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ABSTRACT: The diastereoselective synthesis of -aminophosphonates derivatives embedded in spirocyclic indolines is re-
ported. The present method proceeds via the dearomative addition of phosphonyl radicals at the C2-position of the indole 
nucleus in oxidative conditions followed by the intramolecular trapping of the resulting carbocation before rearomatiza-
tion. trans-3,3-Spirocyclic-2-phosphono-indolines were thus obtained. 

Dearomatization reactions of indoles1 allow to generate 
three dimensional indoline structures which are of high in-
terest to explore the chemical space and discover com-
pounds of therapeutic potential.2 This field has sparked our 
interest for few years.3 We now wish to merge indole 
dearomatization with phosphorous chemistry and in par-
ticular the synthesis of alpha-amino-phosphonate deriva-
tives 1 since the latters display a wide range of biological 
activities in the field of human health and crop-protec-
tion.4 alpha-Amino-phosphonic acids are notably consid-
ered as bioisosters of the corresponding alpha-amino-car-
boxylic acids. The tetrahedral geometry of the phospho-
rous allows alpha-amino-phosphonate derivatives to 
mimic transition states involved in biological processes 
which gives unique biological properties to these com-
pounds. Classically, alpha-amino-phosphonates are ob-
tained through the nucleophilic addition of phosphites 2 
to imines 3 via the Pudovik reaction or the Kabachnik-
Fields reaction from amine 4 and aldehyde 5 (Scheme 1, A).5 
In few cases, the dearomative addition of phosphorous-
containing nucleophiles to nitrogen-containing electron-
poor heteroarenes 6 such as pyridines or quinolines has 
been reported towards cyclic amino-phosphonates 7 
(Scheme 1, B).6 In line with our research program towards 
indolines, we were interested to access original alpha-
amino-phosphonates embedded in an indoline scaffold 

10.7 These compounds would be analogues of indoline-2-
carboxylic acid derivatives which are relevant in human 
medicine (Scheme 1, C).8 For instance perindopril and tran-
dolapril are commercial drugs to treat blood pressure. 

Scheme 1. Radical-mediated dearomative synthesis of 
2-phosphono-indolines.  



 

  

The deployment of a dearomative intermolecular addition 
of a phosphonyl radical A, resulting from oxidation of 2, to 
the C2-position of indole nucleus 8 seems to be an appro-
priate strategy related to previous radical-mediated 
dearomatization of indoles.9-11 Notably, we described the 
dearomative synthesis of 2-trifluromethyl-3,3-spiroindo-
line from the Langlois’ reagent (sodium trifluoromethyl-
sulfinate).10  

Indeed, difunctionalizations of alkenes via the addition of 
a phosphoryl radical to the double bond are well de-
scribed.12 In the other hand, additions of phosphorus-cen-
tred radicals to indoles are known and lead to C-H func-
tionalized products 9 after rearomatization of the indole 
nucleus from  carbocation C resulting from the oxidation 
of the formed radical B at the C3 position.13,14 After the ad-
dition of the radical to the indole at the C2 position, the 
proton in alpha of the introduced phosphorous atom is be-
lieved to be particularly acidic and therefore its elimination 
should be very fast. Consequently, the interception of the 
resulting carbocation by a nucleophile before the elimina-
tion of this proton and rearomatization of the indole 
should be especially challenging and is the subject of the 
present study. 

In order to favor the trapping of carbocation C over the 
elimination of the proton, we decided to use an intramo-
lecular nucleophile that would lead to 3,3-spiroindolines 
which are a framework encountered in a large number of 
biologically relevant molecules.15 We evaluated several ox-
idants which are known to oxidize phosphites into phos-
phonyl radicals. No reaction was observed with K2S2O8 
while AgNO3 with K2S2O8 resulted in the formation of a 
mixture of unidentified products. The outcome was similar 
with CAN, which was the optimal oxidant of our previous 
dearomative trifluoromethylation of indoles.10  Only man-
ganese triacetate16 proved to be a competent oxidant to 

