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Abstract

Almost 50 million people worldwide are affected by Alzheimer’s disease (AD), the most common neurodegenerative disorder.
Development of disease-modifying therapies would benefit from reliable, non-invasive positron emission tomography (PET)
biomarkers for early diagnosis, monitoring of disease progression, and assessment of therapeutic effects. Traditionally, PET
ligands have been based on small molecules that, with the right properties, can penetrate the blood-brain barrier (BBB) and
visualize targets in the brain. Recently a new class of PET ligands based on antibodies have emerged, mainly in applications
related to cancer. While antibodies have advantages such as high specificity and affinity, their passage across the BBB is limited.
Thus, to be used as brain PET ligands, antibodies need to be modified for active transport into the brain. Here, we review the
development of radioligands based on antibodies for visualization of intrabrain targets. We focus on antibodies modified into a
bispecific format, with the capacity to undergo transferrin receptor 1 (TfR1)-mediated transcytosis to enter the brain and access
pathological proteins, e.g. amyloid-beta. A number of such antibody ligands have been developed, displaying differences in brain
uptake, pharmacokinetics, and ability to bind and visualize the target in the brain of transgenic mice. Potential pathological
changes related to neurodegeneration, e.g. misfolded proteins and neuroinflammation, are suggested as future targets for this
novel type of radioligand. Challenges are also discussed, such as the temporal match of radionuclide half-life with the ligand’s
pharmacokinetic profile and translation to human use. In conclusion, brain PET imaging using bispecific antibodies, modified for
receptor-mediated transcytosis across the BBB, is a promising method for specifically visualizing molecules in the brain that are
difficult to target with traditional small molecule ligands.

Keywords Transferrinreceptor 1 (TfR1)-mediated transcytosis - Alzheimer’s disease (AD) - Amyloid-3 (Af3) - Antibody - Blood—
brain barrier (BBB) - Positron emission tomography (PET)

Introduction

Positron emission tomography (PET) is a non-invasive, quan-
titative, functional imaging method. Clinically, PET is used to
aid diagnosis, especially in cancer, where the radioactive glu-
cose analogue ['*F]FDG is used to localize primary tumours
and metastases. PET has also become an important tool for
diagnosis of brain disorders, since naturally it is difficult to
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obtain biosamples from the brain. Further, PET is an attractive
method in translational research and drug development, as the
same experiments can be performed in vivo in both animals
and humans, and it allows for repeated investigations in one
subject.

The main hurdle for the delivery of drugs (and
radioligands) to the brain, irrespective of their size, is the
blood-brain barrier (BBB), comprising tightly connected en-
dothelial cells. Traditionally, PET radioligands for the central
nervous system (CNS) have been based on small “drug-like”
molecules preferably labelled with clinically compatible
positron-emitting radionuclides such as carbon-11 (*'C) or
fluorine-18 (*®F). Radioligands for brain imaging have to be
fairly lipophilic to be able to pass through the BBB into the
brain parenchyma. Unfortunately, increased lipophilicity also
increases nonspecific distribution into the lipophilic brain
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tissue. This may lead to a poor specific-to-nonspecific PET
signal. Further, and especially relevant in proteopathies such
as Alzheimer’s disease (AD) and Parkinson’s disease (PD), it
is unlikely that small-molecule radioligands could discrimi-
nate between different aggregation forms of a protein or pro-
teins with similar fibrillary structures. Thus, in line with the
shift in therapeutic focus from small-molecule drugs to bio-
logics, antibodies or fragments thereof could turn out to be a
completely novel class of neuroPET radioligands and could be
used for highly specific PET imaging in the CNS, including
imaging of target proteins for which radioligands are lacking
today.

Antibody transport across the blood-brain
barrier

Radioligands based on antibodies or other proteins have al-
ready been introduced for peripheral targets related to cancer
diagnostics and theranostics, including some applications in
clinical use as well [1, 2]. However, antibodies are large mol-
ecules, displaying highly restrictive BBB transcytosis. It has
been reported that only 0.1% of peripherally administered
antibody reaches the brain [3, 4], and it has even been
questioned whether antibodies penetrate the brain parenchy-
ma at all, or whether antibody concentrations measured in the
brain rather reflect transport from the blood into the cerebro-
spinal fluid (CSF) [5]. Thus, antibodies and other proteins will
most likely have to be specifically engineered for facilitated
transport across the BBB to enable their use as PET
radioligands within the CNS.

