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Let n be a positive multiple of 4. We establish an asymptotic formula for the number of rational points of bounded height on singular cubic hypersurfaces S n defined by

This result is new in two aspects: first, it can be viewed as a modest start on the study of density of rational points on those singular cubic hypersurfaces which are not covered by the classical theorems of Davenport or Heath-Brown; second, it proves Manin's conjecture for singular cubic hypersurfaces S n defined above.

1. Introduction 1.1. The result. The aim of the paper is to study the density of rational points on the cubic hypersurfaces S n defined by (1.1)

x 3 = (y 2 1 + • • • + y 2 n )z, where n

3 is an integer. It is well-known that for any S n with n 3, the heuristic of the circle method does not apply, since there are too many solutions with x = z = 0. One therefore counts such solutions of (1.1) that neither x nor z vanishes.

If a point in P n+1 is represented by (x, y 1 , . . . , y n , z) ∈ Z n+2 with coprime coordinates, then H(x : y 1 : . . . : y n : z) = max{|x|, y 2 1 + • • • + y 2 n , |z|} n-1 is a natural anticanonical height function on S n (Q). Let N n (B) denote the number of rational points on S n satisfying H(x : y 1 : . . . : y n : z) B, x = 0, z = 0.

In the classical setting of counting of integral solutions of S n by the circle method, one usually counts solutions without the coprimality condition. We therefore let H * (x, y 1 , y 2 , . . . , y n , z) = max{|x|, y 2 1 + • • • + y 2 n , |z|} for any point (x, y 1 , y 2 , . . . , y n , z) ∈ Z n+2 , and we denote accordingly by N * n (B) the number of integral solutions of S n satisfying H * (x, y 1 , . . . , y n , z) B, x = 0, z = 0. These two height functions H and H * are closely related. The purpose of this paper is to establish an asymptotic formula for N * n (B), and hence deduce, with the help of Möbius' inversion function, an asymptotic formula for N n (B), as B → ∞.

One sees easily that the above H and H * are induced by the norm • : R n+2 → R 0 defined as (x, y 1 , . . . , y n , z) = max{|x|, y 2 1 + • • • + y 2 n , |z|}. Of course it is possible to use height functions other than H or H * , but it turns out that these specific H and H * are more natural. One observes that, in the affine space A n+2 , counting integral solutions of (1.1) with bounded height H * (P )

B is equivalent to counting points inside the poly-cylinder [-B, B] 2 * Ball(0, B).

The main results of the paper are asymptotic formulae for N n (B) and N * n (B) when n is a multiple of 4. Our method works well for all integers n 3, but for ease of presentation we just focus on the case when is n is a multiple of 4, and leave the general case to another occasion.

For ease of presentation, we will give a detailed proof of the following Theorem 1.1 which corresponds to the typical case n = 4. The general case n = 4k can be treated in the same way, and only slight modifications are necessary; see Theorem 7.1 and its proof in §7. and C 4 is the positive constant defined as in (1.18), and ζ is the Riemann zeta-function.

Theorem 1.1 can be viewed in two perspectives, the first of which is cubic forms representing zero, and the second is Manin's conjecture. 1.2. Cubic forms. We put Theorem 1.1 in the perspective of cubic forms representing zero. Let C(x 1 , . . . , x s ) ∈ Z[x 1 , . . . , x s ] be a cubic form of s variables. Then Davenport [START_REF] Davenport | Cubic forms in 16 variables[END_REF] showed that there exists a non-zero integral vector x such that C(x) = 0 provided that s is at least 16. This 16 is reduced to 14 by Heath-Brown [START_REF] Heath-Brown | Cubic forms in 14 variables[END_REF]. In [START_REF] Davenport | Cubic forms in 16 variables[END_REF] and [START_REF] Heath-Brown | Cubic forms in 14 variables[END_REF], two alternative cases have been considered separately.

To state the first alternative, we need to introduce a Geometric Condition of Davenport, in terms of the Hessian Hess(C) = ∂ 2 C ∂x i ∂x j of a given cubic form C = C(x). We remark that if one writes C(x) in the form

C(x 1 , . . . , x s ) = i,j,k c ijk x i x j x k
so that the coefficients c ijk are symmetric in the indices i, j, k, then up to a constant Hess(C) is equal to the following matrix

M (x) = k c ijk x k ,
which is used in the work of Davenport [START_REF] Davenport | Cubic forms in 16 variables[END_REF] and Heath-Brown [START_REF] Heath-Brown | Cubic forms in 14 variables[END_REF].

Geometric Condition (G). The estimate (1.5) #{x ∈ Z s : |x| B, rank(Hess(C)) = r} ε B r+ε
holds for all nonnegative integers r s. Here |x| B means that each coordinate

x j of x satisfies |x j | B.
In the first alternative, Davenport and Heath-Brown established an asymptotic formula for the number of solutions of cubic forms C(x) satisfying the Geometric Condition (G), and with s 16 and s 14, respectively.

While in the second alternative, i.e. if (1.5) fails for some nonnegative integer r s, it is only proved that the form C(x) has at least one non-trivial zero for geometric reasons, and therefore it leaves the question of establishing an asymptotic formula for the number of its zeros untouched. In addition to the desire for a complete theory in the second alternative, a study of rational points on cubic hypersurfaces in the second alternative will also supply a flourishing testing ground for general versions of Manin's conjecture. This explains the motivation of this paper. Now let us take a closer look at the Geometric Condition (G). From the analytic point of view, it is a sufficient condition to guarantee the desired cancellation from the exponential sum |x| B exp 2πiC(x)α in the circle method; while from the geometric point of view, in some sense, it is a quantitative measure of the largest possible dimension of all linear subspaces that can be embedded into the hyperspace C(x) = 0. For example, we have the following result in an extremal case.

Lemma 1.1. Let C(x) be a cubic form with s 6 variables, and suppose that the cubic hypersurface C(x) = 0 contains a codimension two linear subspace defined over Q. Then (1.5) must fail for some nonnegative integer r s.

The verification of this lemma is straightforward. After a change of coordinates, one may assume that the codimension two linear space is given by x 1 = x 2 = 0. Thus, by Hilbert's Nullstellensatz, C(x) = 0 can now be written as

(1.6) x 1 Q 1 (x 1 , . . . , x s ) = x 2 Q 2 (x 1 , . . . , x s ),
where Q 1 and Q 2 are quadratic forms. From this, the lemma follows by direct calculations. See [START_REF] Zhao | Remarks on Davenport's work on cubic forms[END_REF] for details and further discussions.

Thus, to conduct an investigation of asymptotic formula of rational points on cubic hypersurfaces in the second alternative, it seems natural to start with those of the form (1.6). A hypersurface (1.6) splits into a two-parameter family of affine quadrics, while the arithmetic of quadrics are well studied for centuries. It is therefore possible to apply, among other things, the theory of quadratic forms to study the density of rational points on (1.6).

