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The range and nature of effective interactions in hard-
sphere solids

Michael Schindler∗a and A. C. Maggsa

Colloidal systems observed in video microscopy are often analysed using the displacements cor-
relation matrix of particle positions. In non-thermal systems, the inverse of this matrix can be
interpreted as a pair-interaction potential between particles. If the system is thermally agitated,
however, only an effective interaction is accessible from the correlation matrix. We show how this
effective interaction differs from the non-thermal case by comparing with high-statistics numerical
data from hard-sphere crystals.

1 Introduction
The analysis of the displacement–displacement correlation func-
tion between many particles has become a standard tool used on
experimental data1–5 acquired by video and confocal microscopy
as well as on numerical data.6–9 It is much, but not exclusively,
used by researchers interested in jammed and glassy dynamics of
soft particles. In practice, one first determines the reference po-
sitions of particles and then records the correlations of displace-
ments with respect to these reference positions for all particles.
The averages are done either over time, using particle trajectories,
or over an ensemble, using Monte-Carlo sampling. The result is a
large correlation matrix G between all displacements of all parti-
cles, which is then inverted to give another matrix D.

This matrix D is often interpreted as an effective interaction ma-
trix which characterises oscillations of the particles around their
reference positions. In that context, D is called the dynamical
matrix.7,10 This interpretation has its origins in the analysis of
non-thermal systems where massive particles are connected by
harmonic or other interaction potentials. The dynamical matrix
is then proportional to the Hessian matrix H of second deriva-
tives of the total interaction potential7 (with the particle mass
and with kT as proportionality factors, which will play no role in
the following). When activated by a small external stimulus, the
response of the system is a mixture of oscillations which are given
by the eigenfrequencies and eigenvectors of the dynamical matrix.
One condition for this analysis to remain true is that the oscilla-
tion amplitudes are small, so that the dynamical matrix does not
depend on the displacements. With the masses of the particles
and the measured correlation matrix G as input, one can obtain
information about the interaction potential between the particles.
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The protocol to record data and to invert the matrix G works
equally well on thermal as on non-thermal systems. In contrast
to the Hessian matrix H, which contains the static potential in-
teractions, the matrix G−1 contains also all the thermal contribu-
tions, including entropic. How is the dynamical matrix changed
by these contributions? To what extent can we still infer the in-
teraction between particles? For example, if the true interaction
acts only between nearest neighbours, the same is true for H, but
does it also hold for the effective interactions obtained from G−1?

Between these two limits of completely non-thermal H and
fully thermal G−1, a plethora of intermediate levels can be identi-
fied, which account for more or fewer aspects of the thermal dis-
tribution and which may serve for more or less reasonable models
for the observed system. We refer to Henkes et al. 7 for a review
of some of these intermediate levels and the connections between
them, such as the harmonic approximation or the shadow system.
As we mention models for the system, it is important to note that
the Hessian matrix with which we compare G−1 may derive from
modelling potentials very different from the true ones.

The aim of the present paper is to establish the difference be-
tween the two extreme cases, which are the non-thermal case
(Hessian matrix H) and the fully thermal matrix G−1 obtained
from observation data. We here want to see the largest difference
and therefore choose as system of observation a crystal of hard
spheres which collide elastically. It is usually said that thermal
(entropic) effects are maximal in the hard-sphere system. We also
have to choose a model system of which we calculate the Hessian
matrix. We here take the most general form of pairwise, central
potential interactions.

Beside its interpretation as effective interactions, the ma-
trix G−1 – and more directly the correlation matrix G – serve also
to extract elastic moduli from thermal fluctuations. Because the
elastic moduli are macroscopic quantities of the whole system,
this measurement involves only large-wavelength properties of
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the effective interactions contained in G−1. Of course, the same
procedure can be done in the non-thermal case using H instead of
G−1. One advantage of the elastic moduli is that their calculation
is not limited to smooth pairwise potentials but applies to other
types of interaction as well, such as strictly hard spheres. We ex-
pect to see here another discrepancy between the thermal and
the non-thermal cases: When one searches the long-wavelength
limit of the Hessian matrix, one obtains the so-called Cauchy rela-
tions which reduce the number of independent elastic constants
in materials below the number expected from symmetry consider-
ations. For example, in two-dimensional hexagonal crystals and
in three-dimensional cubic crystals the Cauchy relations can be
written as an equality λ = µ between two Lamé coefficients. The
Cauchy relations apply if interactions between atoms (or colloids)
are pairwise, central, sufficiently short ranged, and if thermal fluc-
tuations are neglected. The role of thermal fluctuations was clar-
ified by Squire et al. 11 who calculated the extra contributions
(beyond those found by Born and Huang 10) in the expressions
for the elastic constants at nonzero temperature. These contribu-
tions can be seen as the “entropic” part of the elastic moduli, and
they explain why hard-sphere crystals do not satisfy the Cauchy
relations12.

The paper is structured as follows: In section 2 we collect some
results from known theories, in particular from the non-thermal
dynamical (Hessian) matrix. We derive some properties of the
dynamical matrix which allow comparison with the fully thermal
case. The numerical data for the hard-sphere crystals is then pre-
sented in section 3 in one, two and three dimensions. Finally, in
section 4 we discuss the observed differences between the two
cases.