Carrier-mediated transporters at the BBB have been de-
scribed for essential compounds such as glucose and amino
acids, while insulin and transferrin (Tf) are transported into the
brain with receptor-mediated transcytosis (RMT). Especially
the transferrin receptor (TfR) has been used to increase trans-
port of antibody-based therapeutics across the BBB. This has
in recent years proven to be a successful strategy in several
preclinical studies [6-8]. In early clinical studies, the insulin
receptor was utilized for boosting the brain delivery of recom-
binant lysosomal enzyme «-L-iduronidase, aimed at treating
patients with the metabolic disorder mucopolysaccharidosis
(MPS) type 1[9]. Other reported strategies for increasing brain
delivery of antibodies include various binders targeting the
endothelial cell surface protein CD98 [10] and the single-
domain antibody fragment FC5, targeting the transmembrane
protein S0A (TMEMS0A) [11, 12]. The common feature of all
the reported studies is that a binder for the selected BBB
receptor (insulin receptor, TfR, CD9S, etc.) is fused, either
by recombinant expression or chemical conjugation, to the
therapeutic antibody/protein. The generated bispecific protein
or antibody is then expected to bind its BBB receptor and
subsequently, after successful delivery across the BBB,
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interact with its primary intrabrain target (Fig. 1). Several ini-
tiatives are ongoing to find proteins expressed at the BBB that
could act as brain shuttles for therapeutic antibodies or other
biologics [13, 14]. This molecular “Trojan horse” strategy, in
addition to enhancing the concentration of therapeutic bio-
logics in the brain, can be applied to generate bispecific
radioligands. This review will focus on TR binding bispecific
radioligands.

The transferrin receptor

The TfR is found in two different isoforms: TfR1 and TfR2.
TfR1 (also known as cluster of differentiation 71, or CD71) is
expressed in brain endothelial cells, hepatocytes, and erythrocyte
precursors, especially in bone marrow, lung, and other rapidly
dividing cells. TfR2 is only expressed in hepatocytes,
enterocytes of the small intestine, and erythroid cells. Both forms
are expressed as transmembrane glycoproteins composed of two
disulfide-linked monomers joined by two disulfide bonds. Each
monomer binds one holo-transferrin molecule, creating an iron-
T£-TfR complex which enters the cell by endocytosis. In the
endosome, the lower pH of around 5.5 will cause Tf to release
its iron ions, which can subsequently be used by the cell. The
TfR-Tf complex will then be recycled to the cell surface.

A number of antibodies have been generated against TfR1,
among them the monoclonal mouse antibody OX-26 [15] that
binds to the rat TfR1, and rat antibody 8D3 [16] that binds to
the murine TfR1. Initially, OX-26 and 8D3 were developed
for immunohistochemical visualisation of brain capillaries.
However, it was later discovered that the antibodies were also
found in high concentrations in the brain after in vivo systemic

Endothelial cell
of the blood
brain barrier

Fig. 1 Transferrin receptor (TfR)-mediated transcytosis of a bispecific
antibody. The bispecific antibody binds to TfR at the luminal side of
the BBB. TfR transports the bispecific antibody inside an endosome
across the BBB. The bispecific antibody is released on the abluminal
side of the BBB and can then bind to its target (e.g. A3, reactive
astrocytes, microglia) in the brain parenchyma
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administration, and further, that when fused to a protein cargo,
they were able to carry its cargo across the BBB [15, 17, 18].

despite binding to TfR1 [19]. It is debated which
factors govern the ability to induce TfR1 transcytosis.
Some studies have suggested that low/moderate affinity
promotes transcytosis, while high affinity reduces re-
lease from the receptor and leads to lysosomal degrada-
tion [8]. Other studies have suggested that the binding
valency to the TfR1 is of importance, monovalent bind-
ing being more efficient than bivalent binding, which
may cause TfR clustering at the cell surface and intra-
cellular degradation [6]. These theories are not necessar-
ily conflicting, as monovalent binding in general results
in lower affinity (avidity). Yet another feature that may
govern transcytosis efficiency is pH-dependent affinity
to the receptor. Ideally, the antibody should have mod-
erate TfR affinity at neutral pH for optimal engagement
at the cell surface, and low affinity at low pH for re-
lease in the acidic endosome and further transport
across the cell, into the brain. While it has not been
systematically studied and reported, the location of the
TfR binding epitope may also be of importance for an
antibody’s ability to undergo TfR-mediated transcytosis.

