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Abstract
We consider convex optimization problems with the objective function having Lipshitz-continuous
p-th order derivative, where p ≥ 1. We propose a new tensor method, which closes the gap be-
tween the lower O

(
ε−

2
3p+1

)
and upper O

(
ε−

1
p+1

)
iteration complexity bounds for this class of

optimization problems. We also consider uniformly convex functions, and show how the proposed
method can be accelerated under this additional assumption. Moreover, we introduce a p-th order
condition number which naturally arises in the complexity analysis of tensor methods under this
assumption. Finally, we make a numerical study of the proposed optimal method and show that in
practice it is faster than the best known accelerated tensor method. We also compare the perfor-
mance of tensor methods for p = 2 and p = 3 and show that the 3rd-order method is superior to
the 2nd-order method in practice.
Keywords: Convex optimization, unconstrained minimization, tensor methods, worst-case com-
plexity, global complexity bounds, condition number

1. Introduction

In this paper, we consider the unconstrained convex optimization problem

f (x)→ min
x∈Rn

, (1)

1. The first version of this paper appeared on September 2, 2018 in Russian. In the current version we present a
translation into English of the main derivations and extend the analysis from the case of strongly convex objective to
the case of uniformly convex objectives and add the numerical analysis of our results.

c© A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Selikhanovych & C.A. Uribe.
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OPTIMAL TENSOR METHODS FOR SMOOTH CONVEX OPTIMIZATION

where f has p-th Lipschitz-continuous derivative with constant Mp. For p = 1, first-order methods
are commonly used to solve this problem, i.e., gradient descent. The lower bound for the complexity
of these methods was proposed in (Nemirovsky and Yudin, 1983; Nesterov, 2004), and an optimal
method was introduced in (Nesterov, 1983). The case of p = 2, i.e., Newton-type methods, was well
understood only recently. A nearly optimal method was proposed in (Nesterov, 2008), an optimal
method was proposed in (Monteiro and Svaiter, 2013), and a lower bound was obtained in (Agarwal
and Hazan, 2018; Arjevani et al., 2018).

The idea of using higher order derivatives (starting from p ≥ 3) in optimization is known at
least since 1970’s, see Hoffmann and Kornstaedt (1978). Recently this direction of research became
of interest from the point of view of complexity bounds. In the unpublished preprint Baes (2009),
extending the estimating functions technique of Nesterov (2004), proposes accelerated high-order

(tensor) methods for convex problems with complexity O
((

MpRp+1

ε

) 1
p+1

)
, where p ≥ 1, ε is the

accuracy of the obtained solution x̂, i.e., f(x̂) − f∗ ≤ ε, Mp is the Lipschitz constant of the p-th
derivative, and R is an estimate for the distance between a starting point and the closest solution.
Nevertheless, the author doubts that the obtained methods are implementable since the auxiliary
problem on each iteration is possibly non-convex. Agarwal and Hazan (2018); Arjevani et al. (2018)

construct lower complexity boundsO
((

MpRp+1

ε

) 2
5p+1

)
andO

((
MpRp+1

ε

) 2
3p+1

)
respectively for

the case f having Lipschitz p-th derivative and conjecture that the upper bound can be improved.
Nesterov (2018) proposes implementable tensor methods showing that an appropriately regularized
Taylor expansion of a convex function is again a convex function, thus making auxiliary problems
on each iteration of the tensor methods tractable. The author also provides an accelerated scheme

with complexity bound O
((

MpRp+1

ε

) 1
p+1

)
, shows that the complexity of each iteration for p = 3

is of the same order as for the case p = 2, and conjectures the existence of an optimal scheme with

complexity bound O
((

MpRp+1

ε

) 2
3p+1

)
.

The optimal method for the case p = 1 has complexity O
((

M1R2

ε

) 1
2

)
(Nesterov, 1983) and

for p = 2 has the complexity O
((

M2R3

ε

) 2
7

)
(Monteiro and Svaiter, 2013), but the question of

existence of optimal methods for p ≥ 3 remains open. In this paper we extend the framework of
Monteiro and Svaiter (2013) and propose optimal tensor methods for all p ≥ 1. Our approach is
also based on regularized Taylor step of Nesterov (2018), and, thus, our optimal method for p = 2
is different from Monteiro and Svaiter (2013).

