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Some of the theoretical aspects of continuation and bifurcation methods devoted to the
solution for nonlinear parametric systems are presented in a higher-order automatic differen-
tiation (HOAD) framework. Besides benefits in terms of generality and ease of use, HOAD is
used to assess fold and simple bifurcations points. In particular, the formation of a geometric
series in successive Taylor coefficients allows for the implementation of an efficient detection
and branch switching method at simple bifurcation points.

Some comparisons with the Auto and MatCont continuation software are proposed.
Strengths are then exemplified on a classical case study in structural mechanics.
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geometric series; higher order automatic differentiation; Diamant
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1. Introduction

Numerical continuation and bifurcation analysis are classical tools for the study of non-
linear parametric equations, see [29] and the references therein for instance. In general
terms, these methods allow for the solution of nonlinear algebraic systems of n equations,

R(U) = R(u, λ) = 0, (1)

where the unknown U = (u, λ) of the nonlinear function R comprises the state vector
u of dimension n and some scalar control parameter λ to be varied. Frequently, this
parameter has a physical meaning, representing a load parameter in structural mechanics
or a volumetric flow rate in fluid mechanics, for instance. The solutions of the under-
determined problem (1) are one-dimensional continua, referred to as solution branches,
that may contain singular points such as folds (limit points), and bifurcation points where
two branches intersect. Note that a number of additional bifurcations may arise in the
solution of nonlinear parametric ordinary differential equations [13, 17, 28]. Such singular
points indicate a qualitative change in the behavior of the system under study. They can
be detected and classified from determinant calculations and/or derivative computations,
see for instance [20, 21, 29].
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During the last thirty years, general-purpose software, free and commercial ones, have
been proposed to engineers and scientists to draw bifurcation diagrams without em-
barking into the heavy task of programming their own continuation algorithm. Most
of these continuation software, see MatCont [13] and Auto [17] for instance, follow the
first order predictor-corrector principles described in [26, 29]. Besides, under analyticity
assumptions, solution branches may be approximated as higher-order truncated Taylor
expansions [4, 9, 10] to obtain continuous solutions and representations. Their range
of validity is estimated a posteriori from the remainder of the series to provide large
adaptive stepsize.

Today, Taylor-based nonlinear solvers take full benefit of higher-order automatic dif-
ferentiation (HOAD), notably in terms of generality, efficiency and automation, see [4]
and references therein. Our HOAD continuation framework, namely Diamant, moreover
agrees with homotopy for the solution of nonlinear eigenvalue problems and with sen-
sitivity analysis for both continuation and homotopy methods [6]. It has been recently
adapted to the determination of singular boundaries [25] of particular piecewise smooth
nonlinear systems by using the extended system of equations introduced in [28].

Higher order information can be used to locate singular points [18, 20, 21] and AD
can be used to extract it [13, 24]. In particular, simple folds can be detected in a series
in straightforward manner. As discussed for higher-order perturbation methods [18],
the formal power series arising near to a singularity reveals the analytical structure of
the solution. It can be used to “improve the utility of the series” and the convergence
of the numerical method. This has been applied to specific quadratic formulations of
nonlinear parametric problems near to simple bifurcation points [11]. In this paper, we
take advantage of HOAD to rework this proposal in the general framework of (1) in order
to implement an efficient detection and branch switching method.

Two tutorial examples from MatCont [27] and Auto [15, 17] are used to illustrate
some strengths and limitations of the Matlab implementation of Diamant [7] in compar-
ison with these two classical first order continuation software. Then, the Elastica beam
problem is used to exemplify our higher-order continuation framework on a classical
partial differential equation (PDE) problem, relevant for numerical bifurcation analysis
[11, 14, 19] and structural mechanics.

The layout of the paper is as follows. Fundamentals of the higher-order continuation
tool Diamant are briefly recalled in Section 2. The higher-order bifurcation analysis is
presented in Section 3, then illustrated by several case studies in Section 4. Section 5
provides a summary.

2. Higher order continuation framework

Numerical continuation is a method devoted to the solution for the system of nonlin-
ear parametric equations (1). The solutions of such an under-determined problem are
one-dimensional continua, referred to as solution branches, that may intersect at bifur-
cation points. The pseudo-arc length continuation algorithm [26] is a classical answer
to the calculation of solution branches. The branches U(a) = (u(a), λ(a)) are locally
parameterized as

(U(a)− U(0))∗.

(
∂U

∂a

)
− a = 0, (2)

2
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where ∗ is the transpose operator and ∂U/∂a is the normalized direction vector.
Under analyticity assumptions, the solution branches may be approximated as a col-

lection of continuous truncated Taylor expansions [4, 10],

U(a) =

(
K∑
k=0

ak

k!