Alzheimer’s disease and amyloid-

Insoluble plaques of amyloid-beta (Af3) in the brain of
AD patients can today be visualized with PET using the
thioflavin-T-derived small-molecule radioligand [''C]PIB
(Pittsburgh compound B) that was developed by the
Uppsala University Hospital PET Centre in collabora-
tion with Pittsburgh University in the early 2000s [20].
The introduction of amyloid imaging has been an im-
portant improvement in clinical diagnosis of AD, espe-
cially in cases when the cause of dementia is unclear
[21]. However, [''CJPIB, and all later developed ana-
logues, bind to the beta-sheet structure of insoluble
plaques and give rise to a fairly static signal that does
not correlate well with disease severity during the clin-
ical stages of AD [22, 23]. Further, since [''C]PIB does
not bind to diffuse plaques [24], a form of A3 deposits
that dominates AD pathology in about 5% of AD pa-
tients, there is a substantial risk for a false-negative
diagnosis with [''C]PIB. In addition, it appears that sol-
uble aggregates of A, e.g. protofibrils/oligomers
formed before fibrils (Fig. 2), are involved in the path-
ological process that leads to neuronal degeneration, and
further, that levels of soluble aggregates correlate better
than insoluble plaques with disease severity [25-27].
Thus, efforts today are devoted towards therapeutic
targeting of soluble A, including protofibrils/
oligomers [28], and the development of PET ligands

that can visualize these A species is therefore also of
great interest.

Antibody-based radioligands for imaging
of AB

One attractive feature of antibodies is that they can be gener-
ated to be specific, or selective, for certain aggregation forms
or modifications (truncation, phosphorylation, etc.) of a pro-
tein. A few attempts to develop radioligands based on anti-
bodies, mainly targeting A3, without a specific BBB shuttle
moiety have been described in the literature, although some
have been conjugated to nonspecific BBB modifiers like poly-
ethylene glycol (PEG) [29-33]. While few of the published
articles show PET images or whole brain section ex vivo au-
toradiography, most of them report elevated brain concentra-
tions of AP antibodies in transgenic versus wild-type (WT)
mice. However, the total brain concentration of radiolabelled
antibodies is low or animals are not perfused to exclude the
radioactivity in blood, which makes it difficult to determine
antibody concentrations in the brain parenchyma [30-32].
Fissers and co-workers include images of **Zr-labelled JRF/
ABN/25, a monoclonal antibody directed against full-length
A [29]. The radioligand showed in vitro stability and high
affinity to A3, but ex vivo autoradiography showed that the
radioligand mainly accumulated in local high-intensity de-
posits. This binding pattern has also been observed for other
A-binding antibodies such as 3D6 and mAb158 [7, 34]. Itis
likely that the high-intensity deposits represent radioligand
binding to A3 aggregates in the brain vasculature, i.e. cerebral
amyloid angiopathy (CAA). To enable PET imaging of
intrabrain A3, it is important that the radioligand is able to
access the whole brain parenchyma, as illustrated in Fig. 3.
This is most efficiently achieved by transport across the BBB
in the whole brain capillary network, since diffusion from
potential CAA deposits or areas of broken BBB into the
deeper brain parenchyma is likely to be too slow [35, 36].
The first bispecific antibody-based PET study that took
advantage of TfR1 as a brain shuttle utilized the complete
8D3 antibody chemically fused to a F(ab’), fragment of an
Af3 protofibril-binding antibody, mAb158 (Fig. 5a). Hence,
the TfR1 binding was bivalent and led to a 15-fold increase
in brain concentrations, measured 4 h after administration,
compared with the F(ab’), fragment of the original antibody
[37]. The same study also showed that 8D3 was equally effi-
cient in shuttling a F(ab’), fragment of an antibody without
any intrabrain target, and that the BBB transport took place
both in WT animals and in two different models of AD. Thus,
the study showed that BBB transcytosis per se was not influ-
enced by subsequent binding (or no binding) in the brain
parenchyma. The bispecific antibody was radiolabelled with
1241, and PET images obtained 3 days post-administration,
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Fig. 2 Protein misfolding causes aggregation of monomeric Af3 into
oligomers and protofibrils, which ultimately form insoluble fibrils, i.e.
the main constituent of A} plaques which are characteristic for AD. Of
the soluble species, oligomers/protofibrils are most likely the toxic forms

