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Enhancement and anticipation of the Ioffe-Regel
crossover in amorphous/nanocrystalline composites†

A. Tlili,a V. M. Giordano,∗b‡ Y. M. Beltukov,c P. Desmarchelier,d S. Merabia,b and A.
Tanguye‡

Nanocomposites made of crystalline nanoinclusions embedded in an amorphous matrix are at
the forefront of current research for energy harvesting applications. However, the microscopic
mechanisms leading alternatively to an effectively reduced or enhanced thermal transport still
escape understanding. In this work, we present a molecular dynamics simulation study of model
systems, where for the first time we combine a microscopic investigation of phonon dynamics with
the macroscopic thermal conductivity calculation, for shedding light on thermal transport in these
materials. We clearly show that crystalline nanoinclusions represent a novel scattering source
for vibrational waves, modifying the nature of low energy vibrations and significantly anticipating
the propagative to diffusive crossover (Ioffe-Regel), usually located at energies of few THz in
amorphous materials. Moreover, this crossover position can be tuned by changing the elastic
contrast between nanoinclusions and matrix, and anticipated by a factor as large as 10 for a
harder inclusion. While the propagative contribution to thermal transport is drastically reduced, the
calculated thermal conductivity is not significantly affected in the chosen system, as the diffusive
contribution dominates heat transport when all phonons are thermally populated. These findings
allow finally to understand the panoply of contradictory results reported on thermal transport in
nanocomposites and give clear indications on the characteristics that the parent phases should
have for efficiently reducing heat transport in a nanocomposite.

1 Introduction
Thermal management is one of the most urgent challenges arising
in our modern technological society. Indeed, heat represents al-
most 66% of the energy waste in current processing and technolo-
gies, thus asking for concrete improvements aimed at reducing
heat dissipation and waste, or at converting such heat in another
form of energy1. In the late years, with the aim of positively an-
swering to this challenge, scientists have focused in understand-
ing heat transport in different kinds of materials, for ultimately
controlling it and engineering novel materials able to limit heat
spread and dissipation while keeping other functional properties,
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such as optical or electrical.

Recently, the use of composites made of guest nanoparticles
embedded in a uniform host matrix has arisen as a very promising
approach2. Indeed, many theoretical and experimental studies
have evidenced a strong reduction of the vibrational contribution
to thermal conductivity, which has been understood in terms of
an enhanced phonon scattering due to inclusions, and cannot be
accounted for by standard effective medium theories, although
successful in describing macroscopic composites3–9. Modified ef-
fective medium theories have been recently proposed, able to ac-
count for phonon scattering processes arising on the nanometric
scale both in the matrix and within the nanoinclusions, and have
succeeded in reproducing the results of simulations on the ther-
mal conductivity of nanocomposites and its dependence on in-
terface density10,11. Still, even these models fail in reproducing
exotic phenomena reported by numerical studies, such as the high
energy phonon localization in the intergrain regions12 or their fil-
tering through nanometric inclusions in an amorphous matrix13,
indicating thus that the microscopic mechanisms at play still es-
cape understanding.

Intuitively, one of the key parameters ruling the vibrational en-
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ergy transport in such materials is the contrast of elastic proper-
ties between inclusion and matrix, similar to an impedance mis-
match. The higher the contrast, the stronger the interface scat-
tering on phonons traveling in the matrix. Indeed, it has been
recently reported that no remarkable effect could be observed
in thermal and electric transport properties in a nanocompos-
ite when the elastic and electric properties of the crystalline in-
clusions are too similar to the ones of the matrix14. When the
elastic contrast is significant, instead, contradictory results have
been reported, such as a strong thermal conductivity reduction, as
measured in composites made of Si nanocrystals embedded in a
polystyrene matrix9 or its enhancement beyond normal percola-
tion as simulated in glassy silica with embedded nanocrystalline
inclusions of GaN, both results being at odds with all effective
medium predictions15. It is thus still not understood how the
elastic contrast acts on thermal transport in such systems. To
shed light on this question, it is essential to look directly at the
effect of interfaces and elastic contrast onto the heat carriers, the
phonons. However, until now only very few works have adopted a
microscopic approach for understanding the mechanisms at play,
the majority of the literature on the subject being focused on the
simulation of the thermal conductivity or the interpretation of ex-
perimental data by means of effective medium models.

Here we report a molecular dynamics investigation aimed at
unveiling the role of elastic contrast in amorphous/crystalline
nanocomposites and getting a microscopic understanding of the
effect of nanometric elastic heterogeneities and interfaces on
thermal transport, through the study of phonon dynamics. Such
composites, made of nanocrystalline particles embedded in an
amorphous matrix, are here chosen for their high technological
potential. They offer indeed the opportunity of realizing a ma-
terial with a low glass-like, matrix-dominated, thermal conduc-
tivity, together with good electrical properties, as determined by
the crystalline guest phase through a percolation phenomenon2.
To this purpose, we have investigated a model 3D silicon amor-
phous system, with nanometric Si crystalline inclusions. The elas-
tic contrast has been tuned by modifying the inter-atomic poten-
tial within the inclusion, in such a way that the Young modulus is
the same as in the amorphous matrix in one case, and about five
times larger in a second case.