∂ku

∂ak
(0),

K∑
k=0

ak

k!

∂kλ

∂ak
(0)

)
=

K∑
k=0

ak(uk, λk) =

K∑
k=0

akUk, ∀a ∈ (0, am), (3)

where K is the truncation order of the series (typically K = 20), Uk = (uk, λk) are the
unknown Taylor coefficients of U(0) for k = 0, ..,K and am is the range of validity for
the series. As in other higher-order solvers (see [4] and the references therein), this series
is introduced into (1) to deduce a general iterative sequence of equations satisfied by the
Taylor coefficients Uk, that is

(R ◦ U)k = {R1}Uk + {(R ◦ U)k|Uk = 0} = 0, for k = 1, ..,K. (4)

Therein, the Jacobian {R1} of R is constructed once. The higher-order term {(R ◦
U)k|Uk = 0} is the Taylor coefficient at order k of (R ◦ U) evaluated with a null value
for the unknown Uk. All these derivatives may be computed using HOAD.

The solution for (1)–(2) then relies on the sequence of linear systems(
{R1}
U∗1

)
.Uk =

(
−{(R ◦ U)k|Uk = 0}

δ1k

)
, for k = 1, ..,K, (5)

where δ1k is the Kronecker’s delta. The left-hand side matrix of (5) is factorized once.
The range of validity am is deduced from the remainder of the series as

am =

(
ε

|| {(R ◦ U)k|Uk = 0} ||

)1/K

, (6)

to provide large adaptive stepsize. The threshold ε is typically set to 10−6. This higher-
order continuation method may often be used without Newton corrections.

Listing 1 Nonlinear solver for the computation of one branch of solutions

% Given a solution point U0, a tangent Ut, a nonlinear function R
Compute the Jacobian {R1}
Form the left hand side matrix of (5) and factorize it
Set U0 = U0;U1 = Ut

5 for k=2:K
Evaluate R(U) at order k using Uk = 0
Solve (5)
Set Uk

end
10 Compute am following (6)

% Room for HOAD simple bifurcation detection, see List. 4

The iterative sequence (5) is the basis for the general high level nonlinear solver known
as Diamant. Its HOAD is similar to the HOAD described in other Taylor-based nonlin-
ear solvers. Thanks to AD generality, this solver is able to deal with any user-defined

3
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analytical nonlinear residual problem satisfying (1). The series information – Taylor co-
efficients, tangent to the branch and range of validity – are stored into checkpoints [3, 23]
managed through the continuation driver described in List. 2. Singular point information
discussed at Section 3 – fold and bifurcation loci, tangent to the second branch, series
and related range of validity – is accounted in the checkpoint where relevant. This offers
the opportunity to start a continuation at a bifurcation point in the direction of the
second tangent, see List. 5.

Listing 2 Continuation driver

% Given a point U0, a tangent Ut, a nonlinear function R
% Given a number of forward steps (Nbforward)
for i=1: Nbforward

% Newton−Raphson corrections (NR)
5 if (|R(U0)|>NR_threshold), NR corrections; end

% Compute branch i
if (regular point) % initial point or regular checkpoint

Compute the series U and am using List. 1
Create a checkpoint

10 % starting point U0, tangent, series U,
% validity range am, end point U(am) and tangent
% bifurcation information from List. 4

Check for a fold using List. 3
Store the checkpoint

15 U0 = U(am) and Ut = U ′(am)
else

% branching at a bifurcation point
Compute the series U b using List 5
Create a checkpoint

20 % starting point U b(abm) and second tangent
end

end

Previous Diamant versions did not provide a higher-order bifurcation analysis to im-
prove the utility of the series near to a bifurcation point. This significant shortcoming
is addressed by reworking the bifurcation strategies presented in [11, 15] to propose a
general higher-order AD implementation of bifurcation detection, location and branch
switching.

3. Bifurcation analysis

Near to a singular point, a very small theoretical or numerical perturbation of the solution
induces a qualitative change in the behavior of the residual function under study. Such a
change can be monitored and classified from determinant calculations and/or derivative
computations, see for instance [20, 21, 29]. Among the numerous kind of bifurcations,
this paper consider fold points (or snap through in structural mechanics) and simple
bifurcation points (or buckling) that are of special interest in PDE problems studied in
structural engineering.

As an illustration, we consider the tutorial example of MatCont [27],{
0 = −2u1 + u2 + α exp(u1),
0 = u1 − 2u2 + α exp(u2).

