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Summary

A number of textbooks, review papers, and case reports highlight the potential comorbidity of 

choanal atresia in craniosynostosis patients. However, the lack of a precise definition of choanal 

atresia within the current craniosynostosis literature and widely varying methods of detection and 

diagnosis has produced uncertainty regarding the true coincidence of these conditions. We review 

the anatomy and embryological basis of the human choanae, provide an overview of choanal 

atresia, and analyze the available literature that links choanal atresia and craniosynostosis. Review 

of over 50 case reports that describe patients diagnosed with both conditions reveals inconsistent 

descriptions of choanal atresia and limited use of definitive diagnostic methodologies. We further 

present preliminary analysis of 3D medical head computed tomography scans of children 

diagnosed with craniosynostosis syndromes of Apert, Pfeiffer, Muenke, or Crouzon and typically 

developing children and, while finding no evidence of choanal atresia, we report the potentially 

reduced nasal airway volumes in children diagnosed with Apert and Pfeiffer syndromes. A recent 

study of the Fgfr2c+/C342Y Crouzon/Pfeiffer syndrome mouse model similarly found a significant 

reduction in nasal airway volumes in littermates carrying this FGFR2 mutation relative to 

unaffected littermates, without detection of choanal atresia. The significant correlation between 

specific craniosynostosis syndromes and reduced nasal airway volume in mouse models for 
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craniosynostosis and human pediatric patients indicates comorbidity of choanal and 

nasopharyngeal dysmorphologies and craniosynostosis conditions. Genetic, developmental and 

epidemiologic sources of these interactions are areas particularly worthy of further research.

Introduction

We present a review of case reports that link craniosynostosis and choanal atresia to 

highlight the uncertainty of a choanal atresia diagnosis in pediatric craniosynostosis patients 

and provide anatomical data from human and mouse to more fully define choanal and 

associated dysmorphologies. The lack of a precise definition of choanal atresia in the current 

craniosynostosis literature results in an unclear set of standards for the diagnosis of choanal 

dysmorphologies. The developmental genetic significance of the association of choanal 

atresia and craniosynostosis and the implications for developing appropriate therapeutics 

requires a clear understanding of these anomalies.

The Human Choanae

In humans, the choanae are defined in several ways. Osteologically, the choanae are the 

posterior openings of the right and left nasal passages that are bordered medially by the 

posterior border of the vomer, superiorly by the sphenoid body, laterally by the medial 

pterygoid plates, and inferiorly by the horizontal plate of the palatine bones1 (Fig. 1). An 

anatomical definition includes these osteological borders of the choanae, or posterior nares, 

while incorporating the surrounding soft tissues: the choanae are the pair of posterior 

apertures of the nasal cavity that open into the nasopharynx. Each choana can be defined 

functionally, as an internal nostril