2 Effective interactions and the central
force model

The simplest (Cauchy) model of elasticity in the physics of solids
supposes that interactions are pairwise and central between all
particles in the solid, deriving from a scalar potential, see for ex-
ample § 29 of the book by Born and Huang 10 . In this section
we study the elastic properties of such systems, in order to better
understand where the numerical data demonstrate the presence
of non-central potentials.

In this model, the total potential energy Φ of a configuration is
a function of all particle positions ri. It is expressed as a sum of
central pair-potentials gij,

Φ({r}) = ∑
(ij)

gij
(
(ri− rj)

2/2
)

(1)

The sum runs over all different pairs of particles. To simplify the
algebra and avoid square roots in the calculations, the gij are func-
tions of the distance squared. The functions should be identical
for symmetry-related pairs of particles, but otherwise each func-
tion is independent.

In order to unify the notation with the numerical simulations
of later sections, we assume already here that the particles are in
a crystalline configuration (hexagonal or face-centered cubic, de-
pending on the number of spatial dimensions). Throughout the

paper, i, j,m,n denote tuples of integer indices on the Bravais lat-
tice and serve to identify the sites on the lattice. Spatial indices
are denoted by Greek letters. The spatial (Euclidean) positions of
lattice sites are denoted by vectors Ri. They are multiples of the
lattice spacing d0. The numerical, and optionally also the theoret-
ical calculations, are periodic in space. All differences between
lattice indices, i− j, or lattice positions, Rij := Ri−j = Ri−Rj are
thus understood modulo the periodicity, the result being mapped
back into a centered copy of the periodic box.

2.1 Description in terms of local displacements

We now calculate the Hessian matrix of the potential en-
ergy Φ({r}) around the crystalline reference state. This amounts
to small-amplitude displacements, which are non-thermal in their
nature. The reference state has inversion symmetry (hexagonal in
2D, face-centered cubic in 3D), which imposes that the partial first
derivatives vanish when evaluated at the reference positions:

∂Φ
∂ riα

(
{R}

)
= 0 (2)

for all i and α. From Eq. (2) it follows that the increase in poten-
tial energy of the system due to local displacements is given to
quadratic order by

∆Φ := Φ
(
{r}
)
−Φ

(
{R}

)
=

1
2 ∑

α,β ,i,j
Hαβ (j− i)uiα ujβ (3)

where ui = ri−Ri is the displacement vector of particle i. The
Hessian matrix consists of second derivatives, evaluated at the
reference positions,

Hαβ (j− i) :=
∂ 2Φ

∂ riα ∂ rjβ

(
{R}

)
. (4)

Start with the first derivative

∂Φ
∂xi

(
{r}
)
= ∑

j 6=i
(xi− xj)g

′
ij (5)

and obtain Hαβ (j− i) for i 6= j:

Hαβ (j− i) =−(Riα−Rjα )(Riβ−Rjβ )g′′ij−δαβ g′ij, (6)

We abbreviate our notation by introducing Rj−i = Rj −Ri and
gj−i = gij and obtain

Hαβ (n) =−Rnα Rnβ g′′n
(
R2

n/2
)
−δαβ g′n

(
R2

n/2
)
. (7a)

At j = i, the matrix is constrained by the fact that the sum over all
n vanishes,

Hαβ (0) =− ∑
n 6=0

Hαβ (n). (7b)

Let us return for a moment to the meaning of this Hessian ma-
trix. As was mentioned in the introduction, it is also the dynam-
ical matrix of particles (of unit mass), in the sense that their dis-
placements oscillate around the reference state according to the
equation

üiα =−∑
j,β

Hαβ (j− i)ujβ . (8)
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In words, the interaction matrix Hαβ (i− j) governs the force ex-
erted on particle i by particle j. For every separation vector n
between two particles, Hαβ (n) is a d×d-matrix. We will find it
important to analyse the forces and displacements parallel and
orthogonal to the separation vector n. In particular in two dimen-
sions, we can use the rotated orthonormal basis (R̂n, ô), where
the hat denotes a normalised vector, to define the rotated compo-
nents of the matrix H(n). We find

H‖(n) := R̂T
n H(n)R̂n =−R2

ng′′n(R
2
n/2)−g′n(R

2
n/2) (9a)

H⊥(n) := ôT H(n)ô =−g′n(R
2
n/2) (9b)

Hsym(n) :=
(
R̂T

n H(n)ô+ ôT H(n)R̂n
)
/2 = 0 (9c)

Hasym(n) :=
(
R̂T

n H(n)ô− ôT H(n)R̂n
)
/2 = 0 (9d)

The components H‖ and H⊥ control those components of the force
which are parallel to the displacements, respectively both parallel
to n (H‖) or both orthogonal to it (H⊥). The (a)symmetric parts
govern those components of the force which are orthogonal to
the displacements they result from. They are found to vanish
in the present model, meaning that displacements can generate
only forces which are parallel to them. This property appears as a
result of the potentials being central, and it will be tested on the
numerical data in the sections below.

We can also examine the results in the non-rotated frame. In
particular, for the off-diagonal terms we find

Hxy(n) =−XnYng′n
(
R2

n/2
)
. (10)

which is an odd function with respect to Xn and to Yn. Also this
symmetry will be subject to comparison with the numerical data.

