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Introduction

In this paper, we consider the unconstrained convex optimization problem

f (x) → min x∈R n , (1) 
where f has p-th Lipschitz-continuous derivative with constant M p . For p = 1, first-order methods are commonly used to solve this problem, i.e., gradient descent. The lower bound for the complexity of these methods was proposed in [START_REF] Nemirovsky | Problem Complexity and Method Efficiency in Optimization[END_REF][START_REF] Nesterov | Introductory Lectures on Convex Optimization: a basic course[END_REF], and an optimal method was introduced in [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate o(1/k 2 )[END_REF]. The case of p = 2, i.e., Newton-type methods, was well understood only recently. A nearly optimal method was proposed in [START_REF] Yu | Accelerating the cubic regularization of newton's method on convex problems[END_REF], an optimal method was proposed in [START_REF] Monteiro | An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods[END_REF], and a lower bound was obtained in [START_REF] Agarwal | Lower bounds for higher-order convex optimization[END_REF][START_REF] Arjevani | Oracle complexity of second-order methods for smooth convex optimization[END_REF]. The idea of using higher order derivatives (starting from p ≥ 3) in optimization is known at least since 1970's, see [START_REF] Hoffmann | Higher-order necessary conditions in abstract mathematical programming[END_REF]. Recently this direction of research became of interest from the point of view of complexity bounds. In the unpublished preprint [START_REF] Baes | Estimate sequence methods:extensions and approximations[END_REF], extending the estimating functions technique of [START_REF] Nesterov | Introductory Lectures on Convex Optimization: a basic course[END_REF], proposes accelerated high-order (tensor) methods for convex problems with complexity O

MpR p+1 ε 1 p+1
, where p ≥ 1, ε is the accuracy of the obtained solution x, i.e., f (x)f * ≤ ε, M p is the Lipschitz constant of the p-th derivative, and R is an estimate for the distance between a starting point and the closest solution. Nevertheless, the author doubts that the obtained methods are implementable since the auxiliary problem on each iteration is possibly non-convex. [START_REF] Agarwal | Lower bounds for higher-order convex optimization[END_REF]; [START_REF] Arjevani | Oracle complexity of second-order methods for smooth convex optimization[END_REF] construct lower complexity bounds O respectively for the case f having Lipschitz p-th derivative and conjecture that the upper bound can be improved. [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF] proposes implementable tensor methods showing that an appropriately regularized Taylor expansion of a convex function is again a convex function, thus making auxiliary problems on each iteration of the tensor methods tractable. The author also provides an accelerated scheme with complexity bound O

MpR p+1 ε 1 p+1
, shows that the complexity of each iteration for p = 3 is of the same order as for the case p = 2, and conjectures the existence of an optimal scheme with complexity bound O

MpR p+1 ε 2 3p+1
.

The optimal method for the case p = 1 has complexity O [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate o(1/k 2 )[END_REF] and [START_REF] Monteiro | An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods[END_REF], but the question of existence of optimal methods for p ≥ 3 remains open. In this paper we extend the framework of [START_REF] Monteiro | An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods[END_REF] and propose optimal tensor methods for all p ≥ 1. Our approach is also based on regularized Taylor step of [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF], and, thus, our optimal method for p = 2 is different from [START_REF] Monteiro | An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods[END_REF].

M 1 R 2 ε 1 2
for p = 2 has the complexity O M 2 R 3 ε 2 7
We also consider problem (1) under additional assumption that f is uniformly convex, i.e., there exist 2 ≤ q ≤ p + 1 and σ q > 0 s.t.

f (y) ≥ f (x) + ∇f (x), y -x + σ q q y -x q 2 , ∀x, y ∈ Q.
Under this additional assumption, we show, how the restart technique can be applied to accelerate our method to obtain complexity

O M p σ p+1 2 3p+1 log 2 ∆ 0 ε , q = p + 1; O      M p (∆ 0 ) p+1-q q σ p+1 q q   2 3p+1 + log 2 ∆ 0 ε    , q < p + 1,
where f (x 0 )f * ≤ ∆ 0 . This bound suggests a natural generalization of first-and second-order condition number [START_REF] Yu | Accelerating the cubic regularization of newton's method on convex problems[END_REF]. If f is such that q = p+1, then the complexity of our algorithm depends only logarithmically on the starting point and is proportional to

(γ p ) 2 3p+1 ,
where γ p = Mp σ p+1 is the p-th order condition number. [START_REF] Nemirovsky | Problem Complexity and Method Efficiency in Optimization[END_REF]; [START_REF] Nesterov | Introductory Lectures on Convex Optimization: a basic course[END_REF] and [START_REF] Arjevani | Oracle complexity of second-order methods for smooth convex optimization[END_REF] propose lower bounds for particular cases of strongly convex functions (i.e., q = 2) with p = 1 and p = 2 respectively. Our upper bounds match them.