It is worth reminding here that in amorphous materials, three
dynamical regimes can be identified16,17: i) a low-energy plane-
wave dominated regime, where phonons undergo weak scatter-
ing, insuring a propagative thermal transport ii) a strong scat-
tering regime, above the Ioffe-Regel limit, which identifies the
energy at which wave-packets lifetime has been so reduced that
they cannot be considered propagative plane-waves anymore and
the corresponding phonons are called "diffusons"18. This regime
corresponds to a diffusive transport of vibrational energy. This
definition is the one that we will use in the following when talk-
ing of "diffusive regime", "diffusive transport". The Ioffe-Regel
crossover marks then the end of the propagative in favour of a
diffusive thermal transport. Finally, iii) the Anderson localiza-
tion regime near the mobility edge16,19,20. The question arises
how the presence of interfaces and elastic heterogeneties at the
nanoscale affects these dynamical regimes.

We show here that phonon dynamics is strongly modified in
nanocomposites with and without elastic contrast, leading to a
change in the nature of low energy phonons, significantly antici-
pating the propagative to diffusive crossover and the Ioffe-Regel
limit with respect to the parent amorphous material. Surprisingly,
the calculated thermal conductivity is apparently insensitive to
the elastic contrast, which can be understood in terms of a domi-
nant diffusive thermal transport already in the amorphous matrix.

2 Methods
The system is made of an amorphous silicon matrix where spher-
ical nanoholes are scooped out and filled with fcc crystalline sili-
con of the same density. The amorphous matrix is obtained with
molecular dynamics simulations by quenching very quickly a liq-
uid sample of silicon atoms interacting with the Tersoff poten-
tial21 and initially equilibrated at 3500K. Then a quench is per-
formed with a quenching rate of 1014K/s in the NVT ensemble at
a fixed density ρ = 2.303g/cm3 with a box size of Lb = 60 Å (10
740 atoms), and periodic boundary conditions. An energy mini-
mization is done using overdamped dynamics as soon as the tem-
perature reaches 10K. As reported in22, the Tersoff potential
allows to get a realistic structure, whose pair correlation func-
tion and static structure factor are in agreement with experi-
mental data, which is not the case for the Stillinger-Weber po-
tential23. However, this latter is better suited for the analysis
of the mechanical properties24. For this reason, once the sys-
tem generated, we replace the Tersoff potential by the Stillinger-
Weber for our study. The system is first annealed at 100K for
10 ps, and then the total energy is minimized again to get an
initial amorphous matrix at mechanical equilibrium. Nanoholes
with spherical shapes are then cut in the matrix and filled with
nanospheres cut in a fcc silicon configuration with the same den-
sity ρ = 2.303g/cm3. In order to prevent the large stresses at the
boundaries of the inclusions, atoms with neighbors at distances
below 1 Åare removed, and the nano-composite is again annealed
at 100K for 10ps and quenched.This procedure allows atoms to
readjust enough for avoiding instabilities initiated at the interface
and getting a deeper mechanical equilibrium. Different inclusions
sizes have been compared25. In this work, we focus on the case
of an inclusion radius R = 25 Åthat was found to give rise to the
largest effect on wave packets attenuation25. The corresponding
crystalline volume fraction is thus φ = 30% and the total num-
ber of atoms is close to N = 10 740 in the basic cell. In order to
tune the elastic contrast between inclusions and matrix, we have
artificially increased the rigidity of the nanoinclusions by choos-
ing a larger value for the prefactor Λ of the three-body term23

in the Stillinger-Weber interaction, which is proportional to the
shear modulus16, affecting the transverse sound velocity as

√
Λ.

For silicon it is Λ = 21. We have then kept this value in the ma-
trix, and prepared an inclusion with the same value and another
one with Λ = 100, doubling the transverse velocity with respect
to the matrix: cT (100)/cT (21) = 2.20, while increasing the lon-
gitudinal only by 40% (cL(100)/cL(21) = 1.3816,22). Since only
the impedance ratio matters for sound propagation, we introduce
the rigidity ratio χ = E(100)/E(21) = 4.6 to designate the nano-
composite with the more rigid inclusions and χ = 1 to designate
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Fig. 1 Atomistic model of a nanocomposite made of an amorphous ma-
trix (blue) and crystalline inclusions (green) with radius R = 25 Å and
distance between inclusions Lb = 60 Å (L = 2Lb = 120 Å ). The excitation
of the wave packet is imposed along the red layer.

the sample with Λ = 21 in the matrix and in the inclusions.
In our work, we analyze small vibrations around the equilib-

rium state. The properties of the near-equilibrium vibrations are
determined by the properties of the dynamical matrix in the har-
monic approximation

Miα, jβ =
1

√mim j

∂ 2U
∂ riα ∂ r jβ

. (1)

The numerical calculation of all second derivatives in Eq. (1) for
a large atomic system is a time-consuming procedure. However,
all interatomic potentials have a known analytical form, and the
second derivatives can be calculated analytically. Due to the com-
plicated structure of these latter, we use computer algebra system
SymPy to find their analytical form. To generate the high-efficient
numerical code from the analytical expression we use the Lamb-
dify function. The dynamical matrix M was calculated for the
equilibrium state obtained by molecular dynamics. In order to
calculate the DOS for the given dynamical matrix, we use the
Kernel Polynomial Method (KPM)16,26.