(7)

4
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Figure 1. Tutorial bifurcation diagram using Diamanalab.

where the variables u1 and u2 denote the components of the unknown state vector u,
and α is the parameter to be varied. A trivial solution is O1 = (u1, u2, α) = (0, 0, 0). The
branch issued from O1 satisfies α exp(u1)− u1 = 0 and u1 = u2. It exhibits a simple fold
at (1,1/ exp(1)) and a simple bifurcation point at (3,3,3/ exp(3)).
The bifurcation diagram computed using the Matlab implementation of Diamant, namely
Diamanlab, is plotted in Fig. 1. The branch issued from O1 requires the computation
of 5 checkpoints only to run from u1 = 0 to u1 = 8 with large continuation steps. The
fold (0.999998, 0.999998, 0.367879), indicated with a green +, is identified from the series
computed at the second checkpoint (am = 2.1068 at checkpoint 2). The simple bifurcation
point, indicated with a red disc, is located at (3.000001, 3.000001, 0.149361). As expected,
the accuracy in the results agrees with the threshold of the method. The branching
method (List. 5) allows to compute a series (with a range of validity am = 0.813490),
then the solution point O2 on the second branch, far from the bifurcation point. The
second branch is traveled forward and backward.

Fold and bifurcation detection as well as branch switching methods are described in
subsections 3.1, 3.2 and 3.3, respectively.

3.1 Fold detection and location

As recalled in [15], a solution Uf = U(af ) = (u(af ), λ(af )) of (1) is a simple fold if
λ′(af ) = ∂λ

∂a (af ) = 0, for some af ∈ (0, amax). In other words, the tangent to the solution
branch at that point is vertical on a projected bifurcation diagram that plots λ along the
horizontal axis.
When the branch of solutions is approximated using series (3), the fold may be detected
by monitoring the sign of λ′(a) between successive checkpoints. This derivative is deduced
from the series of λ in a straightforward manner as

λ′(a) =

K∑
k=1

kak−1λk(a). (8)
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Figure 2. Bifurcation: (a) Perfect case, (b) Numerical case.

Note that the curvature λ′′(af ) at the fold can be approximated from the series as

λ′′(af ) =

K∑
k=2

k(k − 1)(af )k−2λk(a
f ), (9)

and allows to characterize Uf as a simple quadratic fold when λ′′(af ) 6= 0.
The fold detection summarized in List. 3 takes place in the continuation driver (List. 2).

Listing 3 Fold detection and location carried out in the continuation driver

% Given a checkpoint point U computed using List. 1, that is

% known series U(a) =
∑K

k=0 a
kUk, known range am and

% known sign for λ′(0)

Evaluate U(am) =
∑K

k=1 a
k
mUk % Solution point

5 Evaluate λ′(am) =
∑K

k=1 ka
k−1λk(am) % Derivative of λ

% Fold detection
if (sign(λ′(0)) ∼= sign(λ′(am)))

% Fold location

Find af such that
∑K

k=1 k(af )k−1λk(af ) = 0 %dichotomy

10 Evaluate λ′′(af ) =
∑K

k=2(k − 1)k(af )k−1λk(af )
Update the checkpoint with fold information

end

3.2 Bifurcation detection and location

Bifurcation and branch switching is a more complex task. In the perfect case, Fig. 2.a, the
two solution branches B1 and B2 intersect at the bifurcation point U b. Tangents to the
branches at U b are denoted by U t11 and U t21 . Even a very small error, inherent to floating-
point calculations, may induce the branch switching presented in Fig. 2.b. Bifurcation
and stability analysis is thus of prime importance in computational and engineering
sciences [1, 15, 26]. Various methods exist to detect and to locate a bifurcation, to pass
through it along the traveled solution branch or to switch from one branch to the other.

Unsurprisingly, such a singular behavior may be monitored by means of the derivatives
of the nonlinear system, and notably using AD [13, 24]. In this section, we take advantage
of the HOAD computed Taylor series to detect a geometric series [11, 18] that indicates a
bifurcation, and to implement an efficient branch switching method at simple bifurcation

6



October 21, 2019 Optimization Methods & Software HALversion˙OMS˙R2

points. The paper reworks using a HOAD formalism the method discussed in [11] for
quadratic formulations R(U) = L0 + L(U) +Q(U,U) (comprising a constant vector L0,
a linear operator L and a quadratic operator Q) to extend it to the general nonlinear
algebraic system (1).

3.2.1 Brief state of the art

Let U b be a simple bifurcation point on the solution branches B1 and B2, Fig. 2.a. At
point U b, the Jacobian {Rb1} admits two null right vectors φ1 and φ2 and a left null
vector ψ [15] that satisfy

{Rb1}φi = 0, for i = 1, 2, and ψ∗.{Rb1} = 0. (10)

The null space and its orthogonal complement are denoted by N ({Rb1}) = span{φ1, φ2}
and N⊥({Rb1}) = Rn \ N ({Rb1}), respectively.