As a related work, we also mention [START_REF] Birgin | Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models[END_REF]; [START_REF] Cartis | Improved second-order evaluation complexity for unconstrained nonlinear optimization using high-order regularized models[END_REF], who study complexity bounds for tensor methods for finding approximate stationary points with the main focus on non-convex optimization, which we do not consider in our work. Also the work in [START_REF] Wibisono | A variational perspective on accelerated methods in optimization[END_REF] considers tensor methods from the variational perspective and obtains similar bounds to those in [START_REF] Baes | Estimate sequence methods:extensions and approximations[END_REF]. The first version of this paper appeared in arXiv on September 2, 2018. In December 2018, two months after that, [START_REF] Jiang | An optimal high-order tensor method for convex optimization[END_REF]; [START_REF] Bubeck | Near-optimal method for highly smooth convex optimization[END_REF] proposed an algorithm, which is very similar to our Algorithm 1. Unlike them, we also analyze the case of uniformly convex functions and propose an algorithm, which is faster in this case, see our Algorithm 3. Moreover, we are the first to make a numerical study of tensor methods for p = 3 and show that they work in practice.

Our contributions.

• We propose a new optimal tensor method and analyze its iteration complexity.

• We generalize this method for the case of uniformly convex objectives and propose a definition of p-th order condition number.

• We make a numerical study of the proposed method and show that our optimal method is faster than accelerated tensor method [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF] in practice. We also compare the performance of tensor methods for p = 2 and p = 3 and show that the 3rd-order method is superior to the 2nd-order method in practice.

Notations and generalities. For p ≥ 1, we denote by ∇ p f (x)[h 1 , ..., h p ] the directional derivative of function f at x along directions h i ∈ R n , i = 1, ..., p. ∇ p f (x)[h 1 , ..., h p ] is symmetric p-linear form and its norm is defined as

∇ p f (x) 2 = max h 1 ,...,hp∈R n {∇ p f (x)[h 1 , ..., h p ] : h i 2 ≤ 1, i = 1, ..., p}
or equivalently

∇ p f (x) 2 = max h∈R n {|∇ p f (x)[h, ..., h]| : h 2 ≤ 1, i = 1, ..., p}.
Here, for simplicity, • 2 is standard Euclidean norm, but our algorithm and derivations can be generalized for the Euclidean norm given by general a positive semi-definite matrix B. We consider convex, p times differentiable on R functions satisfying Lipschitz condition for p-th derivative

∇ p f (x) -∇ p f (y) 2 ≤ M p x -y 2 , x, y ∈ R n .
(2)

Optimal Tensor Method

Given a function f , numbers p ≥ 1 and M ≥ 0, define

T f p,M (x) ∈ Arg min y∈R n    p r=0 1 r! ∇ r f (x) [y -x, ..., y -x] r + M (p + 1)! y -x p+1 2    . ( 3 
)
and given a number L ≥ 0 and point z ∈ R n , we define

F L,z (x) f (x) + L 2 x -z 2 2 . (4) Theorem 1 Let sequence (x k , y k , u k ), k ≥ 0 be generated by Algorithm 1. Then f (y N ) -f * ≤ cM p y 0 -x * p+1 2 N 3p+1 2 , c = 2 3(p+1) 2 +4 4 (p + 1) p! .
Note that this bound allows to obtain an O

MpR p+1 ε 2 3p+1
iteration complexity. The implementability and cost of each iteration is discussed below in Section 2.3. The proof of Theorem 1 is based on the framework of [START_REF] Monteiro | An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods[END_REF], which is presented in the next subsection.