The dynamical structure factor S(q,ω) is obtained from the
spatial and temporal Fourier Transform of the atomic displace-
ments during a Molecular Dynamics run at constant total energy
with random initial velocities on each atom. The method used
to compute S(q,ω) is the same as in13. It allows discriminating
the transverse and the longitudinal components of the dynamical
structure factor. To perform the Spatial Fourier Transform, the
minimum wavevector is qmin = π/L and the maximum wavevec-
tor is qmax = 2π/(1 Å ). The minimum frequency with a physi-
cal meaning is imposed by the size of the system ωmin = cT /L.
It allows defining the duration of the Molecular Dynamics run
trun = 2π/ωmin, while the maximum frequency is related to the
inverse timestep ∆t = 10 f s as ωmax = 2π/∆t.

In order to study the wave packets propagation, we apply a
quasi-monochromatic external pulse to a thin atomic layer be-
tween inclusions. Only the harmonic response is studied here. In
this case, the equation of motion can be written using the dynam-
ical matrix M

üiα (ω, t)+∑
jβ

Miα, jβ u jβ (ω, t) = f exc
iα (ω, t), (2)

where ui =
√

m(ri−Ri) is a scaled displacement of the i-th atom

from the equilibrium position Ri and Miα, jβ is an element of the
dynamical matrix M. The excitation force f exc

iα (ω, t) is the α com-
ponent of a complex excitation force

fexc
i (ω, t) = fL/T exp

(
iωt− t2

2τ2
exc
−

x2
i

2w2

)
. (3)

The width of the excited layer is w = 1 Å and the duration of the
excitation is τexc = 0.36 ps. Such pulse duration is smaller than a
typical phonon lifetime and gives a good enough frequency res-
olution δν ∼ 1/(2πτexc) = 0.4 THz. The direction of the applied
force is defined by fL/T , which is common for all atoms in the
excited layer. The subscript L (or T ) indicates the wave-packet
polarization in case of coherent excitation. In this case, we use fL

in x direction for the longitudinal polarization and fT in y direc-
tion for the transverse one (see Fig. 1).

In order to study the wave packets propagation for different
frequencies we can use the linearity of Eq. 2 and impose an ini-
tial pulse containing all the frequencies. The deconvolution of
the dynamics allows then studying all frequencies using only one
simulation and the Fast Fourier Transform. The details of this
procedure were described in Ref.27. The diffusivity can also be
computed, by measuring the time dependence of the progressive
enlargement of the wave packet with initial random polarizations.
The diffusivity D(ω) is then obtained as the slope in the linear
time dependence of the quantity

1
2

∑i(Ek(i, t)× x2
i )

∑i Ek(i, t)
− 1

2

(
∑i xiEk(i, t)
∑i Ek(i, t)

)2
=

1
2
< (x2−< x >2)>∝ Dt

(4)
where Ek(i, t) is the kinetic energy averaged on the slice located
at xi with width δx = 2 Å.

For better averaging, we use first a system with 8 inclusions
in a periodic box L× L× L (2 inclusions along each side of the
cube), for a total number of atoms 8 times bigger than in the ba-
sic cell. There are 6 possible planes between inclusions (x = 0,
x = L/2 = Lb, y = 0, y = L/2 = Lb, z = 0, and z = L/2 = Lb). We
sequentially use all these planes as the excitation layers and av-
erage the results over them. Using periodic boundary conditions,
this system is repeated a sufficient number of times in the direc-
tion perpendicular to the excitation plane in order to prevent the
reflection of waves at the boundary during the duration of the
simulation.

Finally, we computed the nanocomposite thermal conductivity
kT using equilibrium simulations28–31. The thermal conductivity
has been calculated by the Green-Kubo formula :

kT =
1

3V kBT

∫ +∞

0
〈Jα (t)Jα (0)〉dt (5)

where V is the nanocomposite volume, kB is Boltzmann’s con-
stant, Jα (t) is the instantaneous heat flux vector30 (Einstein sum-
mation convention has been implictly assumed), and the brackets
indicate an ensemble average. NVE simulations (duration 0.25
ns) have been run to sample the heat flux vector every 10 time
steps (time step = 0.5 fs). To obtain good convergence of the
integral of Eq. 5, we have averaged the results over 10 indepen-
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Fig. 2 Panel (a): vibrational density of states for the nanocomposite with
χ = 1 (thick blue line), χ = 4.6 (thin red line) with 30% crystalline vol-
ume fraction, and for a fully amorphous sample from Ref 16 (dotted black
line). While in case of no contrast the DOS is only weakly affected by
the presence of the inclusion, the harder inclusion introduces high en-
ergy vibrational modes. Panel (b): reduced density of states, normalized
by the Debye behavior (ω2) to evidence the Boson Peak at low energy.
Same colors as in panel (a) for the three systems. The presence of the
inclusion causes the growing up of a peak at about 1.7 THz.

dent simulations, for each studied structure. In this way, while
the simulation time is large enough for the thermal conductivity
calculation to converge, the error bar is reduced through the aver-
aging over independent simulations rather than a longer simula-
tion time, which could result in large numerical uncertainties32,33

(see Supplementary Materials for more details). This calculation
has been done using the same atomic configurations as for the
microscopic dynamics simulations, on a single cell with a single
inclusion and periodic conditions, with initial equilibrations at 10
K and also at 300 K.