2.2 Long-wavelength limit

The elastic tensor for the model (1) has been calculated by Born
and Huang 10 (§ 29). In our notation, their result for the elastic
tensor reads

C̄ασβτ =
N
2V ∑

n
Rn,α Rn,σ Rn,β Rn,τ g′′n

(
R2

n/2
)
. (11)

Here, N is the number of particles, and V is the volume of the
(periodic) box. We use an overbar to distinguish this tensor from
the true (thermal) elastic tensor. Expression (11) is symmetric
under all index permutations, which is higher than the symmetry
required for the elastic tensor. This observation leads us directly
to the Cauchy relation: The general form of the elastic tensor is
given by group theory, for example in a two-dimensional hexago-
nal lattice,

Cαβστ = λδαβ δστ +µ
(
δασ δβτ +δατ δβσ

)
, (12)

with the Lamé coefficients λ and µ. This expression becomes com-
pletely symmetric under index permutations only if the Cauchy
relation λ = µ is satisfied. The situation is similar in three-
dimensional cubic lattices, only that there is another term in
Eq. (12) with the anisotropy coefficient as prefactor. There, the

Cauchy relation reduces three independent coefficients to two. In
Section 3 we will measure the Lamé coefficients from numerical
data and test directly whether the Cauchy relation is satisfied.

When we determine the Lamé coefficients from Eq. (11), we
find indeed that they are identical,

λ̄ = µ̄ =
N

16V ∑
n

R4
ng′′n

=
N

16V ∑
n

R2
n
(
H⊥(n)−H‖(n)

)
. (13)

In the last step we made use of Eqs. (9a) and (9b).

We must mention that the calculation by Born and Huang 10 is
done with a stress-free reference state in mind. In model (1) we
do not know a priori whether the stress vanishes in the reference
state or not, and for the hard-sphere crystals in the sections be-
low, we know that they stay crystalline only if they are sufficiently
compressed by the periodic box. We therefore need to consider
the general case of a non-vanishing stress in the reference state.
The effect of this stress is that the elastic tensor C, which char-
acterises the quadratic increase of free energy with strain, is not
identical to the elastic tensor A which characterises the motion of
long-wavelength vibrations and thermal excitations.13 The two
tensors are related by

Aαβστ :=Cαβστ +Tβτ δασ , (14)

where T denotes the stress tensor in the reference state. To obtain
the stress tensor, we start with the force between two particles,

fij =−(Ri−Rj)g
′
ij. (15)

The virial part of the stress tensor is thus

T̄στ =− 1
2V ∑

(ij)
(Ri−Rj)σ

fij,τ

=
N
2V ∑

n
Rn,σ Rn,τ g′n. (16)

This expression has been given also by Born and Huang 10 .

It is desirable to derive expression (11) directly from a long-
wavelength limit of the interaction matrix H. This calculation
cannot be done at this point, since we require thermal fluctuations
which then yield the tensor A. From there we can conclude on
the tensor C. We therefore defer this calculation to section 3.2.2
below, where we will do it on the matrix D. When we replace
D(n) by H(n)/kT in the result (30) there, we find the equivalent
of the elastic tensor A,

Āασβτ :=− N
2V ∑

n
Rn,σ Rn,τ Hαβ (n)

=
N
2V ∑

n
Rn,σ Rn,τ

(
Rn,α Rn,β g′′n +δαβ g′n

)
, (17)

which is entirely compatible with Eqs. (11), (14) and (16).
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2.3 Description in terms of global deformations

In the above section we expressed the elastic constants in terms
of a long-wavelength limit of the matrix H. This matrix, as it
involves second derivatives of the potential energy only, is non-
thermal in nature. At least for the elastic constants, it is possible
to include thermal effects11. We introduce a parameter for global
deformations of the system, the strain η and perform a Taylor
expansion of the Free Energy F(η) = −kT ln(Z(η)) about zero
strain (η = 0). As the whole box is changed parametrically, we
could speak of a “zero-wavevector” (|Q| = 0) method instead of
the long-wavelength limit |Q|→ 0. The resulting stress tensor and
elastic tensor are expressed by the usual Gibbs-weighted average
over configurations,11

Tαβ =
1
V

∂F
∂ηαβ

(0)

=−kT
N
V

δαβ +
1
V

〈
∑
(ij)

g′ij
(
r2

ij/2
)

rij,α rij,β

〉
(18)

Cαβστ =
1
V

∂ 2F
∂ηαβ ∂ηστ

(0) = 2kT
N
V

δατ δβσ

− 1
V kT

Ccc
(

∑
(ij)

g′ij
(
r2

ij/2
)

rij,α rij,β , ∑
(ij)

g′ij
(
r2

ij/2
)

rij,σ rij,τ

)

+
1
V

〈
∑
(ij)

g′′ij
(
r2

ij/2
)

rij,α rij,β rij,σ rij,τ

〉
(19)

The function Ccc(a,b) := 〈ab〉 − 〈a〉〈b〉 is a cumulant-like cross-
correlation function. The terms on the right-hand side of Eq. (18)
are called the kinetic and the virial terms. The terms in Eq. (19)
are called the kinetic term, the fluctuations term, and the Born
term.11

The virial term in (18) and the Born term in (19) resemble
much the expressions we found for stress (16) and elastic ten-
sor (11) from model (1). Only, there we evaluated at the refer-
ence positions, and here we average over positions around these
reference positions. Of course, if the position distribution is very
narrow, the values obtained from both can be close. Both kinetic
terms and the fluctuation term are missing, however. The absence
of these terms is where the tensor C̄ has its higher symmetry from,
and why we obtained the Cauchy relation for it.