Let (α, β) ∈ R2 and U b1 be such that

U b1 = (αφ1 + βφ2) ∈ N ({Rb1}). (11)

Differentiating (1) twice at point U b,

{Rb1}U b2 + {Rb2}U b1U b1 = {Rb1}U b2 + {Rb2}(αφ1 + βφ2)(αφ1 + βφ2) = 0, (12)

and multiplying the result by ψ∗ yield

ψ∗.{Rb2}(α2φ1φ1 + 2αβφ1φ2 + β2φ2φ2) = 0, (13)

and the so-called Algebraic Bifurcation Equation (ABE)

α2c11 + 2αβc12 + β2c22 = 0, where cij = ψ∗.{Rb2}φiφj for i = 1, 2. (14)

The solutions of the ABE allow for the determination of the two tangents. The practical
implementation reported in [15] monitors the determinant of {R1} along the traveled
branch to detect a possible bifurcation between two successive continuation points.

As demonstrated in [11], a geometric series emerges between successive Taylor coeffi-
cients near to a bifurcation point. This particular event may be used for detection and
branch switching. Four stages are necessary. Firstly, the Taylor coefficient sequence is
monitored to detect a possible geometric series. Secondly, the geometric series is taken
out to restore a clean series with an optimal range of validity along the traveled branch.
Then, the bifurcation locus is determined. Thirdly, the tangent to the second branch is
computed. Finally, an optimal (large) range of validity can be computed at the bifurca-
tion point.

3.2.2 Evidence for a geometric series

Choosing φ1 = U t11 and φ2 = U t21 in (11) allows to write the first order representation of
branches B1 and B2 as

U(α, β) = U b + αU t11 + βU t21 . (15)

7
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In the perfect case, Fig. 2.a, the ABE simplifies into αβ = 0, and either α or β is null.
This agrees with the particular choices done for φ1 and φ2. The approximate solution
U(α, β) theoretically lies on one or the other branch.

Numerical residual errors, Fig. 2.b, are usually not zero from a computer point of
view. The ABE becomes αβ = µ where µ is a small real number. Using α = a − s and
β = µ/(a− s) in (15) allows to write

U(a, s) = U b − sU t11 −

(
µ

s

)
U t21︸ ︷︷ ︸

U(0, s)

+aU t11 +

(
µ

s

)(
a

a− s

)
U t21 , (16)

where the shift s represents the distance from U(0, s) to U b.
Equation (16) provides a first order representation of the perturbed branch B1 evalu-

ated at a point U0 near to the simple bifurcation under study. Since µ/s is very small,
the contribution of U t21 is negligible except when a is almost equal to s. In that case,
the rational fraction a/(a − s) may be written as the geometric series

∑
k(a/s)

k with
common ratio a/s. This happens more easily for a small distance s and/or for a large
residual error contribution µ at point U b. The interested reader is referred to [18] for the
analysis of functional singularities through series.

The formation of a geometric series is monitored in the highest four Taylor coefficients
of the last computed solution for (5). The candidates as common ratio and scale factor
are

σ =
U∗KUK
U∗K−1UK

, (17)

and the Taylor coefficient UK , respectively. A geometric series is detected when collinear-
ity (18) and proportionality (19) properties are satisfied√√√√ 3∑

k=1

(
1−

U∗K−kUK

||UK−k||.||UK ||

)2

≤ εcoll = 10−4, (18)

and

3∑
k=1

|(UK−k − σUK−k+1)∗.UK−k|
U∗K−k.UK−k

≤ εprop = 10−3. (19)

In practice, the geometric series is detected along the traveled branch either before or
after the bifurcation point U b, depending on the distance s to U b and on the norm of
the residual.

3.2.3 Cleaning of the current Taylor series and bifurcation location

The identified geometric series is taken off the Taylor coefficients to improve the utility
of the series, that is to avoid (i) interactions between the two solution branches, (ii) a
possible amplification of computational errors, (iii) small ranges of validity, or even (iv)
an undesired branch switching as in Fig. 2.b.

8
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Listing 4 Simple bifurcation detection, location and computation of the tangents.