Before closing this section, it is worth commenting on the
choice of considering only harmonic interactions. Indeed, anhar-
monicity has quite a relevant role in determining thermal trans-
port properties at high temperature. Still, it was shown previously
that it is negligible in amorphous samples at the phonon ener-
gies here concerned34, suggesting thus that the same is true in
nanocomposites with a dominant amorphous component. Con-
cerning all our results from the atomic structure equilibrated at
10 K, we can safely rule out an anharmonic contribution in the
crystalline component as well, and thus in nanocomposites what-
ever the crystalline content. The question arises concerning the
calculation of the thermal conductivity from the configuration
equilibrated at 300 K. We will comment on this point later in the
paper.

3 results
3.1 Density of States and Dynamical Structure Factor
We report in Fig. 2 panel (a) the total vibrational density of states
(DOS) as calculated in the samples with and without elastic con-
trast, together with the DOS of a pure amorphous sample, from

Ref.16. The χ = 1 system presents some differences from the fully
amorphous sample, mostly localized at about 11 and 13.3 THz,
where the DOS is sharper, reminiscent of sharper features in the
crystalline system. As for the χ = 4.6 sample, new high energy
modes appear in the density of states for ω ≥ 20 THz, charac-
teristic of the harder inclusion. The number of modes in the
ω ≤ 20 THz region obviously decreases because of the normaliza-
tion of the DOS, still the relative weight of the modes at around
10 THz becomes more important.
To better inspect the low energy acoustic modes, we report in
panel (b) the reduced density of states, normalized to the Debye
behavior, where the characteristic excess of low energy modes,
the Boson Peak, clearly appears in the amorphous system at
≈4 THz. Interestingly, in both nanocomposites, this region is
strongly affected, leading to the growing up of a low-frequency
peak, at about 1.7 THz, already weakly present in the fully amor-
phous system. As such, the DOS of the nanocomposite reminds of
the one calculated in16 for a weak three-body interaction (param-
eter λ < 21 in the three-body term of the inter-atomic potential).
This low energy peak was identified in that work as correspond-
ing to the first strong minimum of the atomic participation ratio,
i.e. the end of the plane-wave, Debye-like, regime, prior to the
reaching of the Ioffe-Regel transition from propagative to fully
scattered waves. In that work the low energy peak corresponds
to a typical distance between scatterers of ≈ 20 Å , which is com-
parable here to the interparticle distance. Our results point thus
to a larger number of modes implied by the breaking down of the
Debye approximation in both nanocomposites.

To understand how the presence of the nanoinclusions modifies
the individual modes, we have calculated the dynamical structure
factor S(q,ω), as described in section 2. Similarly to what was
done in Damart et al.13, to overcome the resolution limitation
of the simulation, we have convoluted the S(q,ω) with a typical
energy resolution function with a linewidth of ≈ 1.4 meV. The re-
sult of such data treatment is reported in Fig. 3 for modes with
an exchanged momentum smaller than 0.7 Å −1. Like in Damart’s
work, we also find a nice single peak at low-momentum transfers,
which evolves into an envelope of many modes at higher q. How-
ever, while the behavior of the sample χ = 1 closely resembles
the one of the amorphous matrix in Damart et al., in the sam-
ple χ = 4.6 this remains true only for the transverse polarization,
while the breaking down of the single phonon in an envelope of
modes takes place much earlier for the longitudinal polarization.

In order to get a more quantitative understanding, we have fit-
ted these data using a Lorentzian function convoluted with the
instrumental resolution. Where the peak was not single anymore,
a fit with multiple modes has been done. In Fig. 4 we report the
longitudinal and transverse acoustic dispersion obtained in this
way for the nanocomposites, compared with the ones of amor-
phous silicon obtained by Damart et al., using the same simu-
lation technique as well as analysis method13. Where the peak
becomes an envelope, only the center of mass of the envelope
has been reported. Here it can be seen that the acoustic disper-
sion is not affected by the presence of a nanocrystalline inclusion
when there is no elastic contrast, in agreement with what previ-

4 | 1–10Journal Name, [year], [vol.],



Fig. 3 Panels (a)-(b) and (c)-(d) represent the longitudinal and transverse
S(q,ω) calculated in the system without elastic contrast and with elastic
contrast respectively. The intensity has been multiplied by the square of
the phonon energy position for enhancing the high q modes. Different
colors correspond to different wave-vectors: q = 0.1 (blue), 0.2 (black),
0.3 (orange), 0.4 (purple), 0.5 (green), 0.6 (red), 0.7 (violet) Å −1. The
breaking down of the phonon in an envelope of modes and loss of total
intensity clearly appear with the presence of an elastic contrast.

Fig. 4 (a) and (b) report the phonons acoustic dispersion respectively
for the longitudinal and transverse vibrations, up to the largest q at which
an envelope was still visible for the systems χ = 1 (blue filled circles) and
χ = 4.6 (red filled triangles). Data from Damart et al. 13 for the fully amor-
phous system are also reported as black squares. The vertical dotted
line separates the low q region, where a single mode exists, from the
high q region, where the mode breaks in an envelope of modes. In the
single mode region, the symbols correspond to the phonon energy and
their error bar to its broadening, inversely proportional to its lifetime. In
the envelope-region, the symbols correspond to the envelope center of
mass, and the error bar to its broadening, i.e. to the width of the distribu-
tion of modes in which the phonon breaks down.

ously reported and with our results on the DOS. Interestingly, in
the χ = 4.6 sample, despite the different velocities of the modes
within the envelope, the center of mass closely follows the acous-
tic dispersion in the pure amorphous, indicating that the dynam-
ics is globally dominated by the matrix at these wavelengths. This
result is at odds with a prediction based on the Reuss approxima-
tion for the homogenized calculation of the moduli (see Ref.35,36

for the definition), which works well for macroscopic compos-
ites with spherical inclusions. This approximation leads in the
long wavelength limit to an effective longitudinal or shear mod-
ulus Me f f = ( x

Mc
+ 1−x

Ma
)−1, with subscript a or c for amorphous

and crystalline phase, and x the crystalline fraction. Calling va
L/T

the longitudinal/transverse velocity of the amorphous matrix, for
χ = 4.6 and x=30%, we should find vL = 1.11va

L and vT = 1.14va
T .