The elastic tensor (19) includes all thermal effects, because we
take the second derivative of the free energy. A similar derivative
of the potential energy (1) would simply yield again the Born-like
term in (11). It would be very nice to add thermal effects to the
interaction matrix, just by replacing the potential energy by the
free energy in the second derivative with respect to the reference
positions Ri. Unfortunately, the reference positions are not pa-
rameters, they appear by a spontaneous symmetry breaking, and
we therefore do not know how to do such a derivative. For the
moment, we can only work with the imperfect expressions of the
above sections and compare them with full numerical data.

3 Numerical results from Hard sphere sim-
ulations

We performed high statistics event-driven molecular dynamics
simulations of N hard spheres in one, two and three dimensions
(d = 1,2,3). In one dimension the particles were confined to a
line. In two dimensions we simulated a hexagonal crystal within
a box adapted to the Bravais lattice. In three dimensions we per-
formed simulations of face-centred cubic crystals, again within a
box adapted to the Bravais lattice. In all dimensions the simula-
tion box was continued periodically. During a simulation the total
momentum and the (kinetic) energy were conserved. The densi-
ties were always so high that no particle interchange occurred
over the simulation time, so that particle diffusion and defects
can be neglected in the data analysis. The Bravais lattice thus
defines the reference positions of the spheres, and these coincide
with the average positions.

For all numerical data the units are chosen such that the par-
ticles have unit diameter, unit mass, and that kT = 1 with T the
temperature.

During the simulation we took a series of K data recordings.
For each recording, we measure the deviations ui := ri −Ri of
the instantaneous particle positions from their reference positions
and calculate the dN×dN correlation matrix

G(i,α)(j,β ) :=
1
K

K

∑
k=1

uiα ujβ (20)

The matrix has a simple physical interpretation from linear re-
sponse theory: It determines the vectorial displacement at j due
to a force at i. We will thus call it a Green function in the follow-
ing. In order to reduce statistical noise, we average elements of G
which are related by the translational symmetry of the lattice,

Gαβ (n) :=
1
N ∑

i
G(i,α)(i+n,β ). (21)

The sum runs over all sites of the Bravais lattice. We could also
average over the rotational and inversion symmetries, but we pre-
fer to see the symmetries appear from the data in order get a idea
of the statistical errors; the translational average appears to be
sufficient for noise reduction. A visual representation of the ele-
ments of G(n) in two dimensions is given in Fig. 1. It is a rather
structureless object, and it depends on the size and shape of the
periodic box due to the logarithmic nature of two-dimensional
Green functions. In the figure we plot the elements of G(n) in a
rotated coordinate system with one basis vector aligned with the
vector Rn. We note in particular the interesting physical structure
that occurs in the off-diagonal elements. These elements of the
response function vanish along high symmetry directions: a force
along these symmetry directions gives a purely parallel displace-
ment. This gives rise to a set of radial white lines in the lowest
panel of Fig. 1.

We then use matrix algebra to numerically invert the large ma-
trix G to produce the effective interaction matrix D. More pre-
cisely, we use the translation-averaged dN×dN matrix

Gαβ (i, j) := Gαβ (j− i). (22)
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Fig. 1 The two-dimensional Green function in a periodic 32×32
hexagonal lattice. Plotted are the components of the 2×2 matrices
Gαβ (n) in a rotated orthonormal basis (R̂n, ô): G‖ = R̂T

n GR̂n, G⊥ = ôT Gô,
Gsym = (R̂T

n Gô+ ôT GR̂n)/2. The antisymmetric off-diagonal terms vanish
to within statistical noise (±10−9). In the lowest panel the white lines
correspond to a mechanical response parallel to an imposed force.

0 2 4 6 8 10

10−4

10−2

100

102

neighbour layer

D

Fig. 2 The effective interactions D( j− i) in a one-dimensional chain of
N = 100 impenetrable rods. Beyond nearest neighbours the interactions
are zero to within statistical noise. Larger blue symbols are positive
values, smaller red are symbols negative values. K = N×107 recordings,
obtained from three independently simulated trajectories.

and take its Moore–Penrose pseudoinverse because we must avoid
inversion of the zero eigenvalues in G which come from momen-
tum conservation. The inverse is denoted by Dαβ (i, j). In the
following, we will analyse the properties of the resulting 2×2 ma-
trices

Dαβ (n) :=
1
N ∑

i
Dαβ (i, i+n). (23)

3.1 One-dimensional system
Previous work has led to a detailed understanding of the one-
dimensional problem.14 We do not treat it in detail, but rather use
it to check some of the chain of data analysis. The result is very
simple – that the effective interaction in one dimensional fluids is
limited to nearest neighbours; for larger separations D is zero. We
used our code for simulation and data analysis and confirmed this
results. Beyond the nearest neighbour, the effective interaction
D( j− i) in Fig. 2 falls to zero within statistical noise. Note that
the relative statistical noise in this plot is at the level of 10−5,
showing the high precision of the simulations. Given the excellent
results found in one dimension, we can feel confident that the
very different results found in two and in three dimensions are a
result of differing physics, and not problems related to systematic
or statistical errors in the data sets.

In the data of Fig. 2 we find the ratio between the two nonzero
values to be D(0)/D(1) = −2.0± 10−5. This is precisely the ratio
that is expected from a discretisation of the Laplace operator in
terms of nearest neighbours. We thus found the expected result,
namely that the inverse of the (static) Green function is the corre-
sponding differential operator of one-dimensional (static) elastic-
ity.