We also consider problem (1) under additional assumption that f is uniformly convex, i.e., there
exist 2 ≤ q ≤ p+ 1 and σq > 0 s.t.

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
σq
q
‖y − x‖q2, ∀x, y ∈ Q.

2



OPTIMAL TENSOR METHODS FOR SMOOTH CONVEX OPTIMIZATION

Under this additional assumption, we show, how the restart technique can be applied to accelerate
our method to obtain complexity

O

((
Mp

σp+1

) 2
3p+1

log2

∆0

ε

)
, q = p+ 1; O


Mp(∆0)

p+1−q
q

σ
p+1
q

q

 2
3p+1

+ log2

∆0

ε

 , q < p+ 1,

where f(x0) − f∗ ≤ ∆0. This bound suggests a natural generalization of first- and second-order
condition number (Nesterov, 2008). If f is such that q = p+1, then the complexity of our algorithm
depends only logarithmically on the starting point and is proportional to

(γp)
2

3p+1 ,

where γp =
Mp

σp+1
is the p-th order condition number. Nemirovsky and Yudin (1983); Nesterov

(2004) and Arjevani et al. (2018) propose lower bounds for particular cases of strongly convex
functions (i.e., q = 2) with p = 1 and p = 2 respectively. Our upper bounds match them.

As a related work, we also mention Birgin et al. (2017); Cartis et al. (2018), who study com-
plexity bounds for tensor methods for finding approximate stationary points with the main focus
on non-convex optimization, which we do not consider in our work. Also the work in (Wibisono
et al., 2016) considers tensor methods from the variational perspective and obtains similar bounds
to those in Baes (2009). The first version of this paper appeared in arXiv on September 2, 2018.
In December 2018, two months after that, Jiang et al. (2018); Bubeck et al. (2018) proposed an
algorithm, which is very similar to our Algorithm 1. Unlike them, we also analyze the case of uni-
formly convex functions and propose an algorithm, which is faster in this case, see our Algorithm 3.
Moreover, we are the first to make a numerical study of tensor methods for p = 3 and show that
they work in practice.

Our contributions.

• We propose a new optimal tensor method and analyze its iteration complexity.

• We generalize this method for the case of uniformly convex objectives and propose a defini-
tion of p-th order condition number.

• We make a numerical study of the proposed method and show that our optimal method is
faster than accelerated tensor method Nesterov (2018) in practice. We also compare the per-
formance of tensor methods for p = 2 and p = 3 and show that the 3rd-order method is
superior to the 2nd-order method in practice.

Notations and generalities. For p ≥ 1, we denote by∇pf(x)[h1, ..., hp] the directional deriva-
tive of function f at x along directions hi ∈ Rn, i = 1, ..., p. ∇pf(x)[h1, ..., hp] is symmetric
p-linear form and its norm is defined as

‖∇pf(x)‖2 = max
h1,...,hp∈Rn

{∇pf(x)[h1, ..., hp] : ‖hi‖2 ≤ 1, i = 1, ..., p}

or equivalently

‖∇pf(x)‖2 = max
h∈Rn
{|∇pf(x)[h, ..., h]| : ‖h‖2 ≤ 1, i = 1, ..., p}.

3



OPTIMAL TENSOR METHODS FOR SMOOTH CONVEX OPTIMIZATION

Here, for simplicity, ‖ · ‖2 is standard Euclidean norm, but our algorithm and derivations can be
generalized for the Euclidean norm given by general a positive semi-definite matrixB. We consider
convex, p times differentiable on R functions satisfying Lipschitz condition for p-th derivative

‖∇pf(x)−∇pf(y)‖2 ≤Mp‖x− y‖2, x, y ∈ Rn. (2)

2. Optimal Tensor Method

Given a function f , numbers p ≥ 1 and M ≥ 0, define

T fp,M (x) ∈ Arg min
y∈Rn


p∑
r=0

1

r!
∇rf (x) [y − x, ..., y − x]︸ ︷︷ ︸

r

+
M

(p+ 1)!
‖y − x‖p+1

2

 . (3)

and given a number L ≥ 0 and point z ∈ Rn, we define

FL,z (x) , f (x) +
L

2
‖x− z‖22 . (4)

Theorem 1 Let sequence (xk, yk, uk), k ≥ 0 be generated by Algorithm 1. Then

f(yN )− f∗ ≤ cMp‖y0 − x∗‖p+1
2

N
3p+1

2

, c =
2

3(p+1)2+4
4 (p+ 1)

p!
.