In this paper, we pursue such an investigation when C(x) = 0 can further be written as (1.7)

x 3 = Q(y 1 , . . . , y n )z
where Q is a definite quadratic form. To simplify the details, we assume in particular that Q takes the diagonal form

y 2 1 + • • • + y 2 n .
We remark that the underlying idea in treating this special case works well, at least in principle, for the equation (1.7). And with more efforts, the same idea can be applied to establish asymptotic formulae for density of rational points on some higher-degree hypersurfaces like (1.8)

x d = Q(y 1 , . . . , y n )z d-2
where as before Q is a positive definite quadratic form. See the forthcoming work [START_REF] Liu | On a class of senary forms[END_REF] for forms of degree bigger than three.

1.3. Each S n is in the second alternative whenever n 3. In this subsection, we check that, for each s 5, each cubic hypersurface of the form (1.9) C(x) := Q(x 1 , . . . , x s )x 2 -x 3 1 = 0 belongs to the second alternative, where Q is a quadratic form. Here one observes that (1.9) is more general since the quadratic form Q may depend even on x 1 and x 2 . In particular, our cubic hypersurfaces S n in (1.1), with n 3, are of the form (1.9), and so Theorem 1.1 is new. To this end, we compute that (1.10)

Hess(C) =        C 11 C 12 x 2 Q 13 . . . x 2 Q 1s C 21 C 22 C 23 . . . C 2s x 2 Q 31 C 32 x 2 Q 33 . . . x 2 Q 3s . . . . . . . . . . . . x 2 Q s1 C s2 x 2 Q s3 . . . x 2 Q ss       
, where C ij stands for ∂ 2 C/∂x i ∂x j as usual, and Q ij has the same meaning. If x 2 = 0, then rank(Hess(C)) 3, and therefore, for some r 3,

#{(x 1 , • • • , x s ) ∈ Z s : |x i | B, rank(Hess(C)) = r} B s-1 > B 3+ε
provided s 5. This verifies that for each s 5, cubic hypersurface of the form (1.9) falls into the second alternative.

1.4. Manin's conjecture. The second perspective from which Theorem 1.1 can be viewed is Manin's conjecture. Manin [START_REF] Batyrev | Sur le nombre des points rationnels de hauteur borné des variétés algébriques[END_REF] has put forward a fundamental conjecture relating the geometry of a projective variety to the distribution of its rational points. The original conjecture was formulated for smooth Fano varieties, and the number of log-powers in an asymptotic formula for the density of rational points is one off the rank of the Picard group. This has been generalized to a large class of singular Fano varieties by Batyrev and Tschinkel in [START_REF] Batyrev | Tamagawa numbers of polarized algebraic varieties[END_REF]. Before we state this generalized Manin conjecture for S n , let us recall the following definitions; see e.g. [START_REF] Batyrev | Tamagawa numbers of polarized algebraic varieties[END_REF] and [START_REF] Yasuda | Manin's conjecture vs. Malle's conjecture[END_REF].

A normal irreducible algebraic variety W is said to have at worst canonical singularities if K W is a Q-Cartier divisor and if for some resolution of singularities φ : X → W , one has

K X = φ * (K W ) + D,
where D is an effective Q-Cartier divisor. Irreducible components of the exceptional locus of φ which are not contained in the support of D are called crepant divisors of the resolution φ. Given φ : S n → S n a resolution of singularities, we denote the number of crepant divisors over Q by γ n . Note that γ n is independent of the particular resolution we choose. Also, we let r n := rank Q Pic(S n ) be the Picard rank of S n . For our S n , Manin's conjecture predicts the asymptotic formula

(1.11) N n (B) ∼ C n B(log B) rn+γn-1
as B → ∞ for the quantity N n (B) defined in (??), where C n is a positive constant. See Conjecture 5.6 in [START_REF] Yasuda | Manin's conjecture vs. Malle's conjecture[END_REF] for the general statement. In §2, we will show that r n = 1 and γ n = 2 whenever n 3. Hence Theorem 1.1 proves the conjecture (1.11).

Progresses towards Manin's conjecture have been made for surfaces. A number of typical cases have been verified by Browning, de la Bretèche, Derenthal, Peyre and others; see the survey [START_REF] Browning | An overview of Manin's conjecture for del Pezzo surfaces, in: Analytic number theory[END_REF] for further references. Another class of varieties that have been extensively studied are varieties with many symmetries, e.g. toric varieties; see the papers [START_REF] Franke | Rational points of bounded height on Fano varieties[END_REF][START_REF] Batyrev | Manin's conjecture for toric varieties[END_REF][START_REF] Chambert-Loir | On the distribution of points of bounded height on equivariant compactifications of vector groups[END_REF] and the book [START_REF] Jahnel | Brauer groups, Tamagawa measures, and rational points on algebraic varieties[END_REF] for further information. Besides these two classes of varieties, progresses have also been made on higher-dimensional varieties. The circle method has been used to verify Manin's conjecture for high-hypersurfaces and more general complete intersections, see, for example, the famous work of Birch [START_REF] Birch | Forms in many variables[END_REF]. For varieties that the circle method does not apply, one example is the result on Segre cubic by de la Bretèche [START_REF] Browning | An overview of Manin's conjecture for del Pezzo surfaces, in: Analytic number theory[END_REF]. The other two examples are both on cubic fourfolds, by Schmidt [START_REF] Schmidt | Northcott's thoerem on heights. II. The quadratic case[END_REF] and by Blomer, Brüdern and Salberger [START_REF] Blomer | On a certain senary cubic form[END_REF], respectively. The main result of this paper gives another class of higher-dimensional varieties for which Manin's conjecture holds.

We conclude this subsection by a brief discussion of some related results. Other than our S n with n 3, the surface S 2 : x 3 = (y 2 1 + y 2 2 )z enjoys an additional toric structure, which is non-split over Q, and therefore Manin's conjecture for S 2 follows from the general result of Batyrev and Tschinkel [START_REF] Batyrev | Manin's conjecture for toric varieties[END_REF]. The closely related split toric surface S 2 : x 3 = yzw is well studied by a number of authors. Again, Manin's conjecture for S 2 is a consequence of Batyrev and Tschinkel [START_REF] Batyrev | Manin's conjecture for toric varieties[END_REF]. Other authors include de la Bretèche [START_REF] De La Bretèche | Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière[END_REF], de la Bretèche and Swinnerton-Dyer [START_REF] De La Bretèche | Fonction zêta des hauteurs associée à une certaine surface cubique[END_REF], Fouvry [START_REF] Fouvry | Sur la hauteur des points d'une certaine surface cubique singuliére[END_REF], Heath-Brown and Moroz [START_REF] Heath-Brown | The density of rational points on the cubic surface X 3 = X 1 X 2 X 3[END_REF] and Salberger [START_REF] Salberger | Tamagawa measures on universal torsors and points of bounded height on Fano varieties[END_REF]. Of the unconditional asymptotic formulae obtained, the strongest one is in [START_REF] De La Bretèche | Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière[END_REF], which gives the estimate

N U (B) = BP (log B) + O B 7/8 exp(-c(log B) 3/5 (log log B) -1/5
) , where U is a Zariski open subset of S 2 , and P is a polynomial of degree 6 and c is a positive constant. In [START_REF] De La Bretèche | Fonction zêta des hauteurs associée à une certaine surface cubique[END_REF], even the second term of the counting function N U (B) is established under the Riemann Hypothesis as well as the assumption that all the zeros of the Riemann zetafunction are simple.