when unbound radioligand had been cleared, showed an in-
creasing signal intensity with age (i.e. with increasing A3
pathology) in the two AD animal models, while brains of
WT mice were devoid of signal regardless of age (Fig. 4)
[37, 38].

To introduce monovalent TfR binding, fragments of 8D3
have been recombinantly fused with the primary antibody
(Fig. 5). RmAb158-scFv8D3 (Fig. 5b) resembles the original
full-sized mAb158 with an intact Fc domain [39], with two
scFv8D3 fragments attached to each of the IgG light chains.
The short linkers between scFv8D3 and the light chain hinder
simultaneous binding to TfR1 with both scFv8D3, while the
two copies of scFv8D3 increase the chance of binding.
Further, since RmAb158-scFv8D3 is a symmetrical antibody,
it is easier to produce than asymmetrical, bispecific full-sized
IgG-like antibodies that have been described in the literature
[6, 8]. PET imaging showed that ['**I]JRmAb158-scfv8D3
reached considerably higher brain concentrations, resulting
in higher-contrast images compared with ['**I]8D3-F(ab’),-
h158 (Fig. 5a), which binds bivalently to TfR [39]. In subse-
quent studies, smaller bispecific constructs have been used to
promote faster clearance from blood, i.e. a feature that is de-
sired for PET radioligands to minimize the radioactivity in the

Fig. 3 Af pathology visualized in the transgenic (tg-ArcSwe) mouse
brain. Ex vivo autoradiography brain sections isolated 6 days after intra-
venous administration of (a) a bispecific TfR1- and A 3-binding antibody
or (b) an unmodified A 3-binding antibody. The spatial distribution of the
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of AP responsible for neurodegeneration. However, all amyloid PET
ligands today detect fibrillar A{3. The trigger for neuroinflammation is
debated, but both activated microglia and reactive astrocytes are observed
in the AD brain

vascular volume of the brain. These studies showed that a
tribody, based on two scFv158 and a Fab-8D3 [40], with a
size of approximately 110 kDa (Fig. 5c), and a tandem-scFv
based on an scFv3D6 fused to an scFv8D3 [41], with a size of
approximately 58 kDa (Fig. 5d), were more rapidly cleared
from blood than the larger 210 kDa ["**IJRmADb158-scfv8D3,
and allowed for imaging of A3 pathology at an earlier time
point after administration (Fig. Se).

Antibody vs PIB PET

PET imaging with bispecific antibodies has been performed
primarily in two AD mouse models, tg-ArcSwe and tg-Swe
[37, 38, 41], expressing human APP with both the Arctic
(E693G) and Swedish (KM670/671NL) amyloid precursor
protein (APP) mutations or the Swedish mutation alone. Tg-
ArcSwe is characterized by early formation of soluble Af3
aggregates and subsequent formation of dense core plaques,
closely mimicking plaques formed in the human brain, while
tg-Swe has a late-onset pathology, rapid progression, and less
dense plaques [42]. PET imaging with ['>*T]8D3-F(ab’),-h158
and [''C]PIB revealed an intense PET signal with the
antibody-based ligand, but a fairly low signal with [''C]PIB,

bispecific antibody corresponds well with the A340 immunohistochem-
istry shown in (c), while the non-modified antibody is accumulated cen-
trally around the ventricles and in high-intensity deposits
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Fig. 5 Different formats of bispecific, brain-penetrating antibodies used
for PET imaging of A3 pathology in AD transgenic mouse models. a
F(ab’), fragment of humanized A3 protofibril-selective mAb158, chem-
ically coupled to full 8D3 antibody (Mw ~270 kDa). b Recombinant
variant of mAb158 (RmAb158) with scFv8D3 recombinantly fused to
the C terminus of each of the light chains (Mw ~210 kDa). ¢ Tribody
composed of two scFv158 attached to each chain of a Fab-8D3, brought
together by the natural combination of the Fab fragment (Mw ~110 kDa).