Such increase is obviously not reproduced by the center of mass
of the envelop, pointing thus to a failure of the effective medium
approach for the description of the dynamic elastic properties in
our nanocomposites at lengthscales smaller than ≈ 6 nm.

In Fig. 4 we report as error bars the phonon broadening when
a single peak exists, and the envelope full width at half maximum
otherwise. From these results, we can safely conclude that the
presence of a harder nanoinclusion hinders the phonon propaga-
tion, the phonon breaking down in an envelope of modes getting
broader and broader as the average energy and wavevector in-
crease.

It is worth reminding here that in pure amorphous silicon16,
the Ioffe-Regel limit is located at 4.5 THz and 12.7 THz for trans-
verse and longitudinal waves respectively, for an exchanged mo-
mentum of 0.73 and 1.0 Å −1. The vibrational modes here re-
ported lie thus all in the propagative regime, suggesting that the
presence of hard nanoinclusions induces an enhanced diffusive
character of phonons, with the anticipation of the Ioffe-Regel cri-
terion validity to lower energies. Interestingly, the breaking down
of the longitudinal phonon shown in Fig. 4(a), while starting at
q ∼ 0.2 Å −1, takes clearly place at q = 0.3 Å −1, i.e. at a wave-
length of ≈ 21 Å , comparable with the inter-particle distance.

3.2 Wave-packets propagation

In order to better understand and confirm the possible change in
the nature of the low energy vibrational modes induced by the
presence of a harder inclusion, we have followed the propaga-
tion of longitudinal and transverse wave-packets generated in the
center of the sample, as explained in section 2. Our results are
directly comparable with the ones reported in27, for a fully amor-
phous silicon system.

Following Ref.27, we calculate the kinetic energy density as a
function of space and time, averaged over an atomic plane per-
pendicular to the wave-packet propagation, of dimensions L2,
where L is the simulation box side:

EL/T (ω,x, t) =
1

2L2 ∑
i
|u̇i

L/T (t)|2δ (x− xi); (6)

where the sum runs over all the atoms i with longitudinal or
transverse velocity u̇i

L/T . The space and time behavior of EL/T
for a given frequency ω allows to understand the propagative or
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Fig. 5 The Longitudinal (a,b) and Transverse (c,d) kinetic energy en-
velope, as calculated in Eq.7, is reported for the system with no elastic
contrast (χ = 1) on the left, and with elastic contrast (χ = 4.6) on the right,
for different frequencies. Each fifth curve is reported as a thicker black
line, and its frequency is indicated (THz). Each n-th curve is multiplied by
0.9n to make an offset along the y-axis for a better visualisation.

diffusive nature of the wave-packet of that frequency. A very con-
venient way for visualizing it consists in calculating the kinetic
energy envelope, by taking the maxima of the kinetic energy den-
sity at all times, thus getting rid of the time dependence:

PL/T (ω,x) = maxt [EL/T (ω, t,x)]; (7)

Depending on the regime (propagative or diffusive), the enve-
lope has different spacial dependencies, ranging from an expo-
nential dependence similar to the Beer-Lambert law for a prop-
agative wave-packet37 to an hyperbolic dependence for a diffu-
sive wave-packet:

Pprop
L/T =

ε0√
πv2τ2

exc
e
−x
l ; (8)

Pdi f f
L/T =

ε0√
2πe

1
x

; (9)

For the derivation of these dependencies, we address the reader
to Ref.27. Here we just say that ε0 represents the total kinetic en-
ergy delivered to the system per unit surface from the excitation
force, τexc is the excitation duration time, and v is the sound veloc-
ity with which the wave-packet moves in the propagative regime.

Figure 5 reports the envelopes for longitudinal and transverse
polarization respectively, and for the two systems, for different
frequencies ω. It is worth underlying that the curves should be
considered only for x ≥ vL/T τexc, due to the finite excitation time

Fig. 6 Same as in Fig. 5, but after normalization by the local density of
states. Thick red (grey) lines show the transition from a propagative to a
diffusive regime.

τexc, i.e. x≥ 2.8 nm and x≥ 1.4 nm for the longitudinal and trans-
verse polarizations respectively13. We have chosen here a rep-
resentation in a logarithmic scale, where the Beer-Lambert law
observed in the propagative regime is a straight line.

From the figure, a perfectly linear - and thus propagative - be-
havior is not easily found, because of the presence, in both sys-
tems, of periodic oscillations in the envelope, more evident in the
case of a strong elastic contrast. These bumps present a period of
6 nm = Lb i.e. the distance between inclusions. They can be as-
sociated to the enhancement of the local density of states in cor-
respondence to the crystalline inclusions. Indeed, the oscillations
are almost fully removed if we normalize the energy envelope by
the spatially resolved density of states (see Supplementary Ma-
terial), as reported in Figure 6. Only at low frequency and high
elastic contrast, the oscillation remains after normalization, with
a maximum energy located now inside the inclusions. The propa-
gation of energy is thus inhomogeneous at low frequency, due to
the different density of states in the matrix and in the inclusions,
and an additional slight pinning of the normalized vibrational en-
ergy within the inclusions.