1.5. Outline of the proof of Theorem 1.1. We are going to use the arithmetic function r 4 (d) defined as the number of representations of a positive integer d as the sum of four squares (1.12)

d = y 2 1 + • • • + y 2 4 with (y 1 , . . . , y 4 ) ∈ Z 4 .
It is well-known (cf. [13, (3.9)]) that

(1.13) r 4 (d) = 8r * 4 (d) with r * 4 (d) := |d ≡0(mod 4)
.

In view of the above, we can write (1.14)

N * 4 (B) = 2 n B d|n 3 n 3 /B d B 2 r 4 (d) = 16 n B d|n 3 n 3 /B d B 2 r * 4 (d) = 16 n B d|n 3 d B 2 r * 4 (d) - n B d|n 3 d<n 3 /B r * 4 (d) .
Here, we remark that our choice of height function is particular suitable to the formula r * (d).

Hence to prove (1.3) in Theorem 1.1, it is sufficient to establish asymptotic formulae for the following two quantities In the above definition of S(x, y), we have used x instead of the commonly used letter B, since in the proof we need to take integration with respect to x.

In § §3-5 we shall apply analytic methods to establish an asymptotic formula for S(x, y) as shown in the following. Theorem 1.2. Let ε > 0 be arbitrary. We have

(1.16) S(x, y) = xy 4P (ψ) + 4 3 P (ψ) - 1 3 P (ψ) + O ε x 3 2 y 3 4 + x 1 2 +ε y 7 6
uniformly for x 3 y x 10, where ψ := log x-1 3 log y and P (t) is a quadratic polynomial, defined as in (5.24) below. In particular, we have

(1.17) S(x, y) = 4C 4 xy log x - 1 3 log y 2 1 + O 1 log x
uniformly for x 10 and x 2 (log x) -8 y x 2 (log x) 4/3 , where

(1.18) C 4 := 81 512 ζ(4) p>2 1 + 2 p + 3 p 2 + 2 p 3 + 1 p 4 1 - 1 p 2
is the leading coefficient of P (t).

The asymptotic formula (1.16) is valid for x 2 (log x) -8 y x 3-ε , which is sufficient for the proof of Theorem 1.1. Of course it is possible to extend (1.16) to a wider range of y, but we shall not get into this. Now we turn to the evaluation of T (B). Theorem 1.2 does not apply to T (B) directly since the range of its second summation depends on the variable n of the first summation. Fortunately we can show that Theorem 1.2 together with some delicate analysis, i.e. a generalized dyadic decomposition of the summation domain, is sufficient to establish the following result.

Theorem 1.3. As B → ∞, we have

(1.19) T (B) = 1 9 C 4 B 3 (log B) 2 1 + O 1 log B ,
where C 4 is as in (1.18).

Finally in §6 we shall deduce (1.3) in Theorem 1.1 from Theorems 1.2 and 1.3, and derive (1.2) from (1.3).

Our proofs of Theorem 1.2 and Theorem 1.3, though perhaps similar in spirit to the arguments of de la Breteche [START_REF] De La Bretèche | Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière[END_REF], involve a number of refinements and new ideas on the analytic side. First, the evaluation of S(x, y) is much more involved and complicated than those in [START_REF] De La Bretèche | Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière[END_REF] since we lose symmetry here. In [START_REF] De La Bretèche | Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière[END_REF], all the variables are symmetric so that application of the complex integration method is rather standard. Besides the absence of symmetry, the inner summation range in our situation is so sparse that we cannot get any power-saving error term. Second, the evaluation of T (B) is quite delicate since the range of its second summation depends on the variable n of the first summation. The complexintegration method used to prove Theorem 1.2 cannot be applied to treat T (B). The main difficulty is that the error term obtained by this method is too big to get an asymptotic formula for T (B). Finally, the method we use to evaluate T (B) works for other situations as well. For example, it also works in high degree forms; see [START_REF] Liu | On a class of senary forms[END_REF]. We hope that this method may also be useful in evaluating similar sums from other analytic number theory questions.

Resolution of singularity

In this section we construct a resolution of S n with n 3, and calculate its Picard rank. Then we find out the number of crepant divisors of this resolution.

2.1.

A resolution of S n with n 3. Let

F = (y 2 1 + y 2 2 + • • • + y 2 n )z -x 3 . Then ∇F := ∂F ∂x , ∂F ∂y 1 , . . . , ∂F ∂y n , ∂F ∂z = (-3x 2 , 2y 1 z, . . . , 2y n z, y 2 1 + • • • + y 2 n ).
Thus S n has an isolated singular point at P := [0 : 0 : • • • : 0 : 1] and the non-isolated singular locus

T := {[x : y 1 : • • • : y n : z] ∈ S n : x = z = y 2 1 + • • • + y 2 n = 0}.
We will first resolve the singularity at the isolated point P . For this purpose, we only need to resolve a singularity at the affine chart z = 0. Set z = 1. For the affine equation (2.1)

x 3 = y 2 1 + • • • + y 2 n , we consider its zero locus. In A n+1 × P n , P n ([u : t 1 : • • • : t n ]), let x u = y 1 t 1 = • • • = y n t n •
In the affine piece u = 0, set u = 1. Then y 1 = t 1 x, . . . , y n = t n x. Plugging into (2.1), we get an equation

x = t 2 1 + • • • + t 2 n , which is smooth.
In the affine charts t i = 0 for 1 i n, if we set t i = 1, then we have

(uy i ) 3 = y 2 i (t 2 1 + • • • + t 2 i-1 + 1 + t 2 i+1 + • • • + t 2 n ), which gives u 3 y i = t 2 1 + • • • + t 2 i-1 + 1 + t 2 i+1 + • • • + t 2 n .
Again it defines a smooth variety. Thus after one blow-up we resolve the singularity at the point P . Note that the exceptional divisor E 1 over the singular point P is the zero locus of the equation

t 2 1 + • • • + t 2 n = 0 in P n , which is irreducible.
Secondly, let us resolve the non-isolated singularities of S n . Noticing the symmetry in the coordinates y 1 , . . . , y n , we only need to consider the affine piece y n = 0. Set y n = 1. Then the equation (2.2)

x 3 = z(y 2 1 + • • • + y 2 n-1 + 1)
defines an n-dimensional affine variety in A n+1 . In A n+1 × P 2 , P 2 ([u : v : w]), we let

(2.3) x u = z v = y 2 1 + • • • + y 2 n-1 + 1 w •
In the affine chart u = 0, we set u = 1. Then z = vx and

y 2 1 + • • • + y 2 n-1 + 1 = wx. Plugging into equation (2.2), we get (2.4) x = vw.
This defines a smooth variety.

In the affine chart v = 0, we set v = 1. Then x = uz and y 2 1

+ • • • + y 2 n-1 + 1 = wz. Plugging into equation (2.
2), we get (2.5)

u 3 z = w
which also gives a smooth variety.