3.2 Two-dimensional crystal
We performed two-dimensional simulations in systems with N =

L×L hard disks, L varying from 10 to 100 with fixed surface frac-
tion φ = 0.85. We expect that the elements of the effective dynam-
ical matrix D come from the local physics (and available entropy)
occurring near each particle and are not the results of a non-trivial

1–12 | 5
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Fig. 3 Effective interactions as a function of the inverse system size 1/L.
Different plot styles correspond to different neighbour layers, starting
from 0 at the top, down to 7. Fewer layers are plotted for L = 10.
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D‖
D⊥
Dsym
Dasym

Fig. 4 Effective interactions in a hexagonal hard-disk crystal with L = 32.
Larger blue symbols are positive values, smaller red symbols are
negative values. K = 2N×3.5×106 recordings, obtained from
336 independent trajectories. Surface fraction φ = 0.85. These data
required around 300 000 CPU core hours.

propagation of boundary effects down to the microscopic scale. If
the physics is local, we then expect that the values of the elements
of D vary very little with changes in the system size. To test this,
we plot in Fig. 3 the evolution of tr

(
D(n)

)
with the system size L

and find that the lines for small separations n are remarkably sta-
ble. This is true for all matrix elements of Dαβ , not only for the
trace. Since we are performing simulations within a periodic box,
it is clear that we should only be evaluating elements for sepa-
rations such that periodic copies do not contaminate the result.
Thus we will only quantitatively analyse D for separations which
are smaller than L/2.

The correlation function G, which is measured in the simula-
tions and displayed in Fig. 1, is subject to strong finite size cor-
rections due to the logarithmic nature of two-dimensional Green
functions. The components of the matrix D, however, do not
evolve for small values of 1/L. From the curves in Fig. 3 we
decided to use a fixed value of L = 32 for further simulation in
order to collect the highest possible statistics, while being able to
resolve effective interactions out to a large distance.

The resulting matrix elements are plotted in Fig. 4. As we did

already in Fig. 1, we rotated the 2×2 matrices Dαβ (n) for each
separation vector Rn. We used the same rotated orthonormal ba-
sis and the same notation as we used in Eqs. (9). The interaction
matrix depicted in Fig. 4 does not vanish beyond the first layer of
neighbours – very differently from its unidimensional counterpart
in Fig. 2. We here observe that D(n) is not sparse. We used very
high statistics in this plot to be sure that the interaction data is
well separated from statistical noise – We find it to be the case for
the first six layers of neighbours. The noise level can be read off
from the values of Dasym which are zero in noiseless data, finding
values below 2×10−2. Beyond the 10th layer of neighbours, signal
and noise cannot be distinguished anymore. Another measure of
the statistical noise is the spread of those symbols which are equal
by symmetry of the lattice (smaller than the linewidth in the plot).
Both measures for the noise were observed to decrease while we
accumulated more and more data during the simulations.

We tried to characterise the decay of the effective interactions
with particle separation, which we can resolve out to the eighth
layer of neighbours. We tried fitting the data with both exponen-
tial and power law decays, plotting both particle separation and
layer number for the abscissa. No fit seemed totally convincing
with our data. If one insists on fitting with a power law ‖Rn‖α ,
one finds α ≈ −6± 0.5. At the moment we do not have analytic
arguments that would predict the functional form of the decay.

3.2.1 Two-dimensional visualisation

We now give some more details of the data presented in Fig. 4.
In particular, we like to visualise those points which are charac-
terised by being within same neighbour level, but which differ
with respect to the hexagonal symmetry.

We can study the 2×2 matrices D(n) in different frames of refer-
ence. The first frame of reference is the orthonormal basis (R̂n, ô)
already used above. In Fig. 5 we plot the parallel, the orthog-
onal, and the off-diagonal component of the matrix. All three
panels are invariant under rotations of 60 degrees. Under mirror-
ing, however, only the first two are invariant while Dsym changes
sign. We did not plot Dasym because it contains only noise.

A second manner of examining the data is in the fixed Carte-
sian frame, which is the same for all n. In Fig. 6 we study the
trace of the matrix, tr(D), the first component Dxx of which we
subtracted half the trace, and the off-diagonal element Dxy, sym-
metrised. The component Dyy− tr(D)/2 is not plotted as it is sim-
ply the negative of Dxx− tr(D)/2. Only tr(D) still has hexagonal
symmetry. The two bottom panels show (skew) symmetry with
respect to mirroring about the x-axis and the y-axis. We found the
same skew symmetry in the Hessian matrix, Eq. (10). The special
choice of component combinations in Fig. 6 is motivated by the
continuum limit which we discuss now.