Algorithm 1 Optimal Tensor Method

Input: u 0 , y 0 -starting points; N -iteration number;

A 0 = 0 Output: y N 1: for k = 0, 1, 2, . . . , N -1 do 2: Choose L k such that 1 2 ≤ 2(p + 1)M p p!L k y k+1 -x k p-1 2 ≤ 1, (5) 
where

a k+1 = 1/L k + 1 L 2 k + 4A k /L k 2 , A k+1 = A k + a k+1 , {note that L k a 2 k = A k+1 } x k = A k A k+1 y k + a k+1 A k+1 u k , y k+1 = T F L k ,x k p,pMp (x k ).
3:

u k+1 = u k -a k+1 ∇f (y k+1
) 4: end for 5: return y N 2.1. Accelerated hybrid proximal extragradient method [START_REF] Monteiro | An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods[END_REF] introduced Algorithm 2 for convex optimization problems. To find y k+1 on each iteration, the authors use gradient type method for the case p = 1 and a trust region Newton-type method for the case p = 2. Their analysis of the algorithm is based on the following Theorem.

Theorem 2 ( (Monteiro and Svaiter, 2013, Theorem 3.6 ) ) Let sequence (x k , y k , u k ), k ≥ 0 be generated by Algorithm 2 and define R := y 0x * 2 . Then, for all N ≥ 0,

1 2 u N -x * 2 2 + A N • f y N -f (x * ) + 1 4 N k=1 A k L k-1 y k -x k-1 2 2 ≤ R 2 2 , ( 6 
)
f y N -f (x * ) ≤ R 2 2A N , u N -x * 2 ≤ R, (7) 
N k=1 A k L k-1 y k -x k-1 2 2 ≤ 2R 2 . ( 8 
)
We also need the following Lemma.

Lemma 3 ( (Monteiro and Svaiter, 2013, Lemma 3.7 a))) Let sequences {A k , L k }, k ≥ 0 be generated by Algorithm 2. Then, for all N ≥ 0,

A N ≥ 1 4 N k=1 1 L k-1 2 . ( 9 
)
Algorithm 2 Accelerated hybrid proximal extragradient method Input: u 0 , y 0 -starting point; N -iteration number; A 0 = 0 Output:

y N 1: for k = 0, 1, 2, . . . , N -1 do 2: Choose L k and y k+1 s.t. ∇F L k ,x k y k+1 2 ≤ L k 2 y k+1 -x k 2 ,
where

a k+1 = 1/L k + 1 L 2 k + 4A k /L k 2 , A k+1 = A k + a k+1 , x k = A k A k+1 y k + a k+1 A k+1 u k .
3: [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF], Lemma 1),

u k+1 = u k -a k+1 ∇f y k+1 . 4: end for 5: return y N 2.2. Proof of Theorem 1 It follows from Algorithm 1 that y k+1 = T F L k ,x k p,pMp (x k ), thus by
∇F L k ,x k y k+1 2 ≤ (p + 1) M p p! y k+1 -x k p 2 .
At the same time, by the condition in step 2 of Algorithm, 1,

2(p + 1)M p p!L k y k+1 -x k p-1 2 1.
Hence,

∇F L k ,x k y k+1 2 ≤ L k 2 y k+1 -x k 2
and we can apply the framework of the previous subsection. What remains is to estimate the growth of A N , which is our next step. By the condition in step 2 of Algorithm, 1,

1 L k y k+1 -x k p-1 2 ≥ θ, (10) 
where θ = p! 4(p+1)Mp . Using this inequality, we prove that

N k=1 A k L p+1 p-1 k-1 ≤ 2R 2 θ -2 p-1 . (11) 
Indeed, from ( 8) and ( 10) we have that

θ 2 p-1 N k=1 A k L p+1 p-1 k-1 ≤ N k=1 A k L 1+ 2 p-1 k-1 1 L k-1 y k -x k-1 p-1 2 2 p-1 = N k=1 A k L k-1 y k -x k-1 2 2 ≤ 2R 2 . ( 12 
)
Further, from (11) it follows that

N k=1 1 L k-1 ≥ θ 1 p+1 (2R 2 ) p-1 2(p+1) N k=1 A p-1 3p+1 k 3p+1 2(p+1) . ( 13 
)
To prove that, let us introduce new variables z k = 1 L k-1 and consider the following optimization problem to find the worst possble value of the l.h.s. in ( 13)

min N k=1 z k s.t. N k=1 A k z -γ k ≤ C, (14) 
where in accordance with (11)

γ = 2 p + 1 p -1 , C = 2R 2 θ -2 p-1 .
Since the objective and constraints are separable, this problem can be solved explicitly by the Lagrange principle

z k =   1 C N j=1 A 1 γ+1 j   1/γ A 1 γ+1 k . Hence, min N k=1 A k z -γ k ≤C N k=1 z k = 1 C 1/γ N k=1 A 1 γ+1 k γ+1 γ
.