Note that this bound allows to obtain an O
((

MpRp+1

ε

) 2
3p+1

)
iteration complexity. The imple-

mentability and cost of each iteration is discussed below in Section 2.3. The proof of Theorem 1 is
based on the framework of Monteiro and Svaiter (2013), which is presented in the next subsection.

Algorithm 1 Optimal Tensor Method
Input: u0, y0 — starting points; N — iteration number; A0 = 0
Output: yN

1: for k = 0, 1, 2, . . . , N − 1 do
2: Choose Lk such that

1

2
≤ 2(p+ 1)Mp

p!Lk
‖yk+1 − xk‖p−1

2 ≤ 1, (5)

where

ak+1 =
1/Lk +

√
1
/
L2
k + 4Ak/Lk

2
, Ak+1 = Ak + ak+1, {note that Lka2

k = Ak+1}

xk =
Ak
Ak+1

yk +
ak+1

Ak+1
uk, yk+1 = T

F
Lk,x

k

p,pMp
(xk).

3: uk+1 = uk − ak+1∇f(yk+1)
4: end for
5: return yN

4
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2.1. Accelerated hybrid proximal extragradient method

Monteiro and Svaiter (2013) introduced Algorithm 2 for convex optimization problems. To find
yk+1 on each iteration, the authors use gradient type method for the case p = 1 and a trust region
Newton-type method for the case p = 2. Their analysis of the algorithm is based on the following
Theorem.

Theorem 2 ( (Monteiro and Svaiter, 2013, Theorem 3.6 ) ) Let sequence (xk, yk, uk), k ≥ 0 be
generated by Algorithm 2 and define R :=

∥∥y0 − x∗
∥∥

2
. Then, for all N ≥ 0,

1

2

∥∥uN − x∗∥∥2

2
+AN ·

(
f
(
yN
)
− f (x∗)

)
+

1

4

N∑
k=1

AkLk−1

∥∥∥yk − xk−1
∥∥∥2

2
≤ R2

2
, (6)

f
(
yN
)
− f (x∗) ≤

R2

2AN
,
∥∥uN − x∗∥∥2

≤ R, (7)

N∑
k=1

AkLk−1

∥∥∥yk − xk−1
∥∥∥2

2
≤ 2R2. (8)

We also need the following Lemma.

Lemma 3 ( (Monteiro and Svaiter, 2013, Lemma 3.7 a))) Let sequences {Ak, Lk}, k ≥ 0 be
generated by Algorithm 2. Then, for all N ≥ 0,

AN ≥
1

4

(
N∑
k=1

1√
Lk−1

)2

. (9)

Algorithm 2 Accelerated hybrid proximal extragradient method
Input: u0, y0 — starting point; N — iteration number; A0 = 0
Output: yN

1: for k = 0, 1, 2, . . . , N − 1 do
2: Choose Lk and yk+1 s.t.

∥∥∇FLk,xk (yk+1
)∥∥

2
≤ Lk

2

∥∥yk+1 − xk
∥∥

2
, where

ak+1 =
1/Lk +

√
1
/
L2
k + 4Ak/Lk

2
, Ak+1 = Ak + ak+1, xk =

Ak
Ak+1

yk +
ak+1

Ak+1
uk.

3: uk+1 = uk − ak+1∇f
(
yk+1

)
.

4: end for
5: return yN

2.2. Proof of Theorem 1

It follows from Algorithm 1 that yk+1 = T
F
Lk,x

k

p,pMp
(xk), thus by (Nesterov, 2018, Lemma 1),∥∥∥∇FLk,xk (yk+1

)∥∥∥
2
≤ (p+ 1)Mp

p!

∥∥∥yk+1 − xk
∥∥∥p

2
.

5
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At the same time, by the condition in step 2 of Algorithm, 1,

2(p+ 1)Mp

p!Lk
‖yk+1 − xk‖p−1

2 6 1.

Hence, ∥∥∥∇FLk,xk (yk+1
)∥∥∥

2
≤ Lk

2

∥∥∥yk+1 − xk
∥∥∥

2

and we can apply the framework of the previous subsection. What remains is to estimate the growth
of AN , which is our next step.