which was readily detectable only in aged mice (18 months)
[37] (Fig. 6a). When quantified as standardized uptake value
ratio (SUVR), using cerebellum as reference region,
['2*1]8D3-F(ab’),-h158 showed earlier and better discrimina-
tion between transgenic and WT mice compared with
[''CIPIB (Fig. 6b) [37, 41]. Interestingly, tg-ArcSwe mice,
showing more dense plaque pathology, had higher [''CIPIB
retention than Swe mice, which instead gave a higher signal
with the antibody ligand. This is in line with the two ligands’
binding characteristics, i.e. [''C]PIB requires dense core
plaques, while ['**I]8D3-F(ab’),-h158 binds to diffuse assem-
blies including oligomers and protofibrils. Quantification of
A3 levels in brain tissue from the previously scanned animals

Fig. 4 Sagittal PET images
obtained at 3 days after
administration of the bispecific
radioligand ['**I]8D3-F(ab’),-
h158 in two mouse models of AD
(ArcSwe and Swe) and wild-type
(WT) mice at different ages

1
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d Tandem-scFv composed of scFv3D6 fused via a polypeptide linker to
scFv8D3 (Mw ~58 kDa). e Blood elimination curves of recombinant
antibody ligands (b), (¢), and (d). The dashed red line represents an
approximate antibody blood concentration threshold below which PET
imaging is feasible. From the intersection of each antibody’s blood curve
with the threshold line, there is a projection to a time window where AD
transgenic mice can at the earliest be discriminated from wild-type mice

showed that the ['**T]8D3-F(ab’),-h158 PET signal correlated
closely with protofibril levels, while no correlation was ob-
served with total AP levels (corresponding to plaque load).
The need for dense core plaques for imaging of A3 with
[''C]PIB and analogues has also been shown in other studies.
Snellman and co-workers demonstrated increasing [''C]PIB
signal with age in APP23, a model with compact A3 assem-
blies, while no such trend and very low brain concentrations
were found in Tg2576 mice, a model expressing only the
Swedish mutation and thus characterized by the absence of
dense plaques [43]. Brendel and co-workers conducted a
cross-sectional study with ['®F]florbetaben in four different
AD mouse models and showed large variation in radioligand

%ID/g_brain
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Fig. 6 Comparison of antibody and PIB PET imaging. a Sagittal view of
PET images obtained from 12- and 18-month-old tg-ArcSwe mice 3 days
post-injection of ['**T]8D3-F(ab’),-h158 (upper panel) in comparison
with mice scanned 40-60 min after injection of [''C]PIB (lower panel).
b Quantification of PET images from (a) expressed as standardized

accumulation between the different models, including low ac-
cumulation in two models based on the Swedish mutation:
APPSwe and APP/PS1dE9 [44]. Only one model, PS2APP,
showed SUVRs above 1.1 at the age of 15 months. Further, a
clinical study demonstrated that AD patients with mainly diffuse
pathology were [''CJPIB negative [24]. Taken together this im-
plies that antibody-based PET, but not [''C]PIB, is able to visu-
alize and quantify early formed and diffuse A3 assemblies.

Additional evidence for the sensitivity of antibody PET is
provided by a study where 10-month-old tg-ArcSwe mice
were treated for 3 months with a BACE-1 inhibitor to decrease
A production. PET imaging with the recombinant
["**T)RmADb158-scfv8D3 readily detected reduced Ap levels
in treated compared to non-treated animals, at an age when
[''CIPIB can hardly detect AP [45].