In Fig. 6 a red thick line identifies the x position at which the
envelope changes from an exponential to a 1/x behavior, marking
thus the traveled distance after which the wave-packet looses its
propagative character and turns to a diffusive motion. Comparing
with fully amorphous Silicon27, we find that already in the system
with no contrast, χ = 1, the diffusive regime fully replaces the
propagative one much earlier, pointing to a Ioffe-Regel cross-over
located at 3 THz for the transverse mode and 4.2 THz for the
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Fig. 7 Thermal conductivity calculated with the Green Kubo method in
the amorphous system and the nanocomposites as a function of the crys-
talline volume fraction φ at 300 K (a) and 10 K (b). Amorphous: green
square, χ = 1: blue circles, χ = 4.6: red triangles. In (a) the EMT pre-
diction is reported as a dashed line. In (b) we report also the thermal
conductivity calculated starting from microscopic dynamics for the amor-
phous (green filled star) and the nanocomposites with φ = 30% and χ = 1
(blue filled star) and χ = 4.6 (red empty star).

longitudinal one, against 4.5 and 12.7 THz in the fully amorphous
system.

Looking now to the χ = 4.6 system, the crossover is less dis-
tinguishable, so the transition line is much shorter. At low fre-
quency the energy oscillations dominate the behavior: here the
wave-packet is strongly scattered by the inclusions, which gives
rise to an energy localization between them. It is important to
specify that this is not a localization in the sense of the Ander-
son definition: by localization here we merely mean that there
is a majority of kinetic energy between the inclusions and a mi-
nority within them, due to the lower density of vibrational states
inside the hard inclusions at low frequencies. The propagative
to diffusive regime crossover is now definitely anticipated, the
diffusive regime taking it over at 2.2 and 3 THz for transverse
and longitudinal wave-packets respectively. The phase space for
propagative modes is thus reduced by a factor of 2 for transverse
vibrations and 4 for the longitudinal ones, suggesting a strong
thermal conductivity reduction in this system. This would indeed
be the case if most of the heat were carried by the propagative
acoustic modes, as in crystalline materials.

4 Thermal conductivity
In order to understand the effects of an anticipated Ioffe-Regel
crossover on thermal transport, we have calculated the thermal
conductivity at room temperature for both our nanocomposites
as a function of the inclusion volume fraction, φ = Vi

L3 , with Vi the
total volume filled by the inclusions and L3 the simulation box
size.

Results are reported in Fig. 7. First of all, we notice that
the value obtained for the fully amorphous sample at 300 K,
kam

T = 1.7± 0.2 W/mK, is in good agreement with literature38,39

for such system sizes40. As for the composites, two points are
here to be commented: the volume fraction and the elastic con-
trast dependence. At 300 K, the thermal conductivity in the
nanocomposites increases with the crystalline volume fraction,

which can be expected due to the introduction of larger and larger
well-conducting crystalline regions when the interface thermal
resistance (Kapitza resitance) is negligible. The behaviour can
be perfectly reproduced with an effective medium model, assum-
ing for the fully nano-crystalline sample a thermal conductivity of
4 W/mK, as found in Ref41 for a grain size of 5 nm, and for the
amorphous phase kT = 1.5 W/mK. Our result is thus quite differ-
ent from the case of nanocrystalline inclusions of GaN embedded
in amorphous SiO2, where an enhanced percolation was found15.
More intriguing is the elastic contrast dependence: surprisingly,
we don’t see any effect of the elastic contrast within our er-
ror bars, although we have shown that the vibrational dynamics
much depends on it.
A possible reason for this discrepancy is that our findings on the
microscopic dynamics have been obtained at very low tempera-
ture. It is thus possible that the situation is different at high tem-
perature. In order to understand thermal transport in such com-
posites, we have thus calculated the thermal conductivity at 10 K,
so that it is directly related to the observed microscopic dynamics.
Results are also reported in Fig. 7. Here we see that now the ther-
mal conductivity does not depend anymore on the crystalline vol-
ume fraction. Such a different behavior with respect to 300 K can
be understood in terms of a temperature dependent equilibrium
between the interface scattering process, which decreases the to-
tal thermal conductivity, and increases with the interface area,
the addition of more conductive regions, which increases with
the crystalline volume, and the anharmonic processes, which, if
negligible at 10 K, are clearly important at 300 K. Indeed, the
interface Kapitza resistance is a decreasing function of tempera-
ture31. Its larger importance at low temperature can be identified
as the reason of the lack of a crystalline volume dependence of
the thermal conductivity, due to a lucky compensation between
interface scattering and the growing crystalline contribution. At
high temperature, the latter seems to dominate on the former.
Concerning the anharmonic contribution, one quick comparison
of the thermal conductivity values at 10 and 300 K for a given
crystalline volume fraction indicates that the thermal conductivity
increases with temperature, which is not expected when anhar-
monic scattering dominates phonon lifetime. To clarify the role
of anharmonicity, a thorough investigation of the thermal con-
ductivity as a function of both temperature and elastic contrast in
both amorphous and crystalline components of the nanocompos-
ite is needed. This is however beyond the scope of this work, and
makes the object of an on-going investigation. More intriguing
is the fact that, at low temperature as well, the elastic contrast
does not play any role, meaning that the strong reduction of the
propagative regime with the elastic contrast does not reflect into
a lower thermal conductivity. This could be understood in terms
of a dominant role of diffusons in thermal transport already in the
fully amorphous sample39, so that the reduction of the propaga-
tive regime would be negligible.