% ... This goes into Listing 1

% Given a series U(a) =
∑K

k=0 a
kUk and a nonlinear function R

% Detection of a possible geometric series
if (18) && (19)

5 ’simple bifurcation point’
∃ Geometric series: Common ratio (17), scale factor UK

% "improve the utility of the series"
Compute the clean series Û following (20)

Locate the bifurcation U b = Û(σ)

10 Deduce the tangent U t1
1 from Û

Compute the second tangent U t2
1

Compute the range of validity along the current branch
%else
% ’regular point’

15 end

The clean series Û(a),

Û(a) =

K−1∑
k=0

akÛk =

K−1∑
k=0

ak(Uk − σK−kUk), (20)

provides the perfect branch of solutions in the current tangent direction. Its range of
validity is evaluated using (6) at order K − 1.

By construction, the bifurcation point satisfies U b = Û(σ). An approximation of the

tangent to the traveled branch at that point is U t11 =
∂Û

∂a
(σ).

3.2.4 Determination of the second tangent

At the bifurcation point U b, the Taylor coefficient U t21 defining the second tangent belongs
to the kernel N ({Rb1}) and satisfies the ABE. Using U t21 = αU t11 +βφ2 with φ2 belonging
to N ({Rb1}) allows to compute U t21 from (13).

3.3 Branch switching

The series at the bifurcation point U b may be written as

U(a) = U b + aU b1 +

K∑
k=2

akU bk, (21)

where U b1 is one of the two tangents and U bk, for k = 2, ..,K, are unknown Taylor coeffi-
cients. This series is introduced into (1). Resulting equations are projected ontoN ({Rb1}),

πψ({Rb1}U bk + {Rbk|U bk = 0}) = 0, (22)

9
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and N⊥({Rb1}),

ψ∗.({Rbk+1|U bk = 1, U bk+1 = 0}U bk + {Rbk+1|U bk = U bk+1 = 0}) = 0, (23)

to obtain the iterative sequence of linear systems satisfied by the unknowns U bk, k ≥ 2.
The path equation contribution is

(U b1)∗.U bk = 0. (24)

The solution for (22)–(24) is managed assuming

U bk = αkU
t1
1 + βkU

t2
1 + Υk, (25)

where the unknowns αk and βk are real parameters and Υk ∈ N⊥({Rb1}). Firstly, the
linear system for Υk is deduced from the projection (22) and the path equation, that is {Rb1} ψ

(U t11 )∗ 0
(U t21 )∗ 0

 .

 Υk

γ

 =

 −{Rbk|U bk = 0}
0
0

 , (26)

where the (n + 2) × (n + 2) left-hand side matrix is nonsingular and γ is a Lagrange
multiplier. Secondly, replacing U b1 by U t11 and using (25) into the path equation (24)
allow to deduce

(U t11 )∗.U bk = αk(U
t1
1 )∗.U t11 + βk(U

t1
1 )∗.U t21 = 0, (27)

that is

αk = −βk
(U t11 )∗.U t21

(U t11 )∗.U t11

. (28)

Finally, equation (23) allows to determine βk and the final equation for U bk,

U bk = βk

(
U t21 −

(U t11 )∗.U t21

(U t11 )∗.U t11

)
+ Υk. (29)

The optimal range of validity for the second series is deduced from the Taylor coefficient
U bk following (6).

These different stages are implemented as in Listing 5.

4. Numerical results

This section first presents numerical results obtained for two tutorial examples from Mat-
Cont and Auto. Numerical experiments are carried out using matcont5p3 [22], AUTO-
07P [16], and the Matlab implementation of Diamant called Diamanlab [7]. These three
software are usable for research purposes. Simulations are effected on commodity hard-
ware comprising an Intel processor at a maximal frequency of 2.9 GHz.

10
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Listing 5 Series computation at a bifurcation point, the transpose operator is here denoted by ’ as in Matlab

% Given the bifurcation point U = U b, the tangents U1t1 and U1t2,
% and the nonlinear function R
Compute the Jacobian {R1} and the left null vector ψ
Factorize the left -hand side matrix of (26)

5 Set U0 = U(0); U1 = U1t1;
% Order 2
Set V2 = U2 computed from (29) with β2 = 0 and Υ2 = 0
Project V2 to compute pV2 = ψ′.{R3|U2 = V2, U3 = 0}
Solve (26) to get Υ2

10 Set U2 = Υ2 and evaluate W3 = {R3|U3 = 0}
Project W3 to get pW3

Compute β2 = −pW3/pV2
Update U2 using (29)
Update the right -hand side term of (26)

15 % Higher orders
for k=3:K % in brief

Solve (26) to get Υk

Evaluate Wk+1 = {Rk+1|Uk+1 = 0} and project it
Compute βk

20 Update Uk and the right -handside term of (26)
end
Compute am following (6)

Before proceeding, major practical differences in the implementations should be noted.
Among them, Matcont and Auto solve ordinary differential equations while Diamanlab
solves algebraic equations. Note that AUTO embeds a collocation method (spatial dis-
cretization). MatCont and Diamanlab deal with Matlab and propose interactive graphical
interfaces, while Auto deals with Fortran codes and command lines. The use of software
interfaces (ergonomy is out of scope here) and executable codes for matcont5p3 and
AUTO-07P interfere with time measurements. Consequently, the software are mainly
compared in terms of number of continuation steps.