In the affine piece w = 0, let w = 1. Then we get x = u(y

2 1 + • • • + y 2 n-1 + 1) and z = v(y 2 1 + • • • + y 2 n-1 + 1). Inserting into (2.
2), we get (2.6)

u 3 (y 2 1 + • • • + y 2 n-1 + 1) = v,
which again is smooth. Hence the above blow-up completely resolve the non-isolated singularities.

For any given point in the non-isolated singular locus subvariety T , the inverse image of this point in the affine chart u = 0 is defined by the equation (2.4). We deduce that vw = 0. Similarly, in the affine piece v = 0 and the affine piece w = 0 we get w = 0 and v = 0, respectively. This implies the inverse image of a point in the non-isolated singular locus is a pair of P 1 and the exceptional divisor has two irreducible components F v and F w , which are defined as

F v := {[x : y 1 : • • • : y n : z; u : v : w] : x = z = y 2 1 + • • • + y 2 n = v = 0} and F w := {[x : y 1 : • • • : y n : z; u : v : w] : x = z = y 2 1 + • • • + y 2 n = w = 0}, respectively.
2.2. Calculation of the Picard rank of S n and the number of crepant divisors. In this subsection, we calculate the Picard rank of S n and the number of crepant divisors.

We will show that rank C (Pic(S n )) 1, which in combination with the obvious lower bound rank Q (Pic(S n )) 1 will establish

r n = rank Q (Pic(S n )) = 1.
We start by claculating the rank of the class group of S n . Let H be the hyperplane section of S n with z = 0, and U the complement. Then U is an affine variety defined by the equation

x 3 = y 2 1 + • • • + y 2 n . By [22, Proposition 3.1],
Cl(U ) 0.

Noticing that the hperplane section H = {z = x = 0} is irreducible and applying [14, Proposition II.6.5], we have the exact sequence

Z → Cl(S n ) → Cl(U ) → 0, which gives rank C (Cl(S n )) 1.
Hence, we have rank

C (Pic(S n )) rank C (Cl(S n )) 1.
In the following, we calculate the number of linearly independent crepant divisors for the resolution in the previous sub-section.

Let φ : S n → S n be the resolution map, where S n is the desingularisation of S n . Define

E 1 := φ -1 (P ), E 2 := φ -1 (T ) = F v + F w , L := φ * (O(1)| Sn ).
Let π : P n+1 → P n+1 be the projection map, where P n+1 = Bl {P,T } (P n+1 ) is the blow-up of P n+1 . Then φ : S n → S n is the restriction of π to S n . We have the following natural commutative diagram:

S n P n+1 S n P n+1 φ π
Let E 1 := π -1 (P ) and E 2 := π -1 (T ). Then we have

K P n+1 = π * K P n+1 + n E 1 + 2 E 2 and π * S n = S n + 2 E 1 + 2 E 2 ,
where the last equality follows from the fact that S n has multiplicity two both at P and the subvariety T . By the adjunction formula, we get

K S n = (K P n+1 + S n )| Sn = π * (K P n+1 ) + π * (S n ) + (n -2) E 1 | Sn = π * K Sn + (n -2)E 1 , since E 1 ∩ S n = E 1 .
Recall our assumption n 3. Then we notice that E 2 does not appear in the canonical divisor of S n . Also, E 2 ∩ S n = F u ∪ F v . Therefore, we conclude that the linearly independent exceptional divisors F u and F v are crepant, and conclude the following.

Proposition 2.1. For all n 3, we have The next is to simplify each F p (s, w). To this end, we recall (1.13) so that

r n = rank Q Pic(S n ) = 1 and γ n = 2.
(3.4) r * 4 (p µ ) =    1 -p µ+1 1 -p if p > 2, 3 if p = 2,
for all integers µ 1. On the other hand, a simple formal calculation shows

(3.5) ν 0 x ν 0 µ 3ν y µ 1 -z µ+1 1 -z = 1 1 -z ν 0 x ν 1 -y 3ν+1 1 -y -z 1 -(yz) 3ν+1 1 -yz = 1 1 -z 1 1 -y 1 1 -x - y 1 -xy 3 - z 1 -yz 1 1 -x - yz 1 -xy 3 z 3 = 1 + xy(1 + z) + xy 2 (1 + z + z 2 ) + xy 3 (z + z 2 ) + x 2 y 4 z 2 (1 -x)(1 -xy 3 )(1 -xy 3 z 3 ) , and (3.6) 1 + 
ν 1

x ν 1 + a

1 µ 3ν y µ = 1 + ν 1 x ν 1 + a y -y 3ν+1 1 -y = 1 1 -x + a 1 -y xy 1 -x - xy 4 1 -xy 3 = 1 + axy(1 + y) + (a -1)xy 3 (1 -x)(1 -xy 3 ) •
When p > 2, in view of (3.4), we can apply (3.5) with (x, y, z) = (p -s , p -w , p) to write

(3.7) F p (s, w) = 0 j 3 1 -p -(s+jw-j) -1 G p (s, w), where (3.8) 
G p (s, w) := 1 + p + 1 p s+w + p 2 + p + 1 p s+2w + p 2 + p p s+3w + p 2 p 2s+4w × 1 - p p s+w 1 - p 2 p s+2w 1 - 1 p s+3w -1

•

While for p = 2, the formula (3.6) with (x, y, z, a) = (2 -s , 2 -w , 2, 3) gives us (3.9) Next we prove (3.3). It is easy to verify that for min

F 2 (s, w) = 0 j 3 1 -2 -(s+jw-j) -1 G 2 (s, w), where (3.10) G 2 (s, w) := 1 + 3 • 2 -s-w + 3 • 2 -s-2w + 2 -s-3w+1 1 -2 -s-3w 1 j 3 (1 -2 -(s+jw-j) ).
0 j 3 (σ + ju -j) 1 2 + ε, we have 2(σ + u -1) 2( 1 2 + ε) = 1 + 2ε, 2(σ + 2u -2) 2( 1 2 + ε) = 1 + 2ε, σ + u 1 + 1 2 + ε = 3 2 + ε, σ + 2u 2 + 1 2 + ε = 5 2 + ε, σ + 2u -1 1 + 1 2 + ε = 3 2 + ε, σ + 3u -1 2 + 1 2 + ε = 5 2 + ε, σ + 3u -2 1 + 1 2 + ε = 3 2 + ε, 2(σ + 2u -1) 2(1 + 1 2 + ε) = 3 + ε, σ + 3u 3 + 1 2 + ε = 7 2 + ε. These together with (3.8) imply that |G p (s, w)| = 1 + O(p -1-ε )
for min 0 j 3 e (s + jw -j) 1 2 + ε. This shows that the Euler product G(s, w) converges absolutely for min 0 j 3 e (s+jw -j) 1 2 +ε, and (3.3) holds in this half-plane. By analytic continuation, (3.2) is also true in the same domain. This completes the proof.