3.2.2 Hexagonal continuum limit

The matrix Dαβ (n) is the inverse of the Green function of static
elasticity and is thus expected to be related to the correspond-
ing differential operator – or rather its hexagonal discretisation.
Continuum elastic theory of pre-stressed materials gives the dif-
ferential operator (Sec. 3 of Ref. 13)

Dασ =−Aαβστ ∂β ∂τ , (24)
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Fig. 5 Matrix elements of D(n) in rotated frames of reference, for
several Rn. The center of the hexagon corresponds to Rn = 0. The
antisymmetric off-diagonal Dasym vanishes to within statistical noise.
The reflection anti-symmetry of Dsym imposes that the elements of Dsym
are zero for the first two neighbour layers. All elements of Dsym are small
compared to D‖ and D⊥.
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Fig. 6 Some linear combinations of matrix elements Dαβ (n) for
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where we have to remember that the two elastic tensors A and C
coincide only in systems whose reference state is stress-free. The
hard-sphere crystal in our numerical simulation is compressed by
the periodic boundary conditions, leading to the isotropic stress
Tβτ = −Pδβτ with the pressure P. Consequently, the two tensors
A and C are different. Assembling Eqs. (12), (14), we find the
differential operator to be

Dαβ =−(µ−P)δαβ ∇2− (λ +µ)∂α ∂β . (25)

For these second derivatives, we can produce simple discretisa-
tions in terms of finite differences on nearest neighbours. In par-
ticular, the combinations of matrix elements used in Fig. 6 are
simple combinations of second derivatives,∗

trD ∝−∇2 =
1

3d2
0

+6 −1
−1−1

−1
−1 −1

(26a)

Dxx−
trD

2
∝ ∂

2
y −∂

2
x =

1
3d2

0
0 −2
+1+1

−2
+1 +1

(26b)

Dxy +Dyx

2
∝−∂x∂y +∂y∂x

2
=

1√
3d2

0

0 0
−1+1

0
−1 +1

(26c)

We see that these stencils are qualitatively reproduced in the cen-
tral parts of the panels in Fig. 6. However, Fig. 6 shows nonzero
interactions also beyond the first layer of neighbours. Another dif-
ference is that for tr(D) we find a middle value which is−5.6 times
the values found on the first neighbours (instead of −6). When
comparing the values of the first neighbours among themselves,
the stencils are again well reproduced, with variations as small
as ∼ 10−5 in all three panels of Fig. 6. The skew symmetry of the
operator ∂x∂y is found again in all values of Dxy(n). This symme-
try imposes the horizontal and the vertical white lines (zeros) in
the third panel of Fig. 6.

The matrix Dαβ (n) encodes the full dispersion curves that are
required to determine the spectral properties of the fluctuations.
In particular, one can extract the elastic tensor A from the long-
wavelength limit. The usual way to do this calculation is to
perform a discrete periodic (fast) Fourier transform on the ma-
trix Gαβ (i, j) and to observe that the translation invariance ren-
ders the result block-diagonal. For each reciprocal vector Qm we

∗These stencils are obtained by writing the operator in question as ∇T M∇, with a
corresponding matrix M (for example, Mi j = δi j for ∇2). The matrix is then decom-
posed into a suitable sum of terms eieT

j , where the ei are the six hexagonal unit
vectors obtained from rotation by 60◦. The result is thus composed of terms such as
eT

i ∇, which are directed derivatives between the center and a first neighbour. Each
of these terms is thus immediately translated into a finite difference between them,
resulting in the weights noted in the stencils of Eqs. (26).

0 0.25 0.5 0.75 1
250
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1000

|Q|

kT N2

V0

1
eval

(
G̃(Qn)

)
|Qn|2

Fig. 7 Dispersion curves used to obtain the elastic moduli in the
limit |Q| → 0, here for L = 100. The dotted lines indicate values from a
different numerical method working at |Q|= 0.

have one Fourier transformed d×d matrix

G̃αβ (m) := N ∑
n

e−iQm·Rn Gαβ (n) (27)

=
〈

ũα (m)ũβ (m)
〉
. (28)

The overline denotes a complex conjugate. To leading order, this
matrix scales as |Qm|−2, such that we can extract the elastic tensor
as the long-wavelength prefactor to this scaling,

Aασβτ Q̂σ Q̂τ =
kT N2

V
lim
|Qm|→0

[
G̃(m)−1]

αβ

|Qm|2
. (29)

In practice, rather the eigenvalues of the inverse matrix are plot-
ted, see Fig. 7. The long-wavelength limit is then done by extrap-
olation by eye. The upper curve corresponds to the longitudinal
waves, converging to Axxxx = (µ−P)+(λ +µ) in the limit |Q| → 0.
The lower curve gives the transverse value Axyxy = µ−P.

The same limit can be done using the matrix D instead of G.
The block structure helps to invert the large matrix, the inverse
is again block-diagonal. The d×d blocks are simply the Fourier
transforms of the matrices Dαβ (n): [G̃(m)−1]αβ = D̃αβ (m)/N2.
For the long-wavelength limit we expand the exponential in the
definition of the Fourier transformation (27) around Qm = 0. The
sum over the constant term vanishes, ∑n Dαβ (n) = 0. The linear
term vanishes due to symmetry, such that we obtain the quadratic
term as the leading one. This conveniently matches with what we
require for the limit in Eq. (29). Factorising the unit reciprocal
vectors, we obtain for the elastic tensor

Aασβτ =−1
2

kT N
V ∑

n
Rnσ Rnτ Dαβ (n). (30)

To determine the Lamé coefficients, we can either choose individ-
ual components such as Axxxx above, or we can do a “hexagonal
average”, which amounts to reducing the rank-4 tensor to scalars,
for example with δαβ δστ and with δασ δβτ . This gives a 2×2 sys-
tem of equations for (µ −P) and (λ + µ), which when solved be-
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Fig. 8 The summands of Eqs. (31) and (32).
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Fig. 9 Convergence of the sums in Eqs. (31) and (32).

comes

µ−P =− 1
16

kT N
V ∑

n
R2

n
(
3D⊥(n)+D‖(n)

)
(31)

λ +µ =
1
8

kT N
V ∑

n
R2

n
(
D⊥(n)−D‖(n)

)
(32)

The summands are displayed in Fig. 8. They decrease with in-
creasing distance, as expected, and their sums converge. We visu-
alise the convergence in Fig. 9 where we added up the summands
layer by layer. The final values are µ−P = 373 and λ +µ = 553.