produce the desired 3,3-spirocyclic-2-phosphono-in-
dolines 10 as the major product and in each cases, only the 
trans diastereoisomer was observed. The optimal condi-
tions required to perform the reaction at 80 °C in acetoni-
trile during 20 h with 3 equivalents of Mn(OAc)3 and 5 
equivalents of phosphites. The scope of this reaction was 
then investigated (Scheme 2). The nature of the phospho-
nyl radical that could be added to N-Boc-3-(3-hydroxypro-
pyl)-indole 8a was first evaluated. We were pleased to 
note, that dimethyl, diethyl and di-nbutyl phosphites 
could be employed to synthesize 10a-c in reasonable yields 
(41%, 55% and 40%). Remarkably, di-isopropyl phosphite 
was the optimal phosphorous-containing reagent and de-
livered 56% of 10d. In general less than 15% of rearoma-
tized compounds 9 were observed.17 Dibenzyl phosphite 
was also competent to produce 10e in 40% yield, while 
more hindered di-tertbutyl and diphenyl phosphites could 
not allow to isolate the dearomatized product 10f,g. Inter-
estingly, when we employed diphenyl phosphine oxide in-
stead of a phosphite, indoline 10h was obtained in a 13% 
yield. The influence of the electron-withdrawing substitu-
ent on the indole nitrogen, beside the Boc group (10a-h) 
was then scrutinized. Indeed, the ethoxycarbonyl group al-
low to introduce methyl, ethyl and isopropyl phosphonates 
in 10i-k (40%, 47%, 50%).  This dearomatization also per-
mits the acetyl group to lead to 2-phosphono-indolines 10l-
o from dimethyl, diethyl, di-nbutyl and di-isopropyl phos-
phites in respectively 41%, 47%, 40% and 50%. The trans 
relationship between the phosphorous and the oxygen was 
ascertained through X-ray crystallographic analysis of 
compound 10l. A moderate yield of 22% of 10p was ob-
tained in presence of the tosyl substituent. The use of a ter-
tiary alcohol in lieu of a primary one as an intramolecular 
nucleophile efficiently gave rise to spirocyclic indoline 10q, 
whose trans structure was solved by X-ray diffraction of a 
crystal. 18 

Scheme 2. Synthesis of 3,3-spirocyclic-2-phosphino-in-
dolines.  



 

 

The substitution of the benzene part of the indole was the 
last point to be studied. The reaction tolerates electron-do-
nating groups such as methoxy at C5 (10r, 42%) and methyl 
at C5 (10s, 56%) and C7 (10t, 56%). Halogens could be pre-
sent during this dearomatization process: 5-fluoro, 5-
chloro and 5-bromo spirocyclic indolines 10u-w were ob-
tained in 60%, 56% and 54% yield. The electron-withdraw-
ing cyano group at the C5 position led to phosphono-indo-
line 10x in 47% yield. 

As a control experiment, we heated starting indole 8a in 
presence of 3 equivalents of manganese triacetate during 
20 h, without any phosphites and we were able to recover 

55% of 8a (Scheme 3). The relative stability of 8a towards 
the oxidant seems to exclude a mechanism in which the 
indole is oxidized into a radical cation followed by the nu-
cleophilic attack of the phosphite and the mechanism de-
picted in Scheme 1 seems the more plausible.19  

Scheme 3. Radical-mediated dearomative synthesis of 
2-phosphono-indolines.  

 

In conclusion, the oxidative coupling between adequately 
substituted indoles and phosphites in presence of manga-
nese triactate results in the diastereoselective synthesis of 
trans-3,3-spirocyclic-2-phosphono-indolines via the 
dearomative addition of a phosphoryl radical to the indole 
nucleus. Remarkably, the carbocation generated at the C3-
position of the indole nucleus could be intramolecularly 
intercepted in a trans fashion before rearomatization of the 
indole. 
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(18) Replacing the terminal alcohol on the C3-side chain by a 
tosyl amide (NHTs) or using di-N,N’-Ac-tryptamine only led to 
rearomatized products of type 9 after the addition of the phos-
phonyl radical. 

(19) To operate in the absence of an intramolecular nucleo-
phile, we used N-Boc-3-methylindole in the classical reaction con-
ditions of scheme 2 with di-isopropyl phosphite. We observed the 
formation of compound 9y as well as products arising from the 
addition of radical A onto the benzene part of compounds 9y (see 

footnote 17). We did not observed a Ritter type reaction with the 
trapping of carbocation C by acetonitrile. 

 

 

 

 

 