In presence of a diffusive transport mechanism, i.e. a trans-
port assured by largely scattered vibrational modes (namely dif-
fusons), the thermal conductivity can be calculated knowing the
phonon diffusivity, which we report in Fig. 8 for the two systems
with and without elastic contrast. First, we can see here that the
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Fig. 8 The phonon diffusivity is reported between 0 and 20 THz for the
χ = 1 system (thick blue line) and the χ = 4.6 system (thin red line), com-
pared with a pure amorphous sample (black dotted line).The high fre-
quency modes in the χ = 4.6 composite, with ω ≥ 20 THz have negligible
diffusivity.

high energy modes that appear for ω ≥ 20 THz have a negligible
diffusivity, due to their localized nature18,20,27, thus do not con-
tribute to thermal transport. Second, for the other modes, the
elastic contrast introduces only tiny differences, mostly reducing
the diffusivity of modes around 10 THz, which, in the amorphous,
comes mainly from longitudinal modes27. Such a weak effect
may thus explain why our simulated thermal conductivity is quite
insensitive to the elastic contrast.

The situation would be different if diffusons were not the
dominant heat carriers. To check this point, we have calculated
the thermal conductivity of a crystal/crystal nanocomposite,
where the crystalline inclusions, of same radius and volume
content, are now embedded in a crystalline matrix, using the
same potential and rigidity contrast as before. The nanoinclu-
sions have been tilted by 45◦ with respect to the crystalline
matrix, for maximizing the interface effect. Indeed, the resulting
thermal conductivity will depend on the transmission probability
of phonons from the matrix to the inclusion and viceversa, which
depends on the superposition of the DOS projected along the
crystallographic directions of the contact surfaces42,43. In such
systems we find kT = 3.55±0.15 W/mK and kT = 2.2±0.4 W/mK
at 300 K, for χ = 1 and χ = 4.6 respectively. We thus see a
significant dependence on the elastic contrast, with a decrease
by 40% of the thermal conductivity at room temperature in
presence of a harder inclusion, compatible with a perturbation of
the propagative acoustic modes.

To go further, and better link macroscopic and microscopic in-
formation, we have used our phonon dispersions, mean free path
and diffusivity results for directly calculating the thermal con-
ductivity. Two different regimes are considered: the propaga-
tive regime only below the Ioffe-Regel energy, and the diffusive
regime, corresponding to a multiple scattering of plane waves,
which remains the only one above the Ioffe-Regel energy. In the

propagative regime, the thermal conductivity can be calculated as

kprop
T =

1
3

∫
ωIR

0
C(T,ω)v(ω)l(ω)g(ω)dω (10)

Here v(ω) is the group velocity calculated from the simulated
phonon dispersions fitted to a sinusoidal q dependence, in the
energy region where an individual phonon mode is well defined,
C(T,ω) is the quantum heat capacity, calculated from phonon
dispersions and density of states, l(ω) is the mean-free path ob-
tained by the Beer-Lambert fit of the kinetic energy envelope in
the wave-packet propagation study (see Eqq. 7 and 8), reported in
the Supplementary Material, and g(ω) the simulated density of vi-
brational states. In this calculation, we have taken a lower energy
limit for the integral of 0.5 THz, for convergence issues, which im-
plies that the propagative contribution is slightly underestimated.
Such approximation remains reasonable as the neglected modes,
despite a very long mean free path, have low heat capacity and
density of states. In the diffusive regime, the thermal conductiv-
ity expression becomes:

kdi f f
T =

∫
ωmax

ωIR

C(T,ω)D(ω)g(ω)dω (11)

with D(ω) the diffusivity of vibrational modes with energy ω.
Eq.10 has been calculated as the sum of the longitudinal and
transverse contributions, each having a different Ioffe-Regel limit
and different mean free path. To this aim, we have calculated
the projected longitudinal and transverse density of states using
Voronoi cells (see Supplementary Material). The total thermal
conductivity is then kT = kprop

T + kdi f f
T . In this calculation, as-

suming that the S(q,ω) does not change with temperature, the
temperature dependence of the calculated kT only results from
the one of the Bose factor, i.e. from the increased phonon pop-
ulation. As such, the thermal conductivity calculated this way
at high temperature, when all phonons are thermally populated,
corresponds to the thermal conductivity as calculated with the
Green-Kubo method, where all phonons are always populated.
We can then directly compare the Green-Kubo results obtained
from an atomic configuration stabilized at 10 K, with the results
of our calculation from the same atomic configuration, but taken
at high temperature for having the same classical phonon popu-
lation. This comparison is reported in Fig. 7, and shows a very
good agreement for amorphous and nanocomposites with a vol-
ume fraction of 30%. We can clearly see the effect of the elas-
tic contrast on the calculated thermal conductivity, however it is
smaller than the error bars of the Green-Kubo calculations, ex-
plaining thus the apparent insensitivity of these latter.