The clamped-clamped Elastica beam [11, 14, 19] then illustrates the interest for higher-
order continuation and bifurcation methods for PDE problems in structural mechanics.

4.1 Stationary solutions of Bratu-Gelfand problems

The Bratu-Gelfand problem,{
∂u

∂t
= ∆u+ λ exp(u), t ≥ 0, x ∈ (0, 1),

u(0) = u(1) = 0,
(30)

is a classical case study in continuation, see [15, 29] for instance, and some numerical
results have already been reported for the three software packages [6, 17, 27].

11
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Figure 3. Tutorial bifurcation diagram using MatCont. (a): Default stepsizes. (b): Large Stepsizes.

4.1.1 Two internal point discretization

The tutorial [27] studies equilibrium solutions for a discretization of (30) by means of
two internal points. In MatCont, the nonlinear system is implemented as{

u′1 = −2u1 + u2 + α exp(u1),
u′2 = u1 − 2u2 + α exp(u2),

(31)

by using α = λ/9 and a symbolic differentiation for the first two derivatives. MatCont
saves symbolically computed derivatives in a Matlab function. AD was not introduced in
the ODE version of MatCont because it turned out to be slower than symbolic derivatives
[12]. Note that the (small) time necessary to precompute the model derivatives when
using Matcont is not indicated and is not accounted at simulation time. The equilibrium
solutions of (31) satisfy (7) as well.

Default initial (InitStepsize) and maximum stepsize (MaxStepsize) values are equal
to 0.01 and 0.1. In comparison, assuming that the computed am has a finite value, there
is no limitation on the maximum range of validity for the series in Diamanlab. Solution
branches plotted in Fig. 3.a show the fold (LP) and the branch point (BP). As MatCont
solves the ODE system (31), it can also find out its Hopf bifurcation (H). The two
methods, Figs. 1 and 3.a, are equally accurate at computed points and singular points
since they satisfy the same threshold.

For numerical experiments, MatCont is then run using various stepsizes to enable a
comparison between the adaptive stepsize methods of MatCont and Diamanlab. Com-
puted solution points are indicated with + in Figs. 3.a and 3.b. Clearly, see Fig. 3.b,
using a few larger stepsizes in a discrete method degrades the graphical representation.
In comparison, a few series are sufficient to be obtain a very accurate plot, even near to
singular points.

The numbers of continuation steps and checkpoints computed with MatCont and Dia-
mant are reported in Tab. 1. Results indicate that, for an equivalent quality in the plots,
the HOAD continuation can be carried out using less steps, less Jacobian calculations
and less matrix factorizations, than a first order continuation method. This can be a
valuable asset when the factorization of the left-hand side of (5) is more expensive than
the computation of the higher order right-hand side terms. This is not the case in Mat-
lab where performance and operator overloading (OO) look mutually exclusive. Time
measurement is of difficult handling when dealing with interactive tools and so small

12
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Table 1. Number of continuation steps/checkpoints
computed with MatCont and Diamant for the two in-

ternal point discretization.

MatCont’s MaxStepsize Diamant

InitStepsize 0.01 1 10 –
MaxStepsize 0.1 1 10 –

Branch 1 124 30 10 5
Branch 2 210 52 13 17

Table 2. Number of continuation steps/checkpoints and CPU times

necessary to Auto and Diamanlab.

AUTO-07P Diamanlab
Label Nb steps time Nb checkpoints time

Fold 2 33 2
Last point 3 100 0.044s 6 1.49 s

systems. It results that Diamanlab’s OO implementation needs 0.37 s to compute and
to plot the first checkpoint, what is acceptable in an interactive continuation, where
MatCont’s needs 0.2 s to compute and plot the first 20 points.

4.1.2 General case

On the one hand, the exp demo proposed in AUTO-07P [17] computes the equilibrium
solutions of (30) by means of the system of first order ODEs u′ = v,

v′ = −λ exp(u),
u(0) = u(1) = 0,

(32)

where u and v are functions of the variable x only. These are discretized by means of a
collocation method involving 10 mesh intervals and 4 Gauss points per interval.