By the condition in step 2 of Algorithm, 1,

1

Lk

∥∥∥yk+1 − xk
∥∥∥p−1

2
≥ θ, (10)

where θ = p!
4(p+1)Mp

. Using this inequality, we prove that

N∑
k=1

AkL
p+1
p−1

k−1 ≤ 2R2θ
− 2
p−1 . (11)

Indeed, from (8) and (10) we have that

θ
2
p−1

N∑
k=1

AkL
p+1
p−1

k−1 ≤
N∑
k=1

AkL
1+ 2

p−1

k−1

(
1

Lk−1

∥∥∥yk − xk−1
∥∥∥p−1

2

) 2
p−1

=
N∑
k=1

AkLk−1

∥∥∥yk − xk−1
∥∥∥2

2
≤ 2R2. (12)

Further, from (11) it follows that

N∑
k=1

1√
Lk−1

≥ θ
1
p+1

(2R2)
p−1

2(p+1)

(
N∑
k=1

A
p−1
3p+1

k

) 3p+1
2(p+1)

. (13)

To prove that, let us introduce new variables zk = 1
/√

Lk−1 and consider the following opti-
mization problem to find the worst possble value of the l.h.s. in (13)

min
N∑
k=1

zk s.t.
N∑
k=1

Akz
−γ
k ≤ C, (14)

where in accordance with (11)

γ = 2
p+ 1

p− 1
, C = 2R2θ

− 2
p−1 .

Since the objective and constraints are separable, this problem can be solved explicitly by the La-
grange principle

zk =

 1

C

N∑
j=1

A
1

γ+1

j

1/γ

A
1

γ+1

k .

6
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Hence,

min
N∑
k=1

Akz
−γ
k ≤C

N∑
k=1

zk =
1

C1/γ

(
N∑
k=1

A
1

γ+1

k

) γ+1
γ

.

From this inequality, (9) and (13), we have

AN ≥
1

4

θ
2
p+1

(2R2)
p−1
p+1

(
N∑
k=1

A
p−1
3p+1

k

) 3p+1
p+1

. (15)

From this inequality, we obtain that there exists a number c such that, for all N ≥ 0,

AN ≥
1

cMpRp−1
N

3p+1
2 . (16)

The derivation of exact value of the constant c can be found in Lemma 5 in Appendix. This finishes
the proof.

2.3. Implementation details

First of all, Theorem 1 in Nesterov (2018) says that, by the appropriate choice M = pMp in (3), the
subproblem for finding yk+1 in step 2 of Algorithm 1 is convex and, thus is tractable. Moreover, for
p = 2 this step corresponds to the step of cubic regularized Newton method of Nesterov and Polyak
(2006) and, as it is shown there, can be computed with the same complexity as solving a linear
system. For the case p = 3, Nesterov (2018) showed that this step can be also computed efficiently.
In both cases the complexity of calculating yk+1 is Õ

(
n2.37

)
.

Let us now discuss the process of finding such Lk that the inequality (5) holds. By construction,

yk+1 = arg min
y∈Rn


p∑
r=0

1

r!
∇rf

(
xk
) [
y − xk, ..., y − xk

]
︸ ︷︷ ︸

r

+
pMp

(p+ 1)!

∥∥∥y − xk∥∥∥p+1

2
+
Lk
2
‖y − xk‖22

 .

This problem is strongly convex and, thus, has a unique solution for each Lk > 0. Hence, yk+1 is
uniquely defined by Lk. At the same time, if Lk → 0, yk+1 → ỹk with

ỹk ∈ Arg min
y∈Rn


p∑
r=0

1

r!
∇rf

(
xk
) [
y − xk, ..., y − xk

]
︸ ︷︷ ︸

r

+
pMp

(p+ 1)!

∥∥∥y − xk∥∥∥p+1

2


being a fixed point. Whence,

2(p+ 1)Mp

p!Lk
‖yk+1 − xk‖p−1

2 → +∞.

On the other hand, if Lk → +∞, yk+1 → xk and

2(p+ 1)Mp

p!Lk
‖yk+1 − xk‖p−1

2 → 0.

7
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By the continuity of the dependence of yk+1 from Lk, we see that there exists such Lk that in-
equality (5) holds. Appropriate value of Lk can be found by an extended line-search procedure
as in (Monteiro and Svaiter, 2013, Section 7). The details of complexity of the line-search can be
found in Jiang et al. (2018); Bubeck et al. (2018), where the authors prove a bound of Õ(1) calls of

T
F
Lk,x

k

p,pMp
(xk) on each iteration.