To get more insight on the effect of the elastic contrast on the
two different thermal transport regimes, we report in Fig. 9 the
two contributions as a function of temperature. The high temper-
ature saturation of the propagative contribution is clearly due to
the absence of contributing modes above Ioffe-Regel: the satura-
tion temperature corresponds to TIR ≈ h̄ωIR/kB and is clearly re-
duced in nanocomposites with respect to the amorphous. It is evi-
dent that nanostructuration causes a reduction of the propagative
part, stronger in presence of a harder inclusion. As for the diffu-
sive part, this is enhanced by the presence of the nanoinclusions,
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Fig. 9 Propagative and Diffusive contributions to the thermal conduc-
tivity calculated using Eqs. 10 and 11 as a function of temperature for
the amorphous system (black dashed line), and two composite systems
with χ = 1 (blue solid line) and χ = 4.6 (red dot-dashed line) at a volume
fraction φ = 30%. Inset: Relative weight of the propagative contribution,
same colors and line styles as the main figure.

with almost no effect of the elastic contrast. Such enhancement
is due to a major interface scattering and the increased number
of diffusive modes, as indicated by the drastic reduction of the
Ioffe-Regel crossover. At the end, due to the reduction of the
propagative phase space, if at low temperature propagons dom-
inate heat transport, at room temperature they only account for
about 10% of it in the harder nanocomposite, against 30% for the
amorphous sample (see inset of the figure).

5 Conclusions
In this work we have reported a microscopic investigation
of phonon dynamics in amorphous/nanocrystalline composites,
with the aim of evidencing and understanding the role of elas-
tic contrast between matrix and nanoinclusions. As cited above,
the elastic contrast is expected to play a major role in determin-
ing thermal transport properties in such nanocomposites. Still,
contradictory experimental results have been reported.

Here we have shown that the presence of a crystalline
nanoinclusion modifies phonon dynamics even in absence of
an elastic contrast. Still, the effect is much stronger when the
nanoinclusion is harder than the matrix. The presence of a
disorder/order interface, coupled with the elastic heterogeneity,
is at the origin of a modification in acoustic wave-packets,
which loose their propagative character, leading to a significant
anticipation of the Ioffe-Regel crossover between a propagative
and a diffusive regime. Such anticipation translates in several
modifications of the microscopic dynamics, from the breaking
down of the individual phonon in an envelope of modes, to the
rising up of a low energy peak in the reduced phonon density
of states, at energies below the Boson Peak. The inspection of
the time evolution of longitudinal and transverse wave-packets
generated in the sample clearly confirms such anticipation and
the arising of a strongly inhomogeneous energy propagation
in presence of elastic contrast, with the pinning of vibrational
energy within the harder inclusions. An anticipated Ioffe-Regel
crossover means that the transition from a ballistic to a diffusive

thermal transport takes place at lower frequencies, reducing the
phase space for propagons to about half the one in the fully
amorphous system for the high contrast nanocomposite. Despite
such a strong effect on acoustic modes, the thermal conductivity,
as calculated with the Green-Kubo formula, is almost unaffected.
This is essentially due to the major diffusive nature of thermal
transport already in the amorphous matrix when all phonons are
thermally populated. The dramatic reduction of the propagative
contribution affects thus only partially the total thermal conduc-
tivity, being balanced by the increased diffusive contribution in
the nanocomposites, which, moreover, is quite insensitive to the
elastic contrast.
Interestingly, the interface scattering dominates thermal con-
ductivity only for the atomic configuration equilibrated at low
temperature, where it counterbalances the larger crystalline
contribution. At room temperature however, this is not true any-
more: the higher conductivity in the crystalline nanoinclusions
takes it over the interface scattering, whose strength decreases
indeed with temperature, assuring a gradual increase of the
thermal conductivity with crystalline volume fraction, result-
ing in a behavior in agreement with effective medium predictions.

Our findings, obtained on a model system, allow to clarify
the panoply of experimental and simulation results on thermal
conductivity in systems with and without elastic contrast. We find
indeed that this latter is a key ingredient, dramatically perturbing
phonon dynamics, and reducing the propagative contribution to
thermal transport. Such reduction is due to the strong phonon
scattering introduced with the nanostructuration, which leads to
two consequences: the reduction of the phonon mean free path,
and the anticipation of the Ioffe-Regel crossover, reducing thus
the phase space of propagative phonons and then the number of
modes available for a propagative thermal transport. However,
the effect of such modifications of the microscopic dynamics on
the macroscopic thermal conductivity is not straightforward. The
result will depend on the relative weight of propagative and
diffusive contribution to thermal transport in the matrix material.
If propagons are the main heat carriers, a strong reduction of
the thermal conductivity can be expected. If diffusive transport
dominates already in the matrix, then no reduction is expected,
and the thermal conductivity could even increase, as the diffusive
contribution increases. Depending on this crucial point - which
will depend on the material and on temperature - the sensitivity
of thermal conductivity to elastic contrast will strongly change
as well. Our findings clearly indicate that an amorphous matrix
where propagons carry most of the heat at room temperature
would be better suited for enhancing the interface scattering and
elastic contrast effect and ultimately engineering nanocomposites
with even lower thermal conductivity than the matrix. Our
study illustrates as well the relevance of coupling a microscopic
dynamics investigation to thermal conductivity simulations to
get a real insight onto the mechanisms at play and the key
parameters for thermal transport in heterogeneous systems.
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