasible (= 44 + 9 + 2)

instances with data correction, relative to cases 1, 3, and 4. Table 6 summarizes

29

statistics on relative objective error according to data correction. The relative

objective error %∆ is computed as explained previously in Section 4.2.2. For

the two sets of instances that are solved to optimality, we restate the number

of instances and we present the same statistics as in Table 4.

Luckily, rounding errors are mitigated with data correction as Cplex ob-

jective value is relatively more accurate. Although rounding errors and data

errors — and the proposed repairs — may override one another depending on

the problems, it remains necessary to implement the two reparations separately

to deal with each kind of errors.

4.4. Extensions of results to the complete model

Ideally, we would like to check that the computational results obtained by

scaling and data correction for the simple linear model can be extended to

the complete mixed-integer model. We tried to use Scip-Ex [25], an MILP

solver based on rational arithmetic. Scip-Ex uses Scip 3.0.0’s branch-and-

bound framework and invokes QSoptEx for LP solution. Unfortunately, Scip-

Ex solution times are too long for the complete model for all instances but

those relative to valley v-a. Interestingly Scip-Ex and Cplex solutions for

the complete model with data correction and scaling C are consistent in terms

of feasibility for each instance relative to valley v-a. This seems to validate

our approach eventhough we would need to further check on the whole set of

instances.

Therefore, we do not refer to results of an exact solver to check feasibility

consistency. We keep on using scaling C for volumes and data correction on

the complete model. Table 7 summarizes the solution obtained by Cplex for

the 66 instances presented in Section 3.1 with the complete model described

in Section 2 without and with data correction. The first (second, respectively)

column shows solution status noDC (wDC, respectively). The third column

gives the number of instances #inst for each combination of the first and second

column entries. Note that results noDC correspond to the ones presented in

Section 3.2 (Table 2).

30

Data correction helps to increase the number of feasible instances from 14

to 46 and allows to doubt the feasibility of 4 instances. In the sequel we assume

the impact of numerical error is sufficiently reduced thanks to data correction

and scaling C and that their impact can be neglected.

5. Dealing with model infeasibilities

Without numerical errors, we expect our problem to be modeled so as to

be feasible. As it is not the case, we would like to understand the sources of

infeasibilities and update our model accordingly. In this section, infeasibilities

are first classified according to the two main specifications: discrete operations

and target volume constraints (or water-management policies).

5.1. Classification of infeasibilities

Cplex’s conflict refiner routine [21] offers to identify a “set of mutually con-

tradictory constraints”. It is not guaranteed to be minimal, that is to say it may

not be an Irreducible Infeasible Subset (as defined in [26]). Even so we cannot

systematically call the routine because it is very time consuming given the size

of our instances. In addition, this routine considers all constraints individually

while we are interested on insights by groups of constraints. Therefore, we sort

of mimic the conflict refiner routine by manually relaxing sets of constraints cor-

responding to the two specifications of the complete model — namely discrete

operations and target volume constraints — and by checking feasibility status.

We still use it occasionally when individual refinement is needed.

Indeed, the specification of discrete operations is relaxed so as to obtain

the simple model s from the complete model c. We also consider relaxations

obtained by removing target volume bounds which are a hard expression of

water-management policies. Ideally we wish to satisfy target volumes but we

relax them to detect if they are sources of infeasibility and therefore obtain

models s̃ and c̃. Target volume bounds will be referred to as TV.

According to the combination of relaxations, we consider four models:

31

- the simple model (from Section 4.1) without target volumes s̃

- the simple model s: F(s) ⊂ F(s̃)

- the complete model (from Section 2.2) without target volumes c̃: F(c̃) ⊂

F(s̃)

- the complete model c: F(c) ⊂ (F(c̃) ∩ F(s)) as F(c̃) and F(s) are relax-

ation of F(c) obtained by relaxing two different sets of constraints, i.e.,

the target volume constraints and the specification of discrete operations,

respectively

where F(m) is the feasible set of model m with respect to q and v variables.

The four models above allow us to classify instances infeasibility. In par-

ticular, infeasibilities for the complete model, i.e., F(c) = ∅, can be classified

according to the feasibility status of the considered relaxations:

- data inconsistent when F(s̃) = ∅: it may happen, for example, when

the initial volume is out of bounds Ψ0 > Ψ, when bounds are reversed

Ψ > Ψ, when a unit is declared unavailable Q = Σ = 0 while its upstream

reservoir overflows. There exist several other cases and the interpretation

of an operator is often required to recover a relevant feasibility. As we

want to propose a systematic treatment of infeasibilities, we decide to

discard data inconsistencies from the scope of this work.