3. Extension for Uniformly Convex Case

In this section, we additionally assume that the objective function is uniformly convex of degree
q ≥ 2, i.e., there exists σq > 0 s.t.

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
σq
q
‖y − x‖q2, ∀x, y ∈ Q. (17)

We also assume that q ≤ p+ 1. As a corollary,

f(y) ≥ f(x∗) +
σq
q
‖y − x∗‖q2, ∀y ∈ Q, (18)

where x∗ is a solution to problem (1). We show, how the restart technique can be used to accelerate
Algorithm 1 under this additional assumption.

Algorithm 3 Restarted Optimal Tensor Method

Input: p, Mp, q, σq, z0,∆0 s.t. f(z0)− f∗ ≤ ∆0.
1: for k = 0, 1, ... do
2:

Set ∆k = ∆0 · 2−k and Nk = max



2cMpq

p+1
q

σ
p+1
q

q

∆
p+1−q
q

k

 2
3p+1

 , 1
 . (19)

3: Set zk+1 = yNk as the output of Algorithm 1 started from zk and run for Nk steps.
4: Set k = k + 1.
5: end for

Output: zk.

Theorem 4 Let sequence zk, k ≥ 0 be generated by Algorithm 3. Then

σq
q
‖zk − x∗‖q2 ≤ f(zk)− f∗ ≤ ∆0 · 2−k,

and the total number of steps of Algorithm 1 is bounded by (c is defined in (16))

(
2cq

p+1
q

) 2
3p+1 M

2
3p+1
p

σ
2(p+1)
q(3p+1)
q

(∆0)
2(p+1−q)
q(3p+1) ·

k∑
i=0

2
−i 2(p+1−q)

q(3p+1) + k.

8
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Proof Let us prove the first statement of the Theorem by induction. For k = 0 it holds. If it holds
for some k ≥ 0, by the choice of Nk, we have that

cMp

N
3p+1

2
k

(
q∆k

σq

) p+1
q

≤ ∆k

2
.

By (18),

‖zk − x∗‖p+1
2 ≤

(
q(f(zk)− f∗)

σq

) p+1
q

≤
(
q∆k

σq

) p+1
q

since, by our assumption, q ≤ p + 1. Combining the above two inequalities and Theorem 1, we
obtain

f(zk+1)− f∗ ≤ cMp‖zk − x∗‖p+1
2

N
3p+1

2
k

≤ ∆k

2
= ∆k+1.

It remains to bound the total number of steps of Algorithm 1. Denote c̃ =
(

2cq
p+1
q

) 2
3p+1

.

k∑
i=0

Ni ≤ c̃
M

2
3p+1
p

σ
2(p+1)
q(3p+1)
q

k∑
i=0

(∆0 · 2−i)
2(p+1−q)
q(3p+1) + k ≤ c̃ M

2
3p+1
p

σ
2(p+1)
q(3p+1)
q

(∆0)
2(p+1−q)
q(3p+1) ·

k∑
i=0

2
−i 2(p+1−q)

q(3p+1) + k.

Let us make several remarks on the complexity of the restarted scheme in different settings. It is
easy to see from Theorem 4 that, to achieve an accuracy ε, i.e. to find a point x̂ s.t. f(x̂)− f∗ ≤ ε,
the number of tensor steps in Algorithm 3 is

O

 M
2

3p+1
p

σ
2(p+1)
q(3p+1)
q

(∆0)
2(p+1−q)
q(3p+1) + log2

∆0

ε

 , q < p+1, and O

 M
2

3p+1
p

σ
2(p+1)
q(3p+1)
q

+ 1

 log2

∆0

ε

 , q = p+1.

Theorem 4 suggests a natural generalization of first- and second-order condition number Nesterov
(2008). If f is such that q = p+1, then the complexity of Algorithm 3 depends only logarithmically
on the starting point and is proportional to (γp)

2
3p+1 , where γp =

Mp

σp+1
is the p-th order condition

number. Unfortunately, if q < p + 1, the complexity depends polinomially on the initial objective
residual ∆0, which, in general, is not controlled.