Outline of the proof of Theorem 1.2

The basic idea is to apply the method of complex integration to, instead of our original S(x, y), the quantity

(4.1) M (X, Y ) := Y 1 X 1 S(x, y) dx dy
which is a mean-value of S(x, y). This M (X, Y ) is much easier to handle; in particular when moving the contours of integration to the left, this does not involve any problem of convergence. We will first establish an asymptotic formula for M (X, Y ), and then derive the asymptotic formula (1.16) for S(x, y) in Theorem 1.2 by an analytic argument involving the operator D defined in the next paragraph. If each of these sums S and M has just one variable, the above method has been known for a long time; we refer the readers to [23, Chapter II.5] for an excellent exposition. De la Bretèche [START_REF] De La Bretèche | Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière[END_REF] successfully handled a case where each of these sums S and M has three variables. In our present situation each of these sums S and M has two variables.

Denote by E k the set of all functions of k variables and define the operator D :

E 2 → E 4 by (4.2) (Df )(X, H; Y, J) := f (H, J) -f (H, Y ) -f (X, J) + f (X, Y ).
Our S(x, y) and M (X, Y ) are closed related as shown in the following lemma, which in particular enables one to derive an asymptotic formula for S(x, y) from that for M (x, y).

Using the positivity and monotonicity of S(x, y) and performing an inclusion-exclusion process, we immediately obtain the following lemma. Lemma 4.1. Let S(x, y) and M (X, Y ) be defined as in (1.15) and (4.1). Then

(DM )(X -H, X; Y -J, Y ) HJS(X, Y ) (DM )(X, X + H; Y, Y + J)
for H X and J Y .

The operator D has some properties that we are going to use repeatedly throughout the paper. These are summarized in the following lemmas.

Lemma 4.2. (i) Let f ∈ E 2 be a function of class C 3 . Then we have (Df )(X, H; Y, J) = (J -Y )(H -X) ∂ 2 f ∂x∂y (X, Y ) + O R(X, H; Y, J)
for X H and Y J, where

R(X, H; Y, J) := (H -X) max X x H Y y J ∂ 3 f ∂x 2 ∂y (x, y) + (J -Y ) max X x H Y y J ∂ 3 f ∂x∂y 2 (x, y) . (ii) If f (X, Y ) = f 1 (X)f 2 (Y ), then (Df )(X, H; Y, J) = f 1 (H) -f 1 (X) f 2 (J) -f 2 (Y ) .
Lemma 4.2 can be proved similarly as in [3, Lemma 2]; the details are therefore omitted.

The next elementary estimate will also be used several times in the paper. It is essentially [START_REF] De La Bretèche | Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière[END_REF]Lemma 6(i)]. Lemma 4.3. Let 1 H X and |σ| 10. Then for any β ∈ [0, 1], we have

(4.3) (X + H) s -X s X σ ((|τ | + 1)H/X) β ,
where the implied constant is absolute.

Proof. We have trivially (X + H) s -X s X σ . On the other hand, we can write

(X + H) s -X s = s X+H X x s-1 dx |s|X σ-1 H.
From these we can deduce, for any β ∈ [0, 1],

(X + H) s -X s (X σ ) 1-β (|s|X σ-1 H) β .
This implies the desired inequality.

Proof of Theorem 1.2

We shall first evaluate M (X, Y ), from which we shall deduce Theorem 1.2 by applying the operator D defined as in (4.2). In the sequel, we suppose

(5.1) 10 X Y X 3 , (XY ) 3 4T U X 12 , H X, J Y,
and for brevity we fix the following notation:

(5.2)

s := σ + iτ, w := u + iv, L := log X, κ := 1 + L -1 , λ := 1 + 4L -1 .
The following proposition is an immediate consequence of Lemmas 5.2-5.6 below.

Proposition 5.1. Under the previous notation, we have

M (X, Y ) = X 2 Y 2 P log X - 1 3 log Y + R 0 (X, Y ) + • • • + R 3 (X, Y ) + O(1)
uniformly for (X, Y, T, U, H, J) satisfying (5.1), where R 0 , R 1 , R 2 , R 3 and P (t) are defined as in (5.12), (5.16), (5.19), (5.22) and (5.24) below, respectively.

The proof is divided into several subsections.

5.1.

Application of Perron's formula. The first step is to apply Perron's formula twice to transform M (X, Y ) into a form that is ready for future treatment.

Lemma 5.2. Under the previous notation, we have

(5.3) M (X, Y ) = M (X, Y ; T, U ) + O(1)
uniformly for (X, Y, T, U ) satisfying (5.1), where the implied constant is absolute and

(5.4) M (X, Y ; T, U ) := 1 (2πi) 2 κ+iT κ-iT λ+iU λ-iU F(s, w)Y w+1 w(w + 1) dw X s+1 s(s + 1)
ds.

Proof. In view of the definition of r * 4 (d), we have, for any ε > 0 and all d 1,

r * 4 (d) dτ (d) ε d 1+ε , which implies that τ * (n 3 , y) := d|n 3 , d y r * 4 (d) ε y 1+ε τ (n 3 ) ε y 1+ε n ε
uniformly for y 1 and n ∈ N, where the implied constant depends on ε only. Thus the Dirichlet series n 1 τ * (n 3 , y)n -s converges absolutely for σ > 1. Applying Perron's formula [23, Theorem II.2.3], we write (5.5)

X 1 S(x, y) dx = 1 2πi κ+i∞ κ-i∞ n 1 τ * (n 3 , y) n s X s+1 s(s + 1) ds,
which holds for all y 1.

We are going to apply Perron's formula again but to the function τ * (n 3 ; y) in the above formula. We write

τ * (n 3 ; y) = d y a n (d) with a n (d) := r * 4 (d) if d | n 3 , 0 otherwise,
and notice that the (finite) Dirichlet series d 1 a n (d)d -w converges absolutely for all w ∈ C. Thus we have, as before, (

Y 1 τ * (n 3 ; y) dy = 1 2πi λ+i∞ λ-i∞ d 1 a n (d) d w Y w+1 w(w + 1) 5.6) 
dw.

Integrating (5.5) with respect to y on [1, Y ] and then applying (5.6), we find that

(5.7) M (X, Y ) = 1 (2πi) 2 κ+i∞ κ-i∞ λ+i∞ λ-i∞ F(s, w)Y w+1 w(w + 1) dw X s+1 s(s + 1)
ds.

Next we shall cut the above to infinite integrals into finite ones. We need the well-known estimate (cf. e.g. [23, page 146

, Theorem II.3.7]) (5.8) ζ(s) |τ | max{(1-σ)/3,0} log |τ | (σ 1 -c/ log |τ |, |τ | 2)
where c > 0 is a positive constant, as well as the fact that s = 1 is the simple pole of ζ(s). From these and (3.3) of Lemma 3.1, we deduce that, uniformly for τ ∈ R and v ∈ R,

F(κ + iτ, λ + iv) max{L 4 , log 4 (|τ | + |v| + 3)}. It follows that κ+i∞ κ-i∞ λ±i∞ λ±iU F(s, w)Y w+1 w(w + 1) dw X s+1 s(s + 1) ds X 2 Y 2 L 4 U 1, κ±i∞ κ±iT λ+iU λ-iU F(s, w)Y w+1 w(w + 1) dw X s+1 s(s + 1) ds X 2 Y 2 L 4 T 1.
The desired formula (5.3) follows from (5.7) and the two estimates above.