On the other hand, using Diamanlab, we consider the stationary discrete system com-
prising N equidistributed points R1(u, λ) = (−2u1 + u2)/h2 + λ exp(u1),

Ri(u, λ) = (ui−1 − 2ui + ui+1)/h2 + λ exp(ui), for i = 2, .., N − 1,
RN (u, λ) = (uN−1 − 2uN )/h2 + λ exp(uN ),

(33)

where h = 1/(N + 1) and ui, for i = 1, .., N , are the unknowns at discretization points.
The run of the exp demo is carried out from the trivial null solution as described

in [17]. Within Auto, the adaptive discretization method used 10 mesh intervals and 4
Gauss points per interval. Min and max stepsizes are set to 10−3 and 2.10−1 respectively.
One hundred continuation steps allow to reach the last point, at label 3 in Fig 4(a).
The fold at label 2 is reached after 33 continuation steps. Diamanlab is run using a
finite difference discretization involving N = 39 equidistributed points to work with a
similar number of unknowns. The fold is detected in the series of the second checkpoint.
Bifurcation diagrams (λ, umax) are plotted in Fig. 4 using Plaut and Matlab, respectively.
Although computing six checkpoints is sufficient, see Tab. 2, any Matlab interpreted
implementation can compete with a compiled code as far as computer time is considered.

13
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Figure 4. Bifurcation diagram for the equilibriums of (30). (a) AUTO-07P, (b) Diamanlab.

4.2 Stationary solutions of an enzyme model

The two-compartment enzyme model (Kernevez,1980) implemented in the enz demo of
AUTO-07P, 

s′1 = (s0 − s1) + (s2 − s1)− 100s1

1 + s1 + s2
1

,

s′2 = (s0 − s2) + (s1 − s2)− 100s2

1 + s2 + s2
2

,
(34)

is now chosen as a case study to compare the three software. Therein concentrations
s1 and s2 are computed with respect to the variation of the concentration s0. Simula-
tions are carried out using the three software to observe the number the continuation
steps necessary to reach the singular points as labeled in Fig. 5(a) by using AUTO-07P.
Surprisingly, the enz demo also makes use of an a priori non-necessary discretization
(NTST=15 mesh intervals, NCOL= 4 Gauss collocation points). The maximum stepsize is
set to 0.25 for both AUTO-07P and MatCont simulations.

Bifurcation diagram produced by Matcont and Diamanlab are plotted to observe the
Hopf points detected by MatCont, Fig. 5(b) and the checkpoints computed by Diamanlab,
Fig. 5(c). In this figure, the second branch is computed the point BP2 for a better
rendering (am = 2.81 between BP2 and O2). Branching at BP1 yields a series with a
smaller range of validity of am = 0.092 because of neighboring singularities.

Conclusions raised from the first case study still apply, the series computed at the
bifurcation point following List. 5 may have a large range of validity. Time measurements
reveal that MatCont uses 0.4 s to compute the first 150 steps (just before the first
fold), but it requires 1.5 s when it computes and plots the solution simultaneously. In
comparison, Diamanlab computes and plots the first 8 checkpoints (outreaching the fold)
in 1.57 s. The overhead due to OO is acceptable in an interactive continuation.

4.3 Elastica beam

We now consider the classical clamped-clamped inextensible elastic beam subject to a
uniaxial compression [11, 14, 19], the bifurcation diagram of which contains many inter-
connected solution branches, Fig. 6. This case study is representative of large nonlinear
models related to the static behavior of mechanical structures discretized by means of a
finite element method.
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Figure 5. Bifurcation diagram for the enz demo. (a) AUTO-07P, (b) MatCont, (c) Diamanlab from BP2.

Table 3. Enzyme model: Number of continuation steps/checkpoints nec-

essary to Auto, MatCont and Diamanlab.

Branch 1 Type Label AUTO-07P matcont5p3 Diamanlab

LP 2 141 152 8
H – – 155 –

BP1 3 145 157 10
BP2 4 214 211 18

H – – 224 –
LP 5 244 243 19

Branch 2 Type Label AUTO-07P matcont5p3 Diamanlab

H – – 13 –
LP 7 84 54 12
LP 8 104 69 17

H – – 74 –
LP 9 172 – 26

BP2 – – 107 26

4.3.1 Equations and discretization

Let s ∈ (0, 1) be the dimensionless curvilinear coordinate. The beam equilibriums satisfy
x′(s) = cos(θ(s)),
y′(s) = sin(θ(s)),
θ′(s) = m(s),
m′(s) = −4π2(P sin(θ(s)) + T cos(θ(s)),

(35)
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Figure 6. Bifurcation diagram for the clamped-clamped Elastica beam. The first two buckling branches (blue and
green curves) are connected to the red closed loop at four bifurcation points.

where (x(s), y(s)) is the position of the beam centerline, θ(s) is the rotation of the
beam cross-section and m(s) is the bending momentum. Boundary conditions are x(0) =
y(0) = θ(0) = 0 and m(0) = 2πC on the one side, and y(1) = θ(1) = 0 on the other
side. The compressive load P varies while T and C are the lateral and torque reactions
at the boundary. The ODE system is discretized on a regular mesh of Ne elements with
a cubic interpolation of the four unknown variables. An orthogonal collocation method
at Gauss points is used to build an algebraic system that comprises about 3 × Ne × 4
equations (55 in the present simulation). The truncation order, the threshold (6) and the
Newton-Raphson threshold are set to K = 20, ε = 10−6 and 2.10−5, respectively.