An interesting special case is when q = 2 and p ≥ 2, and, as a consequence, q < p + 1.
As it can be seen from Theorem 2 (see also Bubeck et al. (2018)), the sequence, generated by
Algorithm 1 is bounded by some R = O(‖x0 − x∗‖2). Hence, the constant M2 can be estimated
as M2 ≤ MpR

p−2. At the same time, in (Nesterov, 2008, Sect.6), it is shown that the Cubic
regularized Newton method Nesterov and Polyak (2006) has the region of quadratic convergence
given by {x : f(x)− f∗ ≤ σ2

2

2M2
2
≤ σ2

2

2M2
pR

2(p−2) }. To enter this region, Algorithm 3 requires

O

M 2
3p+1
p

σ
p+1
3p+1

2

(∆0)
p−1
3p+1 + log2

∆0M
2
pR

2(p−2)

σ2
2

 = O

M 2
3p+1
p

σ
p+1
3p+1

2

(∆0)
p−1
3p+1 + log2

M2
p∆p−1

0

σp2

 ,

(20)

9
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where we used inequality R2 ≤ 2∆0
σ2

, which follows from (18). After entering the region of
quadratic convergence, Algorithm 3 can be switched to the Cubic regularized Newton method Nes-
terov and Polyak (2006), which has final stage complexity, (Nesterov and Polyak, 2006, Sect. 6)

O

(
log3/2 log4

σ3
2

M2
2 ε

)
= O

(
log3/2 log4

σ3
2

M2
pR

2(p−2)ε

)
.

Summing this inequality and (20) we obtain the total complexity of this switching procedure to
obtain small accuracy ε. Note, that the second term in (20) is typically dominated by the first one,
so we can ignore it without loss of generality.

Finally, let us compare our upper bound with known lower bounds. For the case p = 1, q = 2,
our complexity bound coincides with lower bound for first-order methods Nemirovsky and Yudin
(1983); Nesterov (2004). Arjevani et al. (2018) propose lower bounds for second-order methods for
the case p = 2, q = 2 and our complexity bound coincides with their lower bound up to a change

of D =
√

∆0
σ2

, which is natural as, in this case f is strongly convex.

4. Numerical Analysis

In this section, we analyze and compare the performance of Algorithm 1 with the accelerated tensor
method proposed in Nesterov (2018).

We study the numerical performance for two classes of functions. Initially, an universal para-
metric family of objective functions, which are difficult for all tensor methods Nesterov (2018)
defined as

fm(x) = ηp+1 (Amx)− x1, (21)

where, for integer parameter p ≥ 1, ηp+1(x) = 1
p+1

n∑
i=1
|xi|p+1, 2 ≤ m ≤ n, x ∈ Rn, Am is the

n× n block diagonal matrix:

Am =

(
Um 0
0 In−m

)
, with Um =


1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
. . .

...
0 0 . . . 1 −1
0 0 . . . 0 1

 , (22)

and In is the identity n × n-matrix. For a detailed description of the high-order derivatives of this
class of functions, and its optimality properties see Nesterov (2018).

Figure 1 shows the normalized optimality gap of the iterations generated by the accelerated ten-
sor method from Nesterov (2018) in Figure1(a), and Algorithm 1 in Figure1(b). We denote the min-
imum function value as f∗. For both results we have used p = 3, and n = k = {5, 10, 15, 20, 25}.
These numerical results show that Algorithm 1 requires a much smaller number of iterations than the
accelerated tensor method from Nesterov (2018) to reach the same optimality gap, namely 1 ·10−15,
for the class of “bad” functions described in Nesterov (2018). For example, for the case where
n = k = 25, Algorithm 1 has reached the desired accuracy in about 100 iterations, while the
accelerated tensor method requires about 1 · 104.

10
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Figure 1: A performance comparison between the accelerated tensor method in Nesterov (2018)
(shown in (a)) and Algorithm 1 (shown in (b)). We minimize an instance of the family of functions
in (21) with p = 3 and various values of dimension n and k. Note that the x-axis scaling on both
figures is different.