- unattainable TV when F(s) = ∅ and F(c̃) 6= ∅: it happens when the target

volumes are unattainable even when discrete unit operational domains are

relaxed. This kind of infeasibilities will be dealt with in Section 5.2.

- impossible discrete operations when F(c̃) = ∅ and F(s) 6= ∅: such infeasi-

bilities happen when the sets of discrete operational points together with

ramp-up/down, monotonicity and disjunctive constraints (22)-(23) forbid

values of water flow required to remain within the reservoir bounds. For

the same reasons as data inconsistencies, we discard this kind of infeasi-

bilities.

32

- unattainable TV & impossible discrete operations when F(s) = ∅ and

F(c̃) = ∅: when the two previous kinds of infeasibilities concomitantly

happen. As we discard impossible discrete operations, we also discard this

kind of infeasibilities.

- incompatible TV & discrete operations when F(s) 6= ∅,F(c̃) 6= ∅: it hap-

pens when the target volumes are incompatible with complete discrete unit

operational domains, though target volumes are attainable with relaxed

unit operational domains, and discrete operations are feasible without tar-

get volumes. Like the cases where target volumes are unattainable, this

kind of infeasibilities will be dealt with in Section 5.2.

In Table 8, we refer to results obtained considering the full test set with the

complete model, scaling C, and data correction. Namely, the first column shows

Cplex solution status, the second column shows (when applicable) infeasibility

classification (as defined in details below), and the third column gives, for each

combination of status/class, the number of relative instances #inst.

Within the tested set, there was no occurrence of impossible discrete oper-

ations and unattainable TV & impossible discrete operations. We are left with

cases relative to unattainable TV and incompatible TV & discrete operations.

We must therefore deal with too tight target volumes, which are responsible for

the infeasibilities of at least 8 (=6+2) instances of our tests.

For the 7 instances found intractable for the complete model, solving the

relaxed models reached feasible solutions: F(s) 6= ∅,F(c̃) 6= ∅. They can either

be feasible or infeasible as incompatible between target volumes and discrete

operations.

5.2. Reformulation to deal with unattainable target volumes

We choose to relax target volumes instead of tampering with discrete op-

erations. Firstly, target volumes are introduced to control water level daily

trajectories. They are needed either to enforce mid-term management policies

when those cannot be properly reflected through water values, or to satisfy

33

punctual requirements for reservoir operations. In principle introducing tar-

get volumes should be regarded as complementary/strategic constraints rather

than mandatory. Considering hard constraints as in (11)-(12) often results in

infeasibility as seen in Section 5.1 and also as mentioned in, for example, [27].

Secondly, the discrete operations may be very critical, if they model prohibited

operating zones as in [28] for example.

To amend target volumes, we propose a 2-stage method. In the first stage we

complete and marginally modify the model formulated in Section 2 to recover

feasibility. Slack variables are introduced, namely:

αr, αr deviations to mid-horizon maximum and minimum target volumes of

reservoir r (∀r ∈ RT) [m3].

βr, βr deviations to final maximum and minimum target volumes of reservoir r

(∀r ∈ RT) [m3].

The bounds on these new variables are defined as follows (∀r ∈ RT):

0 ≤ αr ≤ max(Ar −Ψr, 0) (40)

0 ≤ αr ≤ max(Ψr −Ar, 0) (41)

0 ≤ βr ≤ max(Br −Ψr, 0) (42)

0 ≤ β
r
≤ max(Ψr −Br, 0). (43)

Relaxing constraints (11)-(12) as follows is expected to guarantee feasibility:

Ar − αr ≤ vt/2,r ≤ Ar + αr ∀r ∈ RT (44)

Br − βr ≤ vt,r ≤ Br + βr ∀r ∈ RT . (45)

Yet we want to relax the constraints only when necessary and we do not want

to leverage relaxations to gross larger revenues. For instance, if target volume

bounds are attainable, no slack should be introduced. To deviate as little as

possible from the initial target volume bounds, we compute the minimal slacks

necessary and sufficient to recover feasibility. To do this, objective function

34

(29) is replaced by another objective, i.e., the minimization of the sum of (non-

negative) deviations:

ε = min
∑
r∈RT

(αr + βr + αr + β
r
) (46)

and constraints (40)-(43) are added while constraints (11)-(12) are replaced by

(44)-(45). The first stage terminates with a value ε ≥ 0. Such a value can be

considered as the 1-norm of the deviation vector (αr − αr, βr − βr)r∈RT , thus

inducing a non-negative value for ε.