4.3.2 Simulation results

The simulation is carried out as follows. The initial point is located at (0.030,1.000) on
the bifurcation diagram that plots the coordinate y(1/4) with respect to the variations
of the load P . The initial tangent points downward. The lower part of the blue solution
branch is obtained in 4 continuation steps. Checkpoints are indicated by crosses. The
upper part is computed from the initial point by reversing the sign of the tangent at
point (0.030, 1.000). Three more steps are computed. This blue curve corresponds to the
first buckling branch and presents 3 bifurcation points indicated with circles and located
at points (1.000,0.000) and (2.184,±0.195).

For visualization purposes, Diamanlab has been modified to change the line color
to another one when a bifurcation point is selected from the graphical user interface
as the beginning for a continuation along the second tangent. The red closed loop is
plotted from the bifurcation located on the blue curve at point (2.184,0.195) in about 40
Taylor series computations. Bifurcations appear at (-1.400,±0.130). One observes that
the distance between successive checkpoints varies and becomes smaller near to sharp
folds. Bifurcations are detected and located on the fly without the need for small steps.

The green curve corresponds to the second buckling branch. It is plotted from the
bifurcation located at (-1.400,0.130) on the red loop. About 30 checkpoints are computed
and a new bifurcation is found. Former observations about steps size near to folds and
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bifurcations are confirmed. Finally the trivial compression branch is followed and plotted
as a black line. The bifurcation diagram can be built from the trivial branch too.

The complex bifurcation diagram is accurately and continuously handled with the
proposed HOAD continuation and bifurcation framework. This approach is especially
interesting for large structures involving numerous degrees of freedom since the contin-
uation steps between successive checkpoints are large, notably near to the bifurcations.
The number of Jacobian calculations and linear system solutions is thus limited.

4.3.3 Discussion

The use of higher order methods (continuation and bifurcation analysis) yields continuous
solution branches that can be plotted as they are in a bifurcation diagram. It also reduces
the number of checkpoints that has to be computed, including near to the singular points.

The efficiency in terms of computer time of this Matlab prototype of Diamant is ob-
viously penalized by the use of operator overloading. In spite of this, the compromise
between interactivity, generality and time remains actually acceptable for prototyping
numerical methods and for educational purposes, notably in computational mechanics. In
particular, we plane to interface Diamanlab with PDE codes involving plate or shell finite
elements through the user-defined R.m method that implements the nonlinear function
R of (1).

To that end, time performances can be optimized in several manners. First, sparse Ja-
cobian calculations or, better, Jacobian calculation at assembly time can be implemented
for PDE problems. Second, the HOAD computations in (5) and (26) could be improved
to avoid re-computations by working on the HOAD library to preserve generality. Finally,
HOAD and Diamant can be implemented in another language.

An attractive option will be to consider Arbogast [5], the toolbox for HOAD based on
Modular C [8], as it provides an interface to differentiate C programs and to implement
new differential operators from scratch. As Diamant solvers for continuation (5), bifur-
cation analysis (26), homotopy [2] and sensitivity analysis [6], are differential operators,
they can be good candidates to benefit from Arbogast in terms of code and performance
optimization.

5. Conclusions

Theoretical aspects of higher-order continuation and bifurcation analysis are presented
in a HOAD formalism to emphasize the generality of this framework. The key point is in
the series computations that enable for large adaptive continuation steps notably near
to bifurcation points, and that limit the number of solutions/checkpoints to be com-
puted while preserving the quality of bifurcation diagram plots. Strengths and current
limitations are discussed on classical case studies from Auto and MatCont. Then, the
Elastica beam example shows that complex bifurcation diagrams and simple bifurcations
are handled in an accurate and robust manner. The proposed method is especially in-
teresting for large structures involving numerous degrees of freedom because the number
of Jacobian calculations and linear system solutions get smaller as continuation steps
between successive checkpoints are large.

Future work is concerned with the solution of PDE problems through a finite ele-
ment modeling (plate and shell elements) by using Diamanlab. The implementation in
Arbogast will be then studied.
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