In order to extract the Lamé coefficients, we need also the value
of the pressure P. During simulations, we tracked the average flux
of linear momentum, which is a mechanical definition of the pres-
sure tensor. We further measured the response of this tensor to
small deformations of the simulation box, which presents another
(faster converging) way to calculate the elastic moduli. Notice
that this method corresponds directly to “|Q|= 0”, no limit has to
be taken. We obtain the values †

P = 34.4, µ = 405, λ = 143.5 . (33)

They are used in Fig. 7 to check the consistency of the different
methods. Also the values extracted from Eqs. (31) and (32) are
reasonably close.

3.3 Three-dimensional crystal

We also performed simulations in three dimensions, collecting
high statistics data on a system of dimensions L = 15. Here, the
result is similar to two dimensions, the effective interaction does
not vanish beyond the layer of nearest neighbours but shows a
rapid decrease. We adopt the same route of a rotated frame of ref-
erence to plot in Fig. 10 the matrix elements of the 3×3 matrices
Dαβ (n). We choose an orthonormal basis (R̂n, ô1, ô2), in which
the matrix comprises the following blocks:

(
D‖ vT

w D⊥

)
(34)

As before, D‖ = R̂T
n DR̂n, but D⊥ is a 2×2 matrix, and v,w are two-

dimensional vectors. As the basis vectors ô1, ô2 can be chosen with
an arbitrary rotation about the vector R̂n, we are only interested
in invariants of D⊥,v,w under this rotation. For the matrix D⊥
we thus plot in Fig. 10 the trace of D⊥, its anti-symmetrised off-
diagonals D⊥,asym and some notion of its determinant. For v,w we
plot the modulus after (anti)-symmetrising, Dv,sym := ‖v+w‖/2,
Dv,asym := ‖v−w‖/2. The lowest panel in Fig. 10 allows one to
estimate the noise level for the given statistics.

† These values are compatible with those given in Ref. 12. We applied the box-
deformation method also to the value φ = 0.863714 which is given in that reference,
and our implementation reproduces exactly the given values for the elastic moduli.
Concerning the numerical values of elastic moduli, there was a disagreement in the
literature between Ref. 15 and Ref. 12, see also subsequent publications. Given that
we implemented both the fluctuation method and two deformation methods (in a
second one the spheres are deformed instead of the box) which all give the same
result, we think that we can resolve the debate in favour of Ref. 12.
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Fig. 10 Effective interactions in a FCC crystal of N = 153 hard spheres.
Larger blue symbols are positive values, smaller red symbols are
negative values. K = 3N×6.8×104 recordings, obtained from
424 independent trajectories; volume fraction φ = 0.57. These data
required around 230 000 CPU core hours.

If again one insists on an algebraic fit D(n) ∝ ‖R/d0‖α , one
finds α ≈−8±1. In three dimension the data display less scatter
when plotted in terms of neighbour layer, rather than separation.
This is a non-trivial geometrical effect which is already visible in
two dimensions: In the first panel of Fig. 5, the values on the
diagonals of the hexagon are larger than the values at the same
distance (even larger than those on the same neighbour level).
This creates within every neighbour level (or distance) a tendency
which is opposed to the general trend.

4 Discussion and conclusions
In section 3 we have presented a number of properties, some of
which are compatible, others are incompatible with the expecta-
tion elaborated from the central model in section 2. Let us now
scrutinise these properties and see to what extend we can under-
stand the differences.

4.0.0.1 Elastic moduli: Let us start with the elastic moduli
and the Cauchy relation. The values we found for the Lamé co-
efficients in Eqs. (33) show that the two-dimensional hexagonal
crystal is far from being “Cauchy”, µ being nearly three times as
large as λ , where the Cauchy relations would require them to be
equal. This finding is neither new12 nor surprising, as shows the
calculation by Squire et al. 11 , which we recapitulated in Sec. 2.3.
One concludes that the non-thermal central force model is inad-
equate for understanding the elastic moduli of the hard-sphere
system, that the kinetic term and probably more important the
fluctuations term are not small, and finally that we can indeed ex-
pect the hard-sphere system to be dominated by thermal effects
and to see important deviations also in the interaction matrix.

4.0.0.2 Pressure: As a side remark, we find it an interest-
ing question whether one can determine the pressure in a sys-
tem by measuring displacements and their correlations.16 Equa-
tion (16) shows that this is indeed possible in the non-thermal
model, where the pressure is minus a diagonal term of the stress
in Eq. (16), or P̄ =− N

4V ∑n R2
ng′n
(
R2

n/2
)
. The values of g′n are trans-

lated back to H⊥ using Eq. (9b). Does the same work also in the
thermal case, using D⊥ instead of H⊥? When we use the numer-
ical data for D⊥, shown in Fig. 5, then we find the value −96 for
this effective pressure – which is clearly unacceptable, even the
sign is wrong. In fact, a close look on Eqs. (31) and (32) reveals
that the sum actually calculates P+(λ −µ)/2 and equals the pres-
sure only to the extent that the Cauchy relation is satisfied.