In the second stage, we still consider the slack variables along with their

related constraints (44)-(45), the only constraints we consider relaxable, and we

limit the sum of deviations as follows:∑
r∈RT

(αr + βr + αr + β
r
) ≤ ε (47)

where ε results from the first stage. Either the initial feasible set, i.e., without

deviations, was empty and it is enlarged within the computed deviation to con-

tain at least one feasible solution after the first stage, or the initial feasible set

was already non-empty and it remains unchanged when the minimum aggre-

gated deviation ε is zero. In the second stage, we can then optimize the original

objective function (29) over a feasible set now guaranteed to be non-empty.

Note that this kind of relaxation (47) differs from what standards MILP solver

do (39). In the first case, the new right-hand-side ε is computed by optimizing

(46) subject to (40)-(45) and can take a positive, non negligible value. In the

second case, the coefficients and right-hand-side modification is bounded by the

relative data error (typically negligible) computed beforehand.

The proposed method could be interpreted as a lexicographic method to

solve a bi-objective MILP where the first objective is minimizing the deviation

with respect to the target volumes (46) and the second objective is the original

objective function (29). For details on lexicographic methods for multi-objective

optimization problems the reader is referred to [29], for example.

35

5.3. Computational results

Table 9 expands Table 8 to include results of the feasibility recovery stage

with statistics per valley.

Table entries are:

v valley label

time average wall-clock solution time and standard deviation in seconds.

#nodes average number of branch-and-bound nodes and standard deviation

in thousands

#inst feasible number of feasible instances, now including instances for which

the stage-1 (46) does not converge to 0 (ε > 0)

gap (%) average relative gap and standard deviation (only for feasible in-

stances)

#inst- ε > 0 number of instances for which the sum of deviations ε is stricly

positive.

‖ε‖ (%) average normalized sum of deviations and standard deviation (only

for instances for which ε > 0)

Note that to allow for comparison with results relative to first computations in

Section 3, the first five entries in Table 2 and 9 match.

The 46 instances that were originally feasible remain unchanged as the com-

puted deviation is zero. The feasibility recovery stage converges to 0 for one

instance originally intractable, thus proving original feasibility. Indeed, the orig-

inal problem and the stage-1 problem are somewhat different and MIP solution

processes are sensitive to such differences. As for the other 6 originally in-

tractable instances, a non-optimal integer solution was found within time limit

in the feasibility recovery stage. Note that we have neither proven original fea-

sibility because the corresponding objective value is strictly greater than zero

(ε > 0) nor original infeasibility because the continuous lower bound is still zero

36

at termination. The 5 instances that are data inconsistent remain infeasible

as they are left aside from the feasibility recovery stage. For the 8 (=6+2)

instances that were originally infeasible because of target volumes, a non-zero

deviation is computed to recover feasibility. All in all, feasibility is recovered

for 61 instances out of 66.

For those 61 instances, Table 10 summarizes solution statistics of the second

stage.

Table entries are:

v valley label

#inst feasible number of feasible instances as found from the the feasibility

recovery stage

time average wall-clock solution time and standard deviation in seconds.

#nodes average number of branch-and-bound nodes and standard deviation

in thousands

gap (%) average relative gap and standard deviation

‖%‖ (%) average normalized revenues and standard deviation (as derived in

(30)).

Regarding infeasibilities and the necessity to compute target volume devia-

tions, valleys v-a (surprisingly), v-c, and v-e seem problematic and no trend

related to the size/topography of the valleys appears. We observe the (expected)

trend that larger valleys gross more revenues, although several instances are not

solved to optimality and small valleys could feature high-capacity units. As for

solution performance, no pattern emerges either: the “hardest” valley v-f is

solved well with respect to valleys v-c and v-e. Indeed, the average gap for

v-c is large because, for several instances, stage-2 fails to converge to an integer

feasible solution so we have to settle with the solution of stage-1 as back up.