From this inequality, ( 9) and ( 13), we have

A N ≥ 1 4 θ 2 p+1 (2R 2 ) p-1 p+1 N k=1 A p-1 3p+1 k 3p+1 p+1 . ( 15 
)
From this inequality, we obtain that there exists a number c such that, for all N ≥ 0,

A N ≥ 1 cM p R p-1 N 3p+1 2 . ( 16 
)
The derivation of exact value of the constant c can be found in Lemma 5 in Appendix. This finishes the proof.

Implementation details

First of all, Theorem 1 in [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF] says that, by the appropriate choice M = pM p in (3), the subproblem for finding y k+1 in step 2 of Algorithm 1 is convex and, thus is tractable. Moreover, for p = 2 this step corresponds to the step of cubic regularized Newton method of [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF] and, as it is shown there, can be computed with the same complexity as solving a linear system. For the case p = 3, [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF] showed that this step can be also computed efficiently.

In both cases the complexity of calculating y k+1 is Õ n 2.37 . Let us now discuss the process of finding such L k that the inequality (5) holds. By construction,

y k+1 = arg min y∈R n      p r=0 1 r! ∇ r f x k y -x k , ..., y -x k r + pM p (p + 1)! y -x k p+1 2 + L k 2 y -x k 2 2      .
This problem is strongly convex and, thus, has a unique solution for each L k > 0. Hence, y k+1 is uniquely defined by L k . At the same time, if L k → 0, y k+1 → ỹk with ỹk ∈ Arg min

y∈R n      p r=0 1 r! ∇ r f x k y -x k , ..., y -x k r + pM p (p + 1)! y -x k p+1 2     
being a fixed point. Whence,

2(p + 1)M p p!L k y k+1 -x k p-1 2 → +∞.
On the other hand, if L k → +∞, y k+1 → x k and

2(p + 1)M p p!L k y k+1 -x k p-1 2 → 0.
By the continuity of the dependence of y k+1 from L k , we see that there exists such L k that inequality (5) holds. Appropriate value of L k can be found by an extended line-search procedure as in (Monteiro and Svaiter, 2013, Section 7). The details of complexity of the line-search can be found in [START_REF] Jiang | An optimal high-order tensor method for convex optimization[END_REF]; [START_REF] Bubeck | Near-optimal method for highly smooth convex optimization[END_REF], where the authors prove a bound of Õ(1) calls of

T F L k ,x k
p,pMp (x k ) on each iteration.

Extension for Uniformly Convex Case

In this section, we additionally assume that the objective function is uniformly convex of degree q ≥ 2, i.e., there exists σ q > 0 s.t.

f (y) ≥ f (x) + ∇f (x), y -x + σ q q y -x q 2 , ∀x, y ∈ Q. ( 17 
)
We also assume that q ≤ p + 1. As a corollary,

f (y) ≥ f (x * ) + σ q q y -x * q 2 , ∀y ∈ Q, (18) 
where x * is a solution to problem (1). We show, how the restart technique can be used to accelerate Algorithm 1 under this additional assumption.

Algorithm 3 Restarted Optimal Tensor Method

Input: p, M p , q, σ q , z 0 , ∆ 0 s.t. f (z 0 ) -f * ≤ ∆ 0 . 1: for k = 0, 1, ... do 2: Set ∆ k = ∆ 0 • 2 -k and N k = max             2cM p q p+1 q σ p+1 q q ∆ p+1-q q k   2 3p+1      , 1      . (19) 3:
Set z k+1 = y N k as the output of Algorithm 1 started from z k and run for N k steps.

4:

Set k = k + 1. 5: end for Output: z k .