Other pathological changes in need of novel
radioligands

a-Synuclein

Similar to AD, protein misfolding and aggregation is also a
pathological feature in PD. In PD, the presynaptic protein o~
syn initially forms oligomers and later insoluble aggregates.
There are presently no PET ligands available for imaging of
either soluble or insoluble «-syn, and several research
programmes are aimed at developing small-molecule PET li-
gands for oc-syn [46]. The lack of in vivo biomarkers for «-syn
is a major limitation for the development of disease-modifying
treatments for PD, and the Michael J. Fox Foundation (MJFF)
recently announced a $2 million prize to the first team to
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hippocampus (hc), using cerebellum as reference region. Significant dif-
ferences were observed for all regions and ages except for hippocampus
in the 12-month-old animals

develop a viable selective o-syn PET radioligand. A number
of initiatives to develop a radioligand for «-syn are ongoing,
and most of these are based on small molecules. Although
some promising compounds have been presented, one major
hurdle is the cross-reactivity and binding to Af3. Even if the
affinity of a specific compound is much higher for o-syn than
A, the abundance and availability of A3 may be higher.
Thus, it might be difficult to differentiate between an x-syn-
containing brain and an Af3-containing brain, even if A3
levels are low. This may be especially a problem when differ-
ent protein pathologies coexist, which is often the case in older
individuals. In this respect, highly specific antibodies for o-
syn may be a new option for developing radioligands truly
specific for a-syn. One potential challenge is that the majority
of aggregated o-syn in the brain appears to be intracellular,
and thus an additional barrier has to be conquered by the
bispecific antibody in order to reach its primary target.

Microglia and astrocytes

PET imaging of activated microglia and reactive astrocytes
has been used as an indication of neuroinflammation. For
example, a number of PET radioligands have been developed
for the 18-kDa translocator protein (TSPO), which is highly
expressed on activated microglia. However, quantitative inter-
pretation of the PET signal with the second- and third-
generation TSPO PET radioligands is confounded by large
interindividual variability in binding affinity due to a genetic
polymorphism leading to a trimodal distribution, reflecting
high-affinity binders (HABs), low-affinity binders (LABs),
and mixed-affinity binders (MABs) [47]. In addition, TSPO
is also expressed on astrocytes, and hence the TSPO ligands
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are not specific for microglia. Reactive astrocytes, also indic-
ative of neuroinflammation, can be imaged with the PET
radioligand deuterium-L-depreneyl (["'C]DED). [''C]DED
binds to monoamine oxidase-B, primarily found in activated
astrocytes, and although studies indicate that the radioligand
indeed visualizes astrocytosis, its binding differs from that of
other astrocytic markers often used in immunohistochemical
analysis in post-mortem neuropathological studies, such as
glial fibrillary acidic protein (GFAP) [48, 49]. Attempts have
been made to image GFAP with antibody fragments [50], and
myriad well-characterized antibodies for proteins expressed
on microglia and astrocytes have been described in the litera-
ture. Hence, the possibility of engineering these into bispecific
brain-penetrating radioligands is tempting and could poten-
tially allow for “in vivo immunohistochemistry” of classical
ex vivo immunohistochemical targets.

Challenges
TfR transport capacity

One central paradigm of PET is the use of tracer doses that do
not elicit a pharmacological response or occupy a significant
fraction of potential binding sites. The use of doses above true
tracer doses may have an impact on the PET signal, and hence
the interpretation of the study. It is therefore important to es-
timate the capacity of the TfR. For example, a study using
['*IJRmAb158-scfv8D3 showed that, compared with un-
modified ['*°I]JRmADb158, the transport of bispecific
radioligand into the brain was increased almost 100-fold at
tracer doses (0.05 mg/kg), while a tenfold increase was ob-
served at a dose of 10 mg/kg [39]. The blood pharmacokinet-
ics were linear, i.e. the half-life in blood was the same for the
tracer and the pharmacological dose, and did therefore not
contribute to the changed BBB transcytosis efficacy.
Moreover, the study showed that co-administration of full-
sized 8D3, also at a dose of 10 mg/kg, even more efficiently
inhibited transcytosis by reducing the brain uptake of
['*°I]RmAb158-scfv8D3 to threefold more than
['**IJRmADb158. The lower inhibition capacities of
RmAb158-scfv8D3 compared with 8D3 can most likely be
explained by the former compound’s monovalent TfR
binding.