For v-e, although quite good solutions are found, it seems it takes time to close

the gap as the time limit of 1200s is always reached.

37

6. Conclusions

In this work we considered feasibility issues of the hydro-unit commitment

(HUC) relative to units along a valley. The problem was formulated as a mixed-

integer linear program. Given real-world instances, we reformulated the model

to make the problem feasible. Compared with a standard HUC problem, we

considered two additional specifications, namely the power-flow curves feature

discrete operational points and each reservoir level should meet mid-horizon and

final target volumes. In practice, solving this HUC problem often encountered

several infeasibility situations. We followed a step-by-step approach to detect

and fix one source of infeasibility at a time, namely numerical errors and model

infeasibilities. Numerical errors were analyzed by resorting to an exact solver.

We derived a preliminary processing of data by scaling variables and marginally

correcting constraints to eliminate the detrimental effects of numerical errors.

We showed that the remaining infeasibilities originated in conflicting specifica-

tions between target volumes and discrete operational points. We proposed a

preliminary processing of the model to eliminate such infeasibilities by imple-

menting a 2-stage method. In the first stage, a minimal deviation from target

volumes is estimated to make the problem feasible. In the second stage, the orig-

inal HUC problem is solved with a possible deviation from the target volumes

as derived in the first stage.

On an original test set of 66 real-world instances with only 14 feasible in-

stances (21%), the proposed method attained feasibility for 61 instances (92%).

More specifically, the preliminary processing of data and model helped re-

cover/decide on the feasibility of respectively 32 and 15 instances out of the

52 problematic ones.

An in-depth analysis of the detrimental effects of rounding errors on solutions

would be an interesting perspective to improve the condition number of the

constraints matrix, thus extending the proposed preliminary processing of data.

For future work, we aim at studying new and efficient methods to find a good

feasible solution of the HUC problem. Moreover, the more accurate knowledge

38

of the challenging aspects of the HUC problem allow us to tailor effective exact

methods.

Acknowledgement

This work was supported by ANRT CIFRE number of contract 1106/2012.

The third author acknowledge EDF for financial support to pursue this re-

search. The authors are grateful to Grace Doukopoulos for initiating this re-

search project and Arnaud Lenoir for his support with the numerical tests. We

thank two anonymous referees for their useful comments and suggestions that

helped to significantly improve the paper.

References

[1] A. Renaud, Daily generation management at Electricite de France: from

planning towards real time, Automatic Control, IEEE Transactions on

38 (7) (1993) 1080–1093.

[2] M. Held, P. Wolfe, H. P. Crowder, Validation of subgradient optimization,

Mathematical Programming 6 (1) (1974) 62–88. doi:10.1007/BF01580223.

[3] P. Wolfe, A method of conjugate subgradients for minimizing nondifferen-

tiable functions, Springer Berlin Heidelberg, Berlin, Heidelberg, 1975, pp.

145–173.

[4] G. Hechme-Doukopoulos, S. Brignol-Charousset, J. Malick, C. Lemaréchal,

The short-term electricity production management problem at EDF, Op-

tima Newsletter-Mathematical Optimization Society 84 (2010) 2–6.

[5] G. Cohen, Auxiliary problem principle and decomposition of optimization

problems, Journal of Optimization Theory and Applications 32 (3) (1980)

277–305.

[6] W. W.-G. Yeh, Reservoir management and operations models: A state-of-

the-art review, Water Resources Research 21 (12) (1985) 1797–1818.

39

[7] J. W. Labadie, Optimal operation of multireservoir systems: State-of-

the-art review, Journal of Water Resources Planning and Management

130 (2) (2004) 93–111. arXiv:http://dx.doi.org/10.1061/(ASCE)0733-

9496(2004)130:2(93).

[8] R. Taktak, C. D’Ambrosio, An overview on mathematical programming

approaches for the deterministic unit commitment problem in hydro valleys,

Energy Systems (2016) 1–23.

[9] G. B. Sheble, G. N. Fahd, Unit commitment literature synopsis, Power

Systems, IEEE Transactions on 9 (1) (1994) 128–135.

[10] N. P. Padhy, Unit commitment-a bibliographical survey, Power Systems,

IEEE Transactions on 19 (2) (2004) 1196–1205.