Theorem 4 Let sequence z k , k ≥ 0 be generated by Algorithm 3. Then

σ q q z k -x * q 2 ≤ f (z k ) -f * ≤ ∆ 0 • 2 -k ,
and the total number of steps of Algorithm 1 is bounded by (c is defined in (16))

2cq p+1 q 2 3p+1 M 2 3p+1 p σ 2(p+1) q(3p+1) q (∆ 0 ) 2(p+1-q) q(3p+1) • k i=0 2 -i 2(p+1-q) q(3p+1) + k.
Proof Let us prove the first statement of the Theorem by induction. For k = 0 it holds. If it holds for some k ≥ 0, by the choice of N k , we have that

cM p N 3p+1 2 k q∆ k σ q p+1 q ≤ ∆ k 2 .
By ( 18),

z k -x * p+1 2 ≤ q(f (z k ) -f * ) σ q p+1 q ≤ q∆ k σ q p+1 q
since, by our assumption, q ≤ p + 1. Combining the above two inequalities and Theorem 1, we obtain

f (z k+1 ) -f * ≤ cM p z k -x * p+1 2 N 3p+1 2 k ≤ ∆ k 2 = ∆ k+1 .
It remains to bound the total number of steps of Algorithm 1. Denote c = 2cq

p+1 q 2 3p+1 . k i=0 N i ≤ c M 2 3p+1 p σ 2(p+1) q(3p+1) q k i=0 (∆ 0 • 2 -i ) 2(p+1-q) q(3p+1) + k ≤ c M 2 3p+1 p σ 2(p+1) q(3p+1) q (∆ 0 ) 2(p+1-q) q(3p+1) • k i=0 2 -i 2(p+1-q) q(3p+1) + k.
Let us make several remarks on the complexity of the restarted scheme in different settings. It is easy to see from Theorem 4 that, to achieve an accuracy ε, i.e. to find a point x s.t. f (x)f * ≤ ε, the number of tensor steps in Algorithm 3 is

O   M 2 3p+1 p σ 2(p+1) q(3p+1) q (∆ 0 ) 2(p+1-q) q(3p+1) + log 2 ∆ 0 ε   , q < p+1, and O     M 2 3p+1 p σ 2(p+1) q(3p+1) q + 1   log 2 ∆ 0 ε   , q = p+1.
Theorem 4 suggests a natural generalization of first-and second-order condition number [START_REF] Yu | Accelerating the cubic regularization of newton's method on convex problems[END_REF]. If f is such that q = p+1, then the complexity of Algorithm 3 depends only logarithmically on the starting point and is proportional to (γ p ) 2 3p+1 , where γ p = Mp σ p+1 is the p-th order condition number. Unfortunately, if q < p + 1, the complexity depends polinomially on the initial objective residual ∆ 0 , which, in general, is not controlled.

An interesting special case is when q = 2 and p ≥ 2, and, as a consequence, q < p + 1. As it can be seen from Theorem 2 (see also [START_REF] Bubeck | Near-optimal method for highly smooth convex optimization[END_REF]), the sequence, generated by Algorithm 1 is bounded by some R = O( x 0x * 2 ). Hence, the constant M 2 can be estimated as M 2 ≤ M p R p-2 . At the same time, in (Nesterov, 2008, Sect.6), it is shown that the Cubic regularized Newton method [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF] has the region of quadratic convergence given by {x :

f (x) -f * ≤ σ 2 2 2M 2 2 ≤ σ 2 2 2M 2 p R 2(p-2) }. To enter this region, Algorithm 3 requires O   M 2 3p+1 p σ p+1 3p+1 2 (∆ 0 ) p-1 3p+1 + log 2 ∆ 0 M 2 p R 2(p-2) σ 2 2   = O   M 2 3p+1 p σ p+1 3p+1 2 (∆ 0 ) p-1 3p+1 + log 2 M 2 p ∆ p-1 0 σ p 2   , (20) 
where we used inequality R 2 ≤ 2∆ 0 σ 2 , which follows from (18). After entering the region of quadratic convergence, Algorithm 3 can be switched to the Cubic regularized Newton method [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF], which has final stage complexity, (Nesterov and Polyak, 2006, Sect. 6)

O log 3/2 log 4 σ 3 2 M 2 2 ε = O log 3/2 log 4 σ 3 2 M 2 p R 2(p-2) ε .
Summing this inequality and ( 20) we obtain the total complexity of this switching procedure to obtain small accuracy ε. Note, that the second term in ( 20) is typically dominated by the first one, so we can ignore it without loss of generality.