4.0.0.3 Locality of the interaction: Independent of all ques-
tions of how the data compare to a model, we found that the
correlation matrix strongly depends on the system size, whereas
its inverse does not (Fig. 3). Our intuition, in which we called
the correlations a “Green function” and its inverse a “differen-
tial operator” heavily relies on a clear-cut separation of size de-
pendence. We find that the differential operator (D) is indeed
“local”, but the precise notion of this locality is different in one
and in higher dimensions. In one dimension we find the inter-
action matrix to be restricted to the two nearest neighbours, as
expected from a Laplace operator. In two and three dimensions
the results are much more interesting: Despite the true interac-
tions taking place to nearest neighbours, we find longer-ranged
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effective interactions from the analysis of displacement correla-
tions. These interactions are small compared to the ones between
nearest neighbours, but they are not exactly zero and can be dis-
tinguished from noise. It remains open what functional form the
decrease in Figs. 4 and 10 follows, and whether an algebraic form
would still allow to reasonably call the operator “local.”

4.0.0.4 Theoretical interpretation of the dynamic matrix as
a self-energy: The presented results open the question of a bet-
ter theoretical interpretation than the one in Sec. 2.1. In particu-
lar one would like to predict how the effective interactions decay
with distance. It is clear that in a field-theory formulation of a per-
turbed Gaussian theory the effective interactions D correspond to
the self-energy in a Dyson equation. However, without an explicit
perturbation scheme for hard sphere systems it is difficult to turn
this remark into an explicit calculation.

4.0.0.5 Nonlinearities in the interaction potential: Getting
back to the central-force model of Sec. 2.1, it does not favour
local or nonlocal interactions in its general form. If we want more
information, we need to specify the functions gij. One choice is
to take the true hard-sphere interactions, the pair potential being
either zero or infinity. Around the reference state, the potential is
zero, together with its first and second derivative. Therefore, the
Hessian matrix vanishes, and also the stress and elastic tensors
consist only in the kinetic terms. Here, the model is clearly out of
its applicability.

We learn from this remark that the model equations do not
necessarily serve to infer the true interaction between particles
from given data. But, what lesson do we want to learn from the
model? Our aim was to contrast thermal with respect to non-
thermal effects. Unfortunately, in the hard-sphere simulations,
together with thermal effects, we introduced strong nonlineari-
ties in the pair potential. Now we have a hard time to separate
their influence from the thermal effects. (At least in the elastic
constants, the nonlinearities play no role, which is reassuring.)

Another convenient choice for the functions gij is a network
of linear springs which have zero length at rest. When such a
network is stretched, the particles may be found on a hexagonal
reference lattice. In this system the Hessian matrix is a constant,
and all statistical averages are Gaussian integrals which can be
solved analytically via Wick’s theorem. The effective interactions
are indeed found to be given by the Hessian matrix, D = H/kT ,
which in turn is given by the connections of particles. If we choose
to have identical springs between nearest neighbours only, then
also the matrix D is restricted to nearest neighbours. The same
applies to second-nearest neighbours, and so on. One might think
that this linear system will help to differentiate between thermal
and nonlinear effects. However, when one evaluates the averages
in Eq. (19), which contains all thermal effects, one finds that the
elastic tensor is zero.‡ The zero-length spring network is thus not
good enough to separate nonlinear from thermal effects.

‡ This does not mean that the sound waves in this system have vanishing sound veloc-
ity. Sound velocities as well as phonons are encoded in the tensor A rather than C,
and only the latter vanishes. The tensor A has additional contributions which are
proportional to the stress of the reference state, see Eq. (14).

If we insist on central pair potentials, the zero-length spring
network is the only linear one we know of. Of course, other ar-
bitrary linear models can be created by choosing a potential of
the form (3), i. e. exactly quadratic in the displacements – one
can even take the measured matrix D as the matrix in this expres-
sion, which amounts to the shadow system of Ref. 7. However,
doing so one relaxes the constraint of the central potential and
includes knowledge about the reference positions in the poten-
tial. Moreover, by construction the shadow system has the same
displacement correlations, the same interaction matrix, and the
same elastic constants as the original system. Only higher-order
correlations differ. We are thus back to the question what do we
want to learn from comparing with a model? Should it contain
information about the reference positions, thus about the sponta-
neous symmetry breaking or not?

Another possible approach to a model would consist in ex-
tracting the “best” central-force model from the numerical data.
Wanted is a discrete function gn of which the first and sec-
ond derivatives are given by g′n = −D⊥(n) and g′′n =

(
D⊥(n)−

D‖(n)
)
/R2

n, respectively – in the hexagonal case, in analogy to
Eqs. (9a) and (9b). The first derivative can be read off Fig. 5,
and the second one is given up to a factor R4

n in the lower panel
of Fig. 8. We did not try to perform this extraction and do not
know whether the problem has a unique solution or approxima-
tion methods are required.

4.0.0.6 Non-central forces: The main lesson we can learn
from the comparison with the model is probably that the effec-
tive interactions contained in D are non-central: It is striking that
Hsym(n) is identically zero for all n, whereas Dsym(n) has nonzero
values. The thermal interactions are thus genuinely non-central.
We note that the off-diagonal term Dsym(n) is smaller in ampli-
tude than the terms on the diagonal, D‖ and D⊥, so that the non-
central nature can be considered a correction to the dominant
terms.
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