[11] M. Tahanan, W. van Ackooij, A. Frangioni, F. Lacalandra, Large-scale unit

commitment under uncertainty, 4OR 13 (2) (2015) 115–171.

[12] A. Arce, T. Ohishi, S. Soares, Optimal dispatch of generating units of the

itaipu hydroelectric plant, Power Systems, IEEE Transactions on 17 (1)

(2002) 154–158.

[13] A. J. Conejo, J. M. Arroyo, J. Contreras, F. A. Villamor, Self-scheduling of

a hydro producer in a pool-based electricity market, Power Systems, IEEE

Transactions on 17 (4) (2002) 1265–1272.

[14] A. Borghetti, C. D’Ambrosio, A. Lodi, S. Martello, An MILP Approach

for Short-Term Hydro Scheduling and Unit Commitment With Head-

Dependent Reservoir, Power Systems, IEEE Transactions on 23 (3) (2008)

1115–1124.

[15] E. Parrilla, J. Garćıa-González, Improving the b&b search for large-scale

hydrothermal weekly scheduling problems, International Journal of Elec-

trical Power & Energy Systems 28 (5) (2006) 339–348.

40

[16] Q. Zhai, X. Guan, F. Gao, A necessary and sufficient condition for obtaining

feasible solution to hydro power scheduling with multiple operating zones,

in: Power Engineering Society General Meeting, 2007. IEEE, 2007, pp. 1–7.

[17] M. Padberg, Approximating separable nonlinear functions via mixed zero-

one programs, Operations Research Letters 27 (1) (2000) 1–5.

[18] J. Lee, J. Leung, F. Margot, Min-up/min-down polytopes, Discrete Opti-

mization 1 (1) (2004) 77–85.

[19] D. Rajan, S. Takriti, Minimum up/down polytopes of the unit commitment

problem with start-up costs, Tech. Rep. RC23628, IBM Research Division

(2005).

[20] W. van Ackooij, R. Henrion, A. Möller, R. Zorgati, Joint chance constrained

programming for hydro reservoir management, Optimization and Engineer-

ing 15 (2) (2014) 509–531.

[21] IBM, ILOG CPLEX 12.4 User’s Manual, IBM (2012).

[22] N. J. Higham, Accuracy and stability of numerical algorithms, Society for

Industrial and Applied Mathematics, 2002.

[23] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby,

E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann,

T. Ralphs, D. Salvagnin, D. E. Steffy, K. Wolter, MIPLIB 2010, Mathe-

matical Programming Computation 3 (2) (2011) 103–163.

[24] D. G. Espinoza, On linear programming, integer programming and cutting

planes, Ph.D. thesis, Georgia Institute of Technology (2006).

[25] W. Cook, T. Koch, D. E. Steffy, K. Wolter, An Exact Rational Mixed-

Integer Programming Solver, Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2011, pp. 104–116.

[26] O. Guieu, J. W. Chinneck, Analyzing infeasible mixed-integer and integer

linear programs, INFORMS J. on Computing 11 (1) (1999) 63–77.

41

[27] M. R. Piekutowski, T. Litwinowicz, R. J. Frowd, Optimal short-term

scheduling for a large-scale cascaded hydro system, in: Power Industry

Computer Application Conference, 1993. Conference Proceedings, 1993,

pp. 292–298.

[28] N. Sinha, R. Chakrabarti, P. K. Chattopadhyay, Fast evolutionary pro-

gramming techniques for short-term hydrothermal scheduling, IEEE Trans-

actions on Power Systems 18 (1) (2003) 214–220.

[29] M. J. Rentmeesters, W. K. Tsai, K.-J. Lin, A theory of lexicographic multi-

criteria optimization, in: Engineering of Complex Computer Systems, 1996.

Proceedings., Second IEEE International Conference on, 1996, pp. 76–79.