Finally, let us compare our upper bound with known lower bounds. For the case p = 1, q = 2, our complexity bound coincides with lower bound for first-order methods [START_REF] Nemirovsky | Problem Complexity and Method Efficiency in Optimization[END_REF]; [START_REF] Nesterov | Introductory Lectures on Convex Optimization: a basic course[END_REF]. [START_REF] Arjevani | Oracle complexity of second-order methods for smooth convex optimization[END_REF] propose lower bounds for second-order methods for the case p = 2, q = 2 and our complexity bound coincides with their lower bound up to a change of D = ∆ 0 σ 2 , which is natural as, in this case f is strongly convex.

Numerical Analysis

In this section, we analyze and compare the performance of Algorithm 1 with the accelerated tensor method proposed in Nesterov ( 2018).

We study the numerical performance for two classes of functions. Initially, an universal parametric family of objective functions, which are difficult for all tensor methods Nesterov (2018) defined as

f m (x) = η p+1 (A m x) -x 1 , (21) 
where, for integer parameter p ≥ 1,

η p+1 (x) = 1 p+1 n i=1 |x i | p+1 , 2 ≤ m ≤ n, x ∈ R n , A m is the n × n block diagonal matrix: A m = U m 0 0 I n-m , with U m =        1 -1 0 . . . 0 0 1 -1 . . . 0 . . . . . . . . . . . . 0 0 . . . 1 -1 0 0 . . . 0 1        , (22) 
and I n is the identity n × n-matrix. For a detailed description of the high-order derivatives of this class of functions, and its optimality properties see [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF].

Figure 1 shows the normalized optimality gap of the iterations generated by the accelerated tensor method from [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF] in Figure1(a), and Algorithm 1 in Figure1(b). We denote the minimum function value as f * . For both results we have used p = 3, and n = k = {5, 10, 15, 20, 25}. These numerical results show that Algorithm 1 requires a much smaller number of iterations than the accelerated tensor method from [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF] to reach the same optimality gap, namely 1 • 10 -15 , for the class of "bad" functions described in [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF]. For example, for the case where n = k = 25, Algorithm 1 has reached the desired accuracy in about 100 iterations, while the accelerated tensor method requires about 1 • 10 4 . 

Iterations

|f (x k )-f * | |f (x 1 )-f * | Algorithm 1 n = k = 5 n = k = 10 n = k = 15 n = k = 20 n = k = 25 (b)
Figure 1: A performance comparison between the accelerated tensor method in Nesterov (2018) (shown in (a)) and Algorithm 1 (shown in (b)). We minimize an instance of the family of functions in ( 21) with p = 3 and various values of dimension n and k. Note that the x-axis scaling on both figures is different.

As a second set of numerical results we study the performance of the proposed method for the non-regularized logistic regression problem. For this problem we are given a set of d data pairs {y i , w i } for 1 ≤ i ≤ d, where y i ∈ {1, -1} is the class label of object i, and w i ∈ R n is the set of features of object i. We are interested in finding a vector x that solves the following optimization problem

1 d d i=1 ln 1 + exp -y i w i , x → min x∈R n . (23) 
Figure 2 shows the simulation results for the logistic regression problem in (23) for various datasets. Similarly as in Figure 1, we compare the performance of Algorithm 1, and the accelerated tensor method in [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF]. In Figure 2(a) and Figure 2(b), we generate synthetic data, where, initially we define a vector x ∈ [-1, 1] with every entry is chosen uniformly at random. The set of features for each i, i.e., w i ∈ [-1, 1] n has also every entry chosen uniformly at random, finally each label is computed as y i = sign( w i , x ). For Figure 2 For the logistic regression problem, we don't have access to the optimal value function in general, thus, we plot only the cost function evaluated at the current iterate. As expected by the theoretic results, Algorithm 1 requires one order of magnitude less iterations than the accelerated tensor method from [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF] to achieve the same function value.

In Appendix B, we numerically compare the performance of the accelerated tensor method from [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF] for p = 2 and p = 3, as well as its accelerated and non-accelerated versions. (Nesterov,2018) Algorithm 1 In Figure 4, we consider the behaviour of the same set of methods as in Figure 3, but for logistic regression problem defined in (23) on Covertype dataset [START_REF] Dheeru | UCI machine learning repository[END_REF]. And again, we notice that in both cases non-accelerated version works better in our experiments First of all, we point out that tensor methods in general are non-trivial in implementation, so, it is interesting direction of the future work to get better implementation. Secondly, we conjecture that slow convergence that we see in our experiments is because of large M p that we use. Due to tuning of the parameters one can obtain better convergence in practice.