Application of Cauchy's theorem.

In this subsection, we shall apply Cauchy's theorem to evaluate the integral over w in M (X, Y ; T, U ). We write (5.9) w j = w j (s) := (j + 1 -s)/j (1 j 3) and

(5.10)

     F * 1 (s) := ζ(s)ζ(2 -s)ζ(3 -2s)G(s, w 1 (s)), F * 2 (s) := ζ(s)ζ( s+1 2 )ζ( 3-s 2 )G(s, w 2 (s)), F * 3 (s) := ζ(s)ζ( 2s+1 3 )ζ( s+2 
3 )G(s, w 3 (s)).

Lemma 5.3. Under the previous notation, for any ε > 0 we have

(5.11) M (X, Y ; T, U ) = I 1 + I 2 + I 3 + R 0 (X, Y ) + O ε (1)
uniformly for (X, Y, T, U ) satisfying (5.1), where

I 1 := 1 2πi κ+iT κ-iT F * 1 (s)X s+1 Y 3-s (2 -s)(3 -s)s(s + 1)
ds,

I 2 := 4 2πi κ+iT κ-iT F * 2 (s)X s+1 Y (5-s)/2 (3 -s)(5 -s)s(s + 1)
ds,

I 3 := 9 2πi κ+iT κ-iT F * 3 (s)X s+1 Y (7-s)/3 (4 -s)(7 -s)s(s + 1)
ds, and

(5.12) R 0 (X, Y ) := 1 (2πi) 2 κ+iT κ-iT 11 12 +ε+iU 11 12 +ε-iU F(s, w)Y w+1 w(w + 1) dw X s+1 s(s + 1)
ds.

Further we have

(5.13) (DR 0 )(X, X + H; Y, Y + J) (DR 0 )(X -H, X; Y -J, Y ) ε X 7 6 +ε Y 11 12 +ε H 5 6 J + X 1+ε Y 13 12 +ε HJ 5 6
uniformly for (X, Y, T, U, H, J) satisfying (5.1). Here the implied constants depend on ε only.

Proof. We want to calculate the integral 1 2πi λ+iU λ-iU F(s, w)Y w+1 w(w + 1) dw for any individual s = σ + iτ with σ = κ and |τ | T . We move the line of integration e w = λ to e w = 3 4 + ε. By Lemma 3.1, for σ = κ and |τ | T , the points w j (s) (j = 1, 2, 3), given by (5.9), are the simple poles of the integrand in the rectangle 3 4 + ε u λ and |v| U . The residues of F(s,w) w(w+1) Y w+1 at the poles w j (s) are

(5.14) F * 1 (s)Y 3-s (2 -s)(3 -s) , 4F * 2 (s)Y (5-s)/2 (3 -s)(5 -s) , 9F * 3 (s)Y (7-s)/3 (4 -s)(7 -s) ,
respectively, where F * j (s)(j = 1, 2, 3) are defined as in (5.10). When σ = κ and 11 12 + ε u λ, it is easily checked that min(σ + ju -j) 1 + 3( 1112 + ε -1) = 3 4 + 3ε > 1 2 + ε. It follows from (5.8) and (3.3) that, for σ = κ, |τ | T, 11 12 Cauchy's theorem then gives Also, for σ, τ, u, v as above, we have This completes the proof. 

+ ε u λ and v = ±U , F(s, w) ε U 2(1-u) L 4 .

This implies that

1 2πi λ+iU λ-iU F(s, w)Y w+1 w(w + 1) dw = F * 1 (s)Y 3-s (2 -s)(3 -s) + 4F * 2 (s)Y (5-s)/2 (3 -s)(5 -s) + 9F * 3 (s)Y (7-s)/3 (4 -s)(7 -s) + 1 2πi
r s,w (X, H; Y, J) := (X + H) s+1 -X s+1 (Y + J) w+1 -Y w+1 X 2 ((|τ | + 1)H/X))
I 1 = R 1 (X, Y ) + O ε (1)
uniformly for (X, Y, T ) satisfying (5.1), where

(5.16) R 1 (X, Y ) := 1 2πi 5 4 -ε+iT 5 4 -ε-iT F * 1 (s)X s+1 Y 3-s (2 -s)(3 -s)s(s + 1)
ds.

Further we have

(5.17) (DR 1 )(X, X + H; Y, Y + J) (DR 1 )(X -H, X; Y -J, Y ) ε X 5 4 Y 3 4 +ε HJ
uniformly for (X, Y, T, H, J) satisfying (5.1). Here the implied constants depend on ε only.

Proof. We shall prove (5.15) by moving the contour e s = κ to e s = 5 4 -ε. When κ σ 5 4 -ε, it is easy to check that min

0 j 3 (σ + jw 1 (σ) -j) = min 0 j 3 (j + (1 -j)σ) 1 2 + 2ε.
By Lemma 3.1 the integrand is holomorphic in the rectangle κ σ 

F * 1 (s) ε T σ-1 L 3 , which implies that 5 4 -ε±iT κ±iT F * 1 (s)X s+1 Y 3-s (2 -s)(3 -s)s(s + 1) ds ε X 2 Y 2 L 3 T 4 5 4 κ XT Y σ-1 dσ ε X 9 4 Y 7 4 L 2 T 15 4 ε 1.
This proves (5.15).

To establish (5.17), we note that for σ = 5 4 -ε and |τ | T we have, as before,

F * 1 (s) ε (|τ | + 1) 1 4 
, and, by (4.3) of Lemma 4.3 with β = 1,

r s,w 1 (s) (X, H; Y, J) := (X + H) s+1 -X s+1 (Y + J) 3-s -Y 3-s X 5 4 Y 3 4 +ε HJ(|τ | + 1) 2 .
Combining these with Lemma 4.2(ii), we deduce that

(DR 1 )(X, X + H; Y, Y + J) = 1 2πi 5 4 -ε+iT 5 4 -ε-iT F * 1 (s)r s,w 1 (s) (X, H; Y, J) (2 -s)(3 -s)s(s + 1) ds ε X 5 4 Y 3 4 +ε HJ,
from which the desired result follows.

5.5. Evaluation of I 3 .

Lemma 5.6. Under the previous notation, for any ε > 0 we have (5.21)

I 3 = X 2 Y 2 P log X - 1 3 log Y + R 3 (X, Y ) + O ε (1)
uniformly for (X, Y, T ) satisfying (5.1), where P (t) is defined as in (5.24) below and

(5.22) R 3 (X, Y ) := 9 2πi 1 2 +ε+iT 1 2 +ε-iT F * 3 (s)X s+1 Y (7-s)/3 (4 -s)(7 -s)s(s + 1)
ds.

Further we have

(5.23) (DR 3 )(X, X + H; Y, Y + J) (DR 3 )(X -H, X; Y -J, Y ) ε X 1 2 +ε Y 7 6 HJ
uniformly for (X, Y, T, H, J) satisfying (5.1). Here the implied constants depend on ε only.