To further understand the TfR transcytosis efficiency in
relation to TfR occupation, brain uptake was investigated at
different intravenously administered doses of RmAb158-
scfv8D3. Doses up to 1 mg/kg had no impact on BBB trans-
port, resulting in brain antibody concentrations of around
1.5% of the injected dose per gram brain tissue at 2 h post-
injection. At higher doses, TfR seemed to be saturated, and the
brain uptake was reduced in a dose-dependent manner
(Fig. 7). While this may be a concern for therapeutic

2.0-
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Fig. 7 Dose vs brain uptake of RmAb158-scFv8D3. Brain antibody
uptake (% of injected dose per gram brain tissue) was measured 2 h
post-injection of RmAb158-scFv8D3 at doses ranging from 0.25 mg/kg
body weight to a high therapeutic dose of 10 mg/kg body weight. While
antibody doses relevant to PET imaging (below 0.5 mg/kg) had no impact
on brain delivery, doses above 1 mg/kg seemed to saturate the TfR trans-
port mechanism, resulting in reduced brain uptake

applications, all PET studies described here were conducted
at antibody doses below 0.5 mg/kg body weight, calculated as
IgG equivalents, i.e. below the limit of TfR saturation.

Radiolabelling

Protein- and antibody-based PET radioligands have tradition-
ally been radiolabelled with radionuclides such as iodine-124
(1241; half-life 4.2 days), zirconium-89 (8QZr; half-life
3.3 days), or gallium-68 (°®*Ga; half-life 68 min). Except for
1241, these radionuclides require the attachment of a chelator
on the antibody/protein backbone before the introduction of
the radionuclide. The instability of the chelators was initially a
major challenge, but new and more stable versions that may
be better suited for clinical use have been introduced [51]. On
the other hand, '**I has not been a preferred alternative due to
its accumulation in the thyroid, resulting in high local expo-
sure. Further, the above-mentioned radionuclides are not ideal
for clinical use due to low fraction of positron decay (26% for
1241 and 23% for ¥Zr—only this fraction of radioactivity is
detected by PET). Also, the high energy of '**I positrons,
which allows them to travel a longer distance in the tissue
before electron annihilation, causes low-resolution PET im-
ages. In contrast, the low-energy positrons from '*F decay
generate PET images with high resolution.

For small-molecule radioligands used clinically, fluorine-
18 (*®F; half-life 110 min) is the first choice for radiolabelling.
However, radiochemistry methods for introducing '*F on
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antibody-based ligands have been lacking. With the increased
interest in protein-based radioligands, increasing efforts have
also been observed when it comes to '*F radiolabelling.
Different strategies involving” click-chemistry”, e.g. Diels-
Alder reaction, have been described [52]; the radiolabelling
is somewhat similar to the above-mentioned chelator
methods, i.e. a two-step process. First, the antibody/protein
is modified by introducing a small-molecule group that in a
second step can react with another small molecule that carries
the '®F. Some methods for direct radiolabelling of amino
acids, e.g. amine groups, with '®F have also been described
[53, 54].

Pharmacokinetics

The radioactivity measured with PET in the brain (or any
tissue of interest) comprises radioactivity in the tissue itself
as well as radioactivity in the blood pool of the tissue. For
example, around 3% of the brain volume is blood [55, 56].
Thus, PET radioligands should be cleared from the blood fair-
ly rapidly to minimize the radioactivity contribution from the
blood pool of the tissue. This is especially important for the
brain and for neuroPET radioligands with limited brain distri-
bution. Full-sized antibodies are generally associated with
long systemic half-life, while a more rapid elimination can
be achieved by modifying antibodies into fragments (Fab,
F(ab’),, scFv). However, even fragments may display half-
lives that are not compatible with clinically preferred radionu-
clides ''C and '®F. In addition, specific and nonspecific bind-
ing to peripheral targets may contribute to the observed half-
life. For example, binding to soluble circulating and
erythrocyte-expressed TfR1 may either prolong or shorten
the circulation time. Although there are limited published da-
ta, it appears that smaller size and lower T{R1 affinity leads to
faster elimination from blood [40, 41]. Hence, studying the
systemic pharmacokinetics of antibody-based ligands is es-
sential before deciding on a labelling strategy. Moreover, to
achieve a high signal-to-noise ratio, unbound ligand must also
be eliminated from the brain within a time frame that matches
the half-life of the radionuclide. Knowledge about clearance
rates and routes of bispecific antibodies from the brain is
sparse, and more research will be required to elucidate wheth-
er brain clearance is passive or mediated by active transport
mechanisms, and whether it is size-dependent.