  Figure2shows the simulation results for the logistic regression problem in (23) for various datasets. Similarly as in Figure1, we compare the performance of Algorithm 1, and the accelerated tensor method in[START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF]. In Figure2(a) and Figure2(b), we generate synthetic data, where, initially we define a vector x ∈ [-1, 1] with every entry is chosen uniformly at random. The set of features for each i, i.e., w i ∈ [-1, 1] n has also every entry chosen uniformly at random, finally each label is computed as y i = sign( w i , x ). For Figure2(a) we set n = 10 and d = 100, while in Figure 2(b) we set n = 100 and d = 1000. Figure 2(c) uses the mushroom dataset (n = 8124 and d = 112) Dheeru and Karra Taniskidou (2017), and Figure 2(d) uses the a9a dataset (n = 32561 and d = 123) Dheeru and Karra Taniskidou (2017).For the logistic regression problem, we don't have access to the optimal value function in general, thus, we plot only the cost function evaluated at the current iterate. As expected by the theoretic results, Algorithm 1 requires one order of magnitude less iterations than the accelerated tensor method from[START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF] to achieve the same function value.In Appendix B, we numerically compare the performance of the accelerated tensor method from[START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF] for p = 2 and p = 3, as well as its accelerated and non-accelerated versions.

Figure 2 :

 2 Figure 2: Performance comparison for the non-regularized logistic regression problem between the accelerated tensor method from Nesterov (2018) and Algorithm 1. (a) Uses synthetic data with n = 10 and d = 100, (b) uses synthetic data with n = 100 and d = 1000, (c) uses the mushroom dataset (d = 8124 and n = 112) Dheeru and Karra Taniskidou (2017), and (d) uses the a9a dataset (d = 32561 and n = 123) Dheeru and Karra Taniskidou (2017).

Acknowledgments

The authors are grateful to Yurii Nesterov for fruitful discussions. The work of A. Gasnikov was supported by RFBR 18-29-03071 mk and was prepared within the framework of the HSE University Basic Research Program and funded by the Russian Academic Excellence Project '5-100', the work of P. Dvurechensky and E. Vorontsova was supported by RFBR 18-31-20005 mol-a-ved and the work of E. Gorbunov was supported by the grant of Russian's President MD-1320MD- .2018.1 .1

Optimal Tensor Methods in Smooth Convex and Uniformly Convex Optimization: Supplementary Material Appendix A. Technical lemmas Lemma 5 Consider the sequence {A k } k≥0 of non-negative numbers such that

where p ≥ 3, θ = p! 4(p+1)Mp and M p , R > 0. Then for all N ≥ 0 we have

where

Proof We prove (25) by induction. For k = 1 we have

.

The last inequality implies (25) for p ≥ 3. Now let us assume that for all k ≤ N inequality (25) holds and N ≥ 1. Next we will establish (25) for k = N + 1. We have

.

If N > 1 we can write

x is convex and, as a consequence, we get

Using this fact we continue:

For all N > 1 we have

.

From this and ( 28) we obtain that for all N ≥ 1

It remains to show that (26) implies

which is exactly what we have in ( 26).

Appendix B. Comparison of the accelerated tensor method from Nesterov (2018) for p = 2 and p = 3.

In this appendix, we numerically compare the performance of the accelerated tensor method proposed in [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF], for p = 2 and p = 3. We also compare the accelerated and nonaccelerated version of this method. Similarly as in Figure 1 and Figure 2, we present the numerical results for the class of bad functions defined in ( 21) and one instance of the logistic regression problem.

In Figure 3, we compare the behavior of the following methods: 1) tensor method Nesterov (2018) for p = 3; 2) accelerated tensor method Nesterov (2018) for p = 3; 3) tensor method Nesterov (2018) for p = 2; 4) accelerated tensor method [START_REF] Nesterov | Implementable tensor methods in unconstrained convex optimization[END_REF] for p = 2. Again, the optimal function value is denoted by f * . Interestingly, we obtain that the non-accelerated method outperforms the accelerated method for the first m iterations. Since Theorem 4 from Nesterov (2018) works only for k ≤ m we don't study the behaviour of the methods for larger number of iterations. Even in this simple setting it is still non-trivial how to implement tensor methods for such bad examples of functions.