Proof. We move the line of integration e s = κ to e s = 1 2 + ε. Obviously s = 1 is the unique pole of order 3 of the integrand in the rectangle 1 2 + ε σ κ and |τ | T , and the residue is

X 2 Y 2 P (log X -1 3 log Y ) with (5.24) P (t) := 1 2! 9(s -1) 3 F * 3 (s)e t(s-1) (4 -s)(7 -s)s(s + 1) s=1 .
When 1 2 + ε σ κ, we check that min

0 j 3 (σ + jw 3 (σ) -j) = 1 3 min 0 j 3 (j + (3 -j)σ) 1 2 + ε.
Hence when 1 2 + ε σ κ and |τ | T , (5.8) and (3.3) yields

F * 3 (s) ε T 2(1-σ)/3 L 3 . It follows that κ±iT 1 2 +ε±iT F * 3 (s)X s+1 Y (7-s)/3 (4 -s)(7 -s)s(s + 1) ds X 2 Y 2 L 3 T 4 κ 1 2 Y T 2 X 3 (1-σ)/3 ds ε X 3 2 Y 11 6 L 3 T 11 3 ε 1.
These establish (5.21). To prove (5.23), we note that for σ = 1 2 + ε and |τ | T , we have 

F * 3 (s) ε (|τ | + 1)
; Y, Y + J) = XY 4P (ψ) + 4 3 P (ψ) - 1 3 P (ψ) + O(XJL 2 + Y HL 2 ) HJ.
Since D is a linear operator, this together with Proposition 5.1, (5.13), (5.17 

P (ψ) + O ε (R) HJ with R := X 7 6 +ε Y 11 12 H -1 6 + X 1+ε Y 13 12 J -1 6 + X 3 2 Y 3 4 + X 1 2 +ε Y 7 6 + XJL 2 + Y HL 2 3 
where the terms X , respectively. The same formula also holds for (DM )(X -H, X; Y -J, Y ). Now we apply Lemma 4.1 with H = XY -1 14 and J = Y 13 14 , to get

S(X, Y ) = XY 4P (ψ) + 4 3 P (ψ) - 1 3 P (ψ) + O ε X 3 2 Y 3 4 + X 1 2 +ε Y 7 6 
, where we have used the following facts (X X 1+ε Y 13 14 .

3 2 Y 3 4 ) 3-12ε 5 (X 1 2 +ε Y 7 
On the other hand, a simple computation shows that C 4 = 9 16 G(1, 1), which implies immediately (1.18). This finally completes the proof of Theorem 1.2. for all x 2 and y 2, where the implied constant is absolute.

Let δ := 1 -(log B) -1 and let k 0 be a positive integer such that

δ k 0 < (log B) -7 δ k 0 -1 .
Note that k 0 (log B) log log B. In view of (6.1), we can write (6.2)

T (B) = 1 k k 0 δ k B<n δ k-1 B d|n 3 d<n 3 /B r * 4 (d) + O(B 3 ) 1 k k 0 δ k B<n δ k-1 B d|n 3 d<δ 3(k-1) B 2 r * 4 (d) + O(B 3 ) = 1 k k 0 S(δ k-1 B, δ 3(k-1)
B 2 ) -S(δ k B, δ 3(k-1) B 2 ) + O(B 3 ).

Similarly, (

T (B)

1 k k 0 δ k B<n δ k-1 B d|n 3 d<δ 3k B 2 r * 4 (d) = 1 k k 0 S(δ k-1 B, δ 3k B 2 ) -S(δ k B, δ 3k B 2 ) .
On the other hand, by (1.17 By (7.3), we can establish the next lemma in the same way as before. (1 -2 -(s+jw-j(2k-1)) )

× 1 + a 1 + 2 -w+2k-1 + 2 -2w+2(2k-1) 2 s+w-(2k-1) -2 -2w+2(2k-1) -b 2 -s-w (1 + 2 -w + 2 -2w ) 1 -2 -s-3w .

These imply (7.4) with for e s > 6k -2 and e w > 0.

It remains to establish (7.5). We verify that whenever min 0 j 3 (σ + ju -j(2k -1)) 1 2 + ε we have 2(σ + u -(2k -1)) 2( 12 + ε) = 1 + 2ε, 2(σ + 2u -2(2k -1)) 2( 12 + ε) = 1 + 2ε, σ + u 2k -1 + 1 2 + ε 7 2 + ε, σ + 2u 2(2k -1) + 1 2 + ε 13 2 + ε, σ + 2u -(2k -1) 2k -1 + 1 2 + ε 7 2 + ε, σ + 3u -(2k -1) 2(2k -1) + 1 2 + ε 13 2 + ε, σ + 3u -2(2k -1) 2k -1 + 1 2 + ε 7 2 + ε, 2(σ + 2u -(2k -1)) 2(2k -1 + 1 2 + ε) 7 + ε, σ + 3u 3(2k -1) + 1 2 + ε 13 2 + ε. It follows that |G p (s, w)| = 1 + O(p -1-ε ) for min 0 j 3 e (s + jw -j(2k -1)) 1 2 + ε. Hence the Euler product G (s, w) converges absolutely for min 0 j 3 e (s + jw -j(2k -1)) 1 2 + ε, and (7.5) holds in this half-plane. By analytic continuation, (7.4) is also true in the same domain. This completes the proof.

Finally we give a sketch of the proof of Theorem 7.1.

Proof of Theorem 7.1. With Lemma 3.1 replaced by Lemma 7.1, we can establish Theorem 7.1 in the same way as in Theorem 1.1. What we have to do is just a modification of some parameters. For example we take, instead of (5.2), κ := 1 + L -1 , λ := 2k -1 + 4L -1 . Therefore instead of (5.9), (5.10) and (5.14), we have w j,k = w j,k (s) := (j(2k -1) + 1 -s)/j (1 j 3),

Theorem 1 . 1 .

 11 As B → ∞, we have(1.2) N 4 (B) = C 4 B(log B)
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 31331 Dirichlet series associated with S(x, y) In view of the definition of S(x, y) in (1.15), we define the double Dirichlet series (3.1) F(s, w) := n -w r * 4 (d) for e s > 4 and e w > 0, where s and w are complex parameters. The next lemma states that the function F(s, w) enjoys a nice factorization formula. In the following and throughout the paper, we denote by ζ(s) the Riemann zeta-function and by τ (n) the divisor function. For min 0 j 3 e (s + jw -j) > 1, we have (3.2) F(s, w) = 0 j 3 ζ(s + jw -j)G(s, w), where G(s, w) is an Euler product, given by (3.8), (3.10) and (3.11) below. Further, for any ε > 0, G(s, w) converges absolutely for min 0 j 3 e (s+jw -j) 1 2 +ε, and in this half-plane (3.3) G(s, w) ε 1. Proof. Obviously the functions r * 4 (d) and n -s d|n 3 d -w r * 4 (d) are multiplicative. Since r * 4 (d) dτ (d), for e s > 4 and e w > 0 we can write the Euler product F(s, w) = p ν 0 p -νs 0 µ 3ν p -µw r * 4 (p µ ) =: p F p (s, w).