42

Table 1: Test set characteristics per valley

Valley |R| |I| |IR| |IC | #bin vars #vars

v-a 1 1 0 0 136 (75) 524 (75)

v-b 2 3 1 0 953 (149) 2017 (149)

v-c 5 6 0 1 1707 (670) 3835 (670)

v-d 5 6 1 1 3296 (806) 6006 (1732)

v-e 5 9 1 0 3974 (582) 7066 (582)

v-f 10 16 2 4 4453 (406) 10343 (453)

43

Table 2: Solution statistics per valley relative to first computations for the complete model

v time (s) #nodes #inst gap (%) ‖%‖(%) #inst-no sol.

avg std avg std feasible avg std avg std infeas. intrac.

v-a 0 0 0 0 2 0.0 0.0 50.0 70.5 9 0

v-b 475 587 2,621 3,167 6 0.0 0.0 35.7 32.1 0 5

v-c 546 627 2,316 2,964 0 - - - - 6 5

v-d 843 548 1,155 856 2 0.0 0.0 50.0 70.5 2 7

v-e 546 627 666 791 0 - - - - 6 5

v-f 656 626 560 573 2 0.0 0.0 50.0 70.7 5 4

Table 3: Number of instances whose solutions are (in)consistent according to scaling, for the

simple model

feasibility

consistency

QSoptEx

status

Cplex status
#inst

scaling A scaling B scaling C scaling D scaling E

consistentF optimal optimal optimal optimal optimal optimal 12

consistentI infeasible infeasible infeasible infeasible infeasible infeasible 18

inconsistentF optimal infeasible optimal optimal optimal optimal 32

inconsistentI

infeasible optimal optimal optimal optimal optimal 1

infeasible infeasible optimal optimal optimal optimal 1

infeasible infeasible infeasible infeasible infeasible optimal 2

Total Result 66

Table 4: Statistics of the relative objective error according to scaling, for the simple model

%∆

scaling B scaling C scaling D scaling E

max 5.7E-03 8.1E-09 1.7E-08 1.6E-08

avg 2.1E-04 1.9E-10 4.4E-10 4.1E-10

std 1.0E-03 1.2E-09 2.5E-09 2.4E-09

44

Table 5: Number of instances whose solutions are (in)consistent according to data correction,

for the simple model with scaling C

case#
noDC wDC

#inst
QSoptEx Cplex QSoptEx Cplex

case 1 optimal optimal optimal optimal 44

case 2 infeasible infeasible infeasible infeasible 11

case 3 infeasible infeasible optimal optimal 9

case 4 infeasible optimal optimal optimal 2

Total Result 66

Table 6: Statistics of relative objective error according to data correction, for the simple model

with scaling C

%∆

noDC wDC

max 8.1E-09 9.7E-11

avg 1.9E-10 4.9E-12

std 1.2E-09 1.8E-11

#inst 44 55

Table 7: Number of instances according to Cplex solution status, without data correction

noDC and with it wDC, for the complete model with scaling C

noDC wDC #inst

feasible

feasible

14

infeasible 11

intractable 21

infeasible infeasible 13

infeasible
intractable

4

intractable 3

Total Result 66

45

Table 8: Number of instances according to solution status and infeasibility classification, for

the complete model with scaling C and data correction

solution

status
infeasibility classification #inst

feasible - 46

intractable - 7

infeasible

data inconsistent 5

unattainable TV 6

impossible discrete operations 0

unattainable TV & impossible discrete operations 0

incompatible TV & discrete operations 2

Total Result 66

Table 9: Solution statistics per valley of first stage for the complete model with scaling C and

data correction

v time (s) #nodes #inst gap (%) #inst ‖ε‖(%)

avg std avg std feasible avg std ε > 0 avg std

v-a 0 0 0 0 7 0.0 0.0 1 10.9 0.0

v-b 0 0 0 0 11 0.0 0.0 0 0.0 0.0

v-c 661 620 2,430 3,081 11 50.3 48.2 7 5.3 5.3

v-d 112 361 100 330 10 11.1 33.3 1 0.4 0.0

v-e 253 115 188 106 11 16.8 11.3 5 27.5 41.7

v-f 7 5 1 2 11 0.0 0.0 0 0.0 0.0

46

Table 10: Solution statistics per valley of second stage for the complete model with scaling C

and data correction

v #inst time (s) #nodes gap (%) ‖%‖(%)

feasible avg std avg std avg std avg std

v-a 7 0 0 0 0.0 0.0 0.0 25.0 1.0

v-b 11 412 512 2,359 2,953 0.0 0.0 30.0 5.0

v-c 11 771 543 2,216 1,725 20.0 32.0 30.0 15.0

v-d 10 250 501 565 1,334 0.0 0.0 53.0 20.0

v-e 11 1,201 0 1,054 239 1.3 2.4 37.0 16.0

v-f 11 630 558 464 470 0.1 0.1 56.0 22.0

47