As a second set of numerical results we study the performance of the proposed method for the
non-regularized logistic regression problem. For this problem we are given a set of d data pairs
{yi, wi} for 1 ≤ i ≤ d, where yi ∈ {1,−1} is the class label of object i, and wi ∈ Rn is the set of
features of object i. We are interested in finding a vector x that solves the following optimization
problem

1

d

d∑
i=1

ln
(

1 + exp
(
−yi〈wi, x〉

))
→ min

x∈Rn
. (23)

Figure 2 shows the simulation results for the logistic regression problem in (23) for various
datasets. Similarly as in Figure 1, we compare the performance of Algorithm 1, and the accelerated
tensor method in Nesterov (2018). In Figure 2(a) and Figure 2(b), we generate synthetic data, where,
initially we define a vector x̂ ∈ [−1, 1] with every entry is chosen uniformly at random. The set
of features for each i, i.e., wi ∈ [−1, 1]n has also every entry chosen uniformly at random, finally
each label is computed as yi = sign(〈wi, x̂〉). For Figure 2(a) we set n = 10 and d = 100, while in
Figure 2(b) we set n = 100 and d = 1000. Figure 2(c) uses the mushroom dataset (n = 8124 and
d = 112) Dheeru and Karra Taniskidou (2017), and Figure 2(d) uses the a9a dataset (n = 32561
and d = 123) Dheeru and Karra Taniskidou (2017).

For the logistic regression problem, we don’t have access to the optimal value function in gen-
eral, thus, we plot only the cost function evaluated at the current iterate. As expected by the theo-
retic results, Algorithm 1 requires one order of magnitude less iterations than the accelerated tensor
method from Nesterov (2018) to achieve the same function value.

In Appendix B, we numerically compare the performance of the accelerated tensor method
from Nesterov (2018) for p = 2 and p = 3, as well as its accelerated and non-accelerated versions.

11
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Figure 2: Performance comparison for the non-regularized logistic regression problem between the
accelerated tensor method from Nesterov (2018) and Algorithm 1. (a) Uses synthetic data with
n = 10 and d = 100, (b) uses synthetic data with n = 100 and d = 1000, (c) uses the mushroom
dataset (d = 8124 and n = 112) Dheeru and Karra Taniskidou (2017), and (d) uses the a9a dataset
(d = 32561 and n = 123) Dheeru and Karra Taniskidou (2017).
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Optimal Tensor Methods in Smooth Convex and
Uniformly Convex Optimization:
Supplementary Material
Appendix A. Technical lemmas

Lemma 5 Consider the sequence {Ak}k≥0 of non-negative numbers such that

AN ≥
1

4

θ
2
p+1

(2R2)
p−1
p+1

(
N∑
k=1

A
p−1
3p+1

k

) 3p+1
p+1

, (24)

where p ≥ 3, θ = p!
4(p+1)Mp

and Mp, R > 0. Then for all N ≥ 0 we have

Ak ≥
1

cMpRp−1
k

3p+1
2 , (25)

where

c =
2

3(p+1)2+4
4 (p+ 1)

p!
(26)

Proof We prove (25) by induction. For k = 1 we have

A1

(24)
≥ 1

4

θ
2
p+1

(2R2)
p−1
p+1

A
p−1
p+1

1 ⇐⇒ A
2
p+1

1 ≥ 1

4

θ
2
p+1

2
p−1
p+1R

2(p−1)
p+1

⇐⇒ A1 ≥
p!

2
3p+5

2 (p+ 1)MpRp−1
.

The last inequality implies (25) for p ≥ 3. Now let us assume that for all k ≤ N inequality (25)
holds and N ≥ 1. Next we will establish (25) for k = N + 1. We have

AN+1

(24)
≥ 1

4

θ
2
p+1

(2R2)
p−1
p+1

(
N+1∑
k=1

A
p−1
3p+1

k

) 3p+1
p+1

≥ 1

4

θ
2
p+1

(2R2)
p−1
p+1

(
N∑
k=1

A
p−1
3p+1

k

) 3p+1
p+1

(25)
≥ 1

4

θ
2
p+1

(2R2)
p−1
p+1

((
1

cMpRp−1

) p−1
3p+1

N∑
k=1

k
p−1
2

) 3p+1
p+1

.