Combining ( 3 . 7 )

 37 -(3.10), we get (3.2) with (3.11) G(s, w) := p G p (s, w) for e s > 4 and e w > 0.

  λ±iU

5 6 5 6

 55 -ε (|v| + 1) 1-ε by (4.3) of Lemma 4.3 with β =5 6 -ε and withβ = 1 -ε. Similarly, r s,w (X, H; Y, J) = (X + H) s+1 -X s+1 (Y + J) w+1 -Y w+1 X 2 ((|τ | + 1)H/X)) 1-ε Y 23 12 +ε ((|v| + 1)J/Y ) (|τ | + 1) 1-ε (|v| + 1)

  of Lemma 4.3 with β = 1 -ε and with β = 5 6 -ε. These and Lemma 4.2(i) imply (DR 0 )(X, X + H; Y, Y + J)

5. 3 .

 3 Evaluation of I 1 . Lemma 5.4. Under the previous notation, for any ε > 0 we have(5.15) 

5 4 -

 4 ε and |τ | T ; and we can apply (5.8) and (3.3) to get, in this rectangle,

3 P

 3 ),(5.20) and (5.23) implies that (DM )(X, X + H; Y, Y + J) = XY 4P (ψ) + 4 (ψ) -1

5 4 +ε Y 3 4

 3 +ε and Y L 2 have been absorbed into X

6 .

 6 Proof of Theorems 1.3 and 1.1 Proof of Theorems 1.3. The idea is to apply Theorems 1.2 in a delicate way, i.e. using a suitable dyadic decomposition of the interval of summation to analyse T (B). Trivially we have r * 4 (d) dτ (d)

9 C 4 B 3 (log B) 2 1 9 C 4 B 3 ( 9 C 4 B 3 (B> 2 (- 1 ) 1 - 2 dτ (m 3 ) 1 m -s d|m 3 d

 94319439432112313 ) of Theorem 1.2, we have, for 1 k k 0 ,S(δ k-1 B, δ 3(k-1) B 2 ) = δ 4(k-1) 4 k B, δ 3(k-1) B 2 ) = δ 4(k-1)+1 4 k-1 B, δ 3k B 2 ) = δ 4k-1 4 k B, δ 3k B 2 ) = δ 4k 4 9 C 4 B 3 (log B) 2 1 + O 1 log B , (6.7)andN * n (B) = C * n B n-1 (log B) n is the nth Bernoulli number and C n is defined as in (7.7) below.Since n = 4 has been studied, we now suppose n = 4k with k 2, and define by r n (d) the number of integral solutions of the equation(7.1) d = y 2 1 + • • • + y 2 n with (y 1 , . . . , y n ) ∈ Z n .We apply (cf.[START_REF] Iwaniec | Topics in classical automorphic forms[END_REF] Theorem 11.2], [13, page 155, Theorem 1]) to deduce, similarly to (1.12) and (3.4), that(7.2) r n (d) = n |B n/2 |(2 n/2 -1) r * n (d) + O(d n/4-1/2 ),where r * n (d) is a multiplicative function determined by the formulae [13, page 163, the last formula]:(7.3) r * n (p µ ) = 1 + p 2k-1 + • • • + p µ(2k-1) if p k (-1 + 2 2k-1 + • • • + 2 (µ-1)(2k-1) ) + 2 µ(2k-1) if p = 2 2k-1 2 µ(2k-1) -(-1) k 1 -2 2k 1 -2 2k-1 if p = 2for all integers µ 1.It is easy to see that contribution of the error term in (7.2) to N n (B) is m B d|m 3 d B B n/2 (log B) 3 , which is acceptable. Define the double Dirichlet series F (s, w) := m -w r * n (d).
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 71 Let n = 4k with k 2. For min 0 j 3 e (s + jw -j(2k -1)) > 1, we have(7.4) F (s, w) = 0 j 3 ζ(s + jw -j(2k -1))G (s, w),where G 2 (s, w) := 1 j 3

(7. 6 )

 6 G (s, w) := p G p (s, w)

  Completion of proof of Theorem 1.2. We shall complete the proof of Theorem 1.2 in this subsection. Denote by M(X, Y ) the main term in the asymptotic formula of M (x, y) in Proposition 5.1, that is M(X, Y ) := X 2 Y 2 P (ψ) and ψ := log(X/Y 1/3 ).

	by Lemma 4.3 with β = 1. Combining these with Lemma 4.2(i), we deduce that
	(DR 3 )(X, X + H; Y, Y + J) =	9 2πi	1 2 +ε+iT 2 +ε-iT 1	F * 3 (s)r s,w 3 (s) (X, H; Y, J) (4 -s)(7 -s)s(s + 1)	ds
			ε X	1 2 +ε Y	7 6 HJ.
	This proves the lemma.				
	5.6. Then Lemma
	4.2(i) gives				
	(DM)(X, X + H				
	1/3 thanks to (5.8) and (3.3), and
	r s,w ε X	1 2 +ε Y	7 6 HJ(|τ | + 1) 2

3 (s) (X, H; Y, J) := (X + H) s+1 -X s+1 (Y + J) (7-s)/3 -Y (7-s)/3
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5.4. Evaluation of I 2 . Lemma 5.5. Under the previous notation, we have (5.18)

uniformly for (X, Y, T ) satisfying (5.1), where

ds.

Further we have

uniformly for (X, Y, T, H, J) satisfying (5.1). Here the implied constants are absolute.

Proof. We shall prove (5.18) by moving the contour e s = κ to e s = 3 2 . For κ σ 3 2 , we have min

Hence the integrand is holomorphic in the rectangle κ σ 3 2 and |τ | T , and we can apply (5.8) and (3.3) to deduce F * 2 (s) T (σ-1)/6 L 3 for κ σ 3 2 and τ = ±T . Consequently, 

Combining these with Lemma 4.2(i), we deduce that

This completes the proof.

where the implied constants are absolute. Inserting (6.4) and (6.5) into (6.2), we derive that

Similarly, combining (6.6) and (6.7) with (6.3), we get that

where have applied the estimate

The desired asymptotic formula (1.19) follows.

Proof of Theorem 1. 

General case

In this section we sketch a proof of the following general result.

Theorem 7.1. Let n be a positive multiple of 4. Then as B → ∞ we have

where G (s, w) is an Euler product, given by (7.6) below. Further, for any ε > 0, G (s, w) converges absolutely for min 0 j 3 e (s + jw -j(2k -1)) 1 2 + ε and in this half-plane Suppose p > 2. In view of (7.3), we can apply (3.5) with (x, y, z) = (p -s , p -w , p 2k-1 ) to write

where

On the other hand, a simple formal calculation shows

gives

3 )G (s, w 3,k (s)), and

In the palce of (5.24) and (1.18), we have P 4k (t) := 1 2! 9(s -1) 3 F * 3 (s)e t(s-1) (6k -2 -s)(6k + 1 -s)s(s + 1) s=1 and (7.7)

With the modifications above, one can establish Theorem 7.1 without difficulty. The details are omitted.