Translation

Translation from preclinical imaging to clinical imaging is
challenging from many perspectives. In addition to dosimetry
and pharmacokinetics that may differ between different spe-
cies, the actual target under investigation may also be different
although its biological “purpose’” may be the same in different
species. In PET, species differences have been observed for
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both neuroreceptors and transporters at the BBB [57, 58]. The
differences include different density of the target, different
function and different amino acid composition. Limited
knowledge about species-related differences in BBB receptors
that mediate transcytosis, e.g. the TfR1 and the insulin recep-
tor, makes it difficult to predict the brain delivery in humans
based on preclinical data. The murine TfR1 and the human
TfR1 differ in the amino acid sequence at the domain where
the 8D3 antibody binds, resulting in no binding of 8D3 to the
human TfR. However, antibodies binding human TfR1 at the
same domain as 8D3 have been generated and shown to suc-
cessfully shuttle biologics across the in vitro human BBB and
in vivo in monkeys [59, 60]. Attempts to generate species-
independent T{fR1 antibodies, which would aid in translation,
have been described, but with limited success. One exception
is perhaps the generation of variable new antigen receptors
(VNARs) that appear to bind both mTfR1 and hTfR1 [61].
Published data on the capacity of the VNARS to shuttle anti-
body cargos across the BBB is limited, however, and it ap-
pears that the VNARS may be less efficient for BBB transport
of full-sized antibodies compared with smaller fragments.
This is not the case for 8D3. In summary, it appears that
TfR1 can be used in both mice and men, but may require
species-specific TfR1 binders. The expression of TfR1 at the
murine and human BBB has been reported to be similar [5].

Very little data on translatability and species differences
have been reported for CD98 and the TMEMS0A binder
FCS, although they are claimed to be species-independent
[10-12].

Discussion

The development of antibody-based PET ligands for brain
disorders has so far not been feasible, as techniques to facili-
tate large protein delivery to the brain have been lacking. Still,
antibodies have many benefits, particularly their ability to
bind specifically to their target, which is advantageous for
obtaining PET images without background noise caused by
nonspecific binding. Thus, the development of protein engi-
neering strategies to increase antibody concentrations in the
brain may enable a completely new class of radioligands with
no or very low nonspecific binding.

The high affinity and specificity of antibodies are attractive,
especially when specific aggregation forms of a protein are of
interest. This is the case for many misfolded proteins, e.g. A3
and o-syn, for which protein aggregates representing interme-
diate stages in the aggregation pathway is believed to be more
toxic and dynamic than the insoluble end state deposits. In
addition, numerous antibodies have been described for in-
flammation markers on astrocytes and microglia. Generation
of bispecific antibodies able to pass the BBB based on these
well-characterized and frequently used antibodies for
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immunohistochemical analyses could likely lead to novel
in vivo imaging biomarkers.

Although already shown to be successful in the preclinical
setting, the translation into clinical use will require the devel-
opment of new radiochemistry for incorporation of more clin-
ically suitable radionuclides such as '®F. A number of radio-
chemical strategies have been described, but large-scale syn-
thesis and reproducibility has to be improved. However, label-
ling antibodies with '*F, which has a half-life of less than 2 h,
will also require fast clearance of the ligand from blood and of
unbound ligand from the brain. Further research on the phar-
macokinetics of bispecific antibody ligands of different for-
mats is needed to optimize these parameters for clinical
development.

Another challenge is finding species-independent BBB
shuttles, or validated shuttles in higher species. This has to
some extent been accomplished for TfR1, although no
species-independent binders have been proven to be as effi-
cient as current mTfR1 binders. Several large-scale projects
aiming to discover novel shuttles beyond TfR binders are
ongoing.

In conclusion, we have already entered the era of biologics,
both for the periphery and for the CNS, and it is likely that
antibody- or protein-based radioligands will also become an
important class of PET radioligands. A number of preclinical
studies have shown the feasibility of antibody-based imaging
of AP pathology in the brain, and although some hurdles
remain, this novel class of tracers is likely to enter clinical
development within the next few years.
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