If N = 1 then

AN+1 = A2 ≥
1

2
3p+1

2

θ
2
p+1

(2R2)
p−1
p+1

(
1

cMpRp−1

) p−1
p+1

(2)
3p+1

2 . (27)

If N > 1 we can write

AN+1 ≥
1

4

θ
2
p+1

(2R2)
p−1
p+1

(
1

cMpRp−1

) p−1
p+1

(
1 +

N∑
k=2

k
p−1
2

) 3p+1
p+1

. (28)
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Since p−1
2 ≥ 1 the function f(x) = x is convex and, as a consequence, we get

N∑
k=2

k
p−1
2 ≥

N∫
1

x
p−1
2 dx =

2

p+ 1
N

p+1
2 − 2

p+ 1
≥ 2

p+ 1
N

p+1
2 − 1

2
. (29)

Using this fact we continue:

AN+1

(29)
≥ 1

4

θ
2
p+1

(2R2)
p−1
p+1

(
1

cMpRp−1

) p−1
p+1
(

1

2
+N

p+1
2

) 3p+1
p+1

≥ 1

4

θ
2
p+1

(2R2)
p−1
p+1

(
1

cMpRp−1

) p−1
p+1

N
3p+1

2 .

For all N > 1 we have(
N

N + 1

) 3p+1
2

=

(
1− 1

N + 1

) 3p+1
2

≥
(

1− 1

2

) 3p+1
2

=
1

2
3p+1

2

.

From this and (28) we obtain that for all N ≥ 1

AN+1 ≥
1

2
3p+1

2

θ
2
p+1

(2R2)
p−1
p+1

(
1

cMpRp−1

) p−1
p+1

(N + 1)
3p+1

2 .

It remains to show that (26) implies

1

2
3p+1

2

θ
2
p+1

(2R2)
p−1
p+1

(
1

cMpRp−1

) p−1
p+1

=
1

cMpRp−1
.

Using θ = p!
4(p+1)Mp

we get

1

2
3p+1

2

θ
2
p+1

(2R2)
p−1
p+1

(
1

cMpRp−1

) p−1
p+1

=
1

cMpRp−1
⇐⇒ c

2
p+1

1

2
3p+1

2

(
p!

4(p+ 1)

) 2
p+1 1

2
p−1
p+1

= 1

⇐⇒ c
2
p+1 = 2

3p+1
2

(
4(p+ 1)

p!

) 2
p+1

2
p−1
p+1 ⇐⇒ c = 2

(3p+1)(p+1)
4

4(p+ 1)

p!
2
p−1
2

⇐⇒ c =
2

3(p+1)2+4
4 (p+ 1)

p!
,

which is exactly what we have in (26).

Appendix B. Comparison of the accelerated tensor method from Nesterov (2018) for
p = 2 and p = 3.

In this appendix, we numerically compare the performance of the accelerated tensor method pro-
posed in (Nesterov, 2018), for p = 2 and p = 3. We also compare the accelerated and non-
accelerated version of this method.
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Figure 3: Performance of tensor methods and accelerated tensor methods for p = 2 and p = 3
on a difficult instance (21) for all unconstrained minimization tensor methods with n = 100 and
m = 50.

Similarly as in Figure 1 and Figure 2, we present the numerical results for the class of bad
functions defined in (21) and one instance of the logistic regression problem.

In Figure 3, we compare the behavior of the following methods: 1) tensor method Nesterov
(2018) for p = 3; 2) accelerated tensor method Nesterov (2018) for p = 3; 3) tensor method
Nesterov (2018) for p = 2; 4) accelerated tensor method Nesterov (2018) for p = 2. Again, the
optimal function value is denoted by f∗. Interestingly, we obtain that the non-accelerated method
outperforms the accelerated method for the first m iterations. Since Theorem 4 from Nesterov
(2018) works only for k ≤ m we don’t study the behaviour of the methods for larger number of
iterations. Even in this simple setting it is still non-trivial how to implement tensor methods for such
bad examples of functions.
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Figure 4: Function value achieved by the iterates of the accelerated tensor method for the logistic
regression problem on the Covertype dataset Dheeru and Karra Taniskidou (2017). Number of
samples d = 20000, dimension n = 55.
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In Figure 4, we consider the behaviour of the same set of methods as in Figure 3, but for logistic
regression problem defined in (23) on Covertype dataset Dheeru and Karra Taniskidou (2017). And
again, we notice that in both cases non-accelerated version works better in our experiments

First of all, we point out that tensor methods in general are non-trivial in implementation, so,
it is interesting direction of the future work to get better implementation. Secondly, we conjecture
that slow convergence that we see in our experiments is because of large Mp that we use. Due to
tuning of the parameters one can obtain better convergence in practice.
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