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Wildlife that exploit human-made habitats hosts and spreads bacterial pathogens. this shapes the 
epidemiology of infectious diseases and facilitates pathogen spill-over between wildlife and humans. 
this is a global problem, yet little is known about the dissemination potential of pathogen-infected 
animals. By combining molecular pathogen diagnosis with Gps tracking of pathogen-infected gulls, we 
show how this knowledge gap could be filled at regional scales. Specifically, we generated pathogen 
risk maps of Salmonella, Campylobacter and Chlamydia based on the spatial movements of pathogen-
infected yellow-legged gulls (Larus michahellis) equipped with Gps recorders. Also, crossing this spatial 
information with habitat information, we identified critical habitats for the potential transmission of 
these bacteria in southern europe. the use of human-made habitats by infected-gulls could potentially 
increase the potential risk of direct and indirect bidirectional transmission of pathogens between 
humans and wildlife. Our findings show that pathogen-infected wildlife equipped with GPS recorders 
can provide accurate information on the spatial spread risk for zoonotic bacteria. Integration of Gps-
tracking with classical epidemiological approaches may help to improve zoonosis surveillance and 
control programs.

Wild animals host and spread pathogens, thereby shaping the epidemiology of infectious diseases1–3. This is par-
ticularly relevant in human-transformed landscapes, where opportunistic species reach high densities associ-
ated with the exploitation of anthropogenic food sources that could carry pathogenic bacteria4–7. This facilitates 
pathogen spill-over between wildlife and humans, both ways, and there are concerns that this may facilitate the 
evolution of new zoonotic pathogens6,8–10. Notably, urban gulls threaten public health because they shed bacterial 
pathogens, antibiotic-resistant bacteria, and viruses5,11–13. This has become a public health problem, yet little is 
known about how gulls spread zoonoses in space and time5,13,14. The lack of information on the dissemination 
process of zoonotic pathogens weakens risk assessments and management plans15. Specifically, spatially-explicit 
wildlife epidemiology is missing from existing zoonosis surveillance and control actions, such as the Zoonosis 
Directive of the European Union16 and the Foodborne Diseases Active Surveillance Network in the USA17.

We determined how this gap could be filled at a regional scale, by coupling conventional pathogen diagnosis 
in gulls with GPS-tracking of bird movements using miniature electronic tags attached to infected individuals. 
This allows the compilation of pathogen risk maps and the identification of critical habitats, as we show for 
yellow-legged gulls (Larus michahellis) in southern Spain. Due to its scavenger habits, this gull has been reported 
as a source and reservoir of zoonotic pathogens18,19. We GPS-tracked 14 birds that tested positive for one of 
three major zoonotic bacteria (five Salmonella-infected, five Campylobacter-infected and four Chlamydia-infected 
gulls). These bacteria are leading causes of zoonotic diseases in developed and developing countries17,20, and 
their incidence is increasing, even in countries with adequate public health systems. For example, Salmonella and 
Campylobacter cause the most common enteric zoonoses in the European Union, with 94,530 and 246,307 human 
clinical infections in 2016, respectively20. In the case of Chlamydia, this bacterium could affect the respiratory 
system of humans, wildlife and domestic animals21.
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Results and Discussion
Cloacal swabs revealed that within the 19 GPS-tracked individuals, 37% (n = 5), 31% (n = 5) and 25% (n = 4) were 
positive for Salmonella, Campylobacter and Chlamydia, respectively, with no co-infections recorded. Previous 
studies found similar infection rates18,22. All movements of the infected-gulls were recorded throughout their 
estimated infection period [30 days23–25]. Pathogen risk maps and critical habitats were modeled by overlapping 
gull resting and foraging positions with accurate high-resolution land cover information26,27. The 27,798 recorded 
GPS locations revealed the greatest bacterial spread risk within 5 km of the breeding colony (Figs 1 and S1 in 
Supplementary Material), without significant differences in the type of habitat used between Salmonella-infected, 
Campylobacter-infected and Chlamydia-infected individuals (Pseudo-F = 0.78, p = 0.67). Risk spatial extent var-
ied between infected-gulls (Fig. S1 in Supplementary Material), from areas close to the breeding colony to some 
infected-gull crossing-over from Spain to Portugal, stressing the importance of international health regulations 
and cooperation in disease control28.

Spread-risk areas overlapped with human-related habitats such as water ponds, fishing port or touristic 
beaches (Figs 2; S2 in Supplementary Material), increasing the risk of direct and indirect disease transmission to 
and from humans10,14 Notably, the use of water reservoirs (built for human use) by infected gulls is likely to lead 
to the contamination of drinking, recreational and irrigation water sources29. For this reason, it is important to 
ensure correct water treatment in this sensible habitats to reduce any potential risk to public health. Similarly, 
the extensive use of fishing ports and fish farms as feeding areas by yellow-legged gulls could point to serious 

Figure 1. (a) Study area showing the terrestrial GPS positions (red circles) of 14 GPS-tracked yellow-legged 
gulls during the 2015 breeding season. (b) Potential risk maps for Salmonella, Campylobacter, and Chlamydia 
together, based on the spatial distribution of pathogen-infected yellow-legged gulls. The white star indicates the 
position of the breeding colony.

Figure 2. Average habitat use of Salmonella-infected, Campylobacter-infected and Chlamydia-infected yellow-
legged gulls GPS-tracked during the 2015 breeding season. Each pathogen is represented by a vertical bar, 
subdivided by the proportion of locations in each habitat (human-related or natural) in relation to all GPS 
positions. The picture shows a group of adult and juvenile yellow-legged gulls feeding on fish refuse at a fishing 
port close to the breeding colony. Photograph taken by Joan Navarro in a fishing port close to the breeding 
colony.
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infection risk for seafood30. Moreover, the use of beaches by infected-gulls (Fig. 2) exposes to pathogen spillover 
tens of thousands of tourists using these recreational habitats14. Moreover, the utilization of wetlands or estuaries 
by infected-gulls enhances the probability for pathogen transmission to other wildlife species31. Garbage dumps 
are also assumed to facilitate the infection of gulls by pathogens present in the human organic garbage, as well 
as cross-species and cross-individual transmission13,18. Yet, this habitat was seldom used by gulls in our study, 
due to its low availability in the area used by tracked-gulls (there are only two dumps in the area surrounding the 
breeding colony27). If garbage dumps are not the main pathogen source, bacterial infection of GPS-tracked gulls 
may be associated with the use of other food sources in decomposition, such as stranded marine animals (notably 
mammals) that could present pathogenic-bacteria, human organic refuse food found in recreational beaches 
or urban parks, or urban prey such as pigeons and rats32,33. Our results strongly indicate the need for integrated 
waste and pest control at a landscape scale.

Overall, our study reveals that pathogen-infected gulls equipped with GPS recorders could provide accurate 
maps of zoonotic spread risk, from the local to regional and international scales. In some circumstances, this 
approach could be scaled up to build an international network, using gulls and other potential vectors of animal 
pathogens34, to achieve large scale zoonotic surveillance and to identify and implement prevention measures 
across potential sensitive habitats. Because this may trigger public concern, we recommend that these measures 
be coupled with environmental mediation work, to ensure that wildlife is not perceived as generally harmful to 
humans35.

Material and Methods
Fieldwork and tracking procedures. Fieldwork was carried out at the natural Biosphere reserve of 
Marismas de Odiel (37°13′N, 6°59′W; southwestern Iberian Peninsula; Fig. 1) in a colony of 250–300 breeding 
pairs of yellow-legged gulls. We deployed high-resolution GPS-trackers recording the positions of individuals at 
5 minute intervals [Uva-Bits loggers36] on 19 breeding gulls more than 4-years of age during their breeding period 
(May 2015). Uva-BiTS loggers can recharge themselves using solar energy, allowing to track the movements of 
birds continuously during several years36. The age of each individual was determined from plumage character-
istics. Incubating birds were caught at the nest using a walk-in wire mesh trap and GPS-trackers were attached 
using a wing harness fixed with a reef knot in the tracheal pit, an attachment method recommended for large 
gulls37. The GPS-tracker and harness weighed less than 1.8% of the body mass of the birds [16 g for the GPS and 
harness, mean ± standard deviation = 1072 ± 110 g for the tracked gulls]26. GPS data were automatically down-
loaded remotely from devices to a field-based laptop when the birds were present at the breeding colony, where 
a network of 3 antennas provided complete coverage of the breeding area36. GPS data was parsed into the central 
database and immediately available in the UvA-BiTS Virtual Lab (www.UvA-BiTS.nl) for visualization and data 
exploration, therefore providing tracking information in real time36. To avoid potential biases associated with 
differences in the number of GPS data between individuals, tracking data were analyzed only when all individuals 
were equipped. We focused our analyses on the 30 days following deployment (from 14-May to 15-June 2015) to 
cover the potential infection period of each tracked pathogen23–25.

All fieldwork was approved by the Ethics Committee of CSIC (Ref: 28-04-15-237), in accordance with the 
Spanish and EU legislation on the protection of animals used for scientific purposes.

pathogen determination. Cloacal swabs from each GPS-tracked gull were collected and placed in PBS 
medium (Deltalab, Barcelona, Spain), and stored frozen at −80 °C. The detection of each pathogen was performed 
in the Ecophysiology Laboratory of the Estación Biológica de Doñana CSIC (http://ebd.csic.es/lef/web/) using 
real-time PCR assays for each bacterial genus (Salmonella, Campylobacter and Chlamydia) following established 
protocols38–40. Before each PCR assay, DNA was extracted from each cloacal swab using a commercial DNA puri-
fication kit (Promega Maxwell®). CT values of 40 were used as cut-off points. As we used non-specific PCR prim-
ers, we only detected the genus of the pathogen. We selected these three bacteria because they are leading causes 
of zoonotic enteric diseases (Salmonella and Campylobacter) and respiratory diseases (Chlamydia) in developed 
and developing countries, affecting humans, wildlife and domestic animals20,21. The primers for Salmonella were 
able to detect 99.4% of 630 strains belonging to over 100 serovars40. The primers for Campylobacter successfully 
amplify C. jejuni and C. coli, but not other Campylobacter species. The primers for Chlamydia and Chlamydophila 
successfully detect the nine known species for these genus. However, as we only evaluate the presence of these 
bacteria at genus level, we unknown if all individuals infected with Salmonella, Campylobacter or Chlamydia are 
really infected with pathogens that can also infect humans.

potential pathogen risk maps and habitat use. We only considered locations recorded outside the gull 
breeding colony (using a radius of 500 m around each nest. see26). Further, we assumed that gulls mainly shed 
pathogens to the environment through their feces. Consequently, a high risk of infection was assumed to occur 
within feeding and resting areas. Therefore, we removed all locations associated with gull travelling behavior 
[speed >4 km·h−1]26 and those location on the sea. Habitat use was assigned to each gull location by overlapping 
locations with land cover information. High resolution information on land cover was obtained from the pro-
gram SIOSE (Soil Information System of Spain, Junta de Andalucía, last update 2013) and geographical references 
of waste dumps from the Spatial Reference Databases of Andalucía (DERA, last update 21/02/2014). This habitat 
classification was subsequently visually reviewed using the most recent satellite images offered by Google Earth 
V 7.1.2.2041 at a 0.5 m spatial resolution. All GPS foraging locations were finally classified into eleven categories: 
Estuary, wetland, touristic beach, natural beach, fishing port, salt mine, fish farm, water pond, agricultural area, 
urban area and garbage dump. Pathogen risk maps were constructed on the basis of the current distribution of 
GPS-tracked gulls infected by each pathogen. The transmission risk was estimated from the number of locations 
of infected gulls collected on a spatial grid of 750 × 750 m over the entire study area. Differences in habitat use (%) 
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between Salmonella-infected, Campylobacter-infected and Chlamydia-infected yellow-legged gulls were tested 
using one way semiparametric permutation multivariate analyses of variance tests (PERMANOVA tests) on the 
Euclidean distance matrix41. PERMANOVA allows for the analysis of statistical designs without the constraints of 
multivariate normality, homoscedasticity and greater number of variables than sampling units. The method cal-
culates a pseudo-F-statistic directly analogous to the traditional F-statistic for ANOVA tests, using permutation 
procedures to obtain P-values for each term in the model41.

Data Availability
All data are available in a central PostgreSQL database at UvA-BiTS (http://www.uva-bits.nl/virtual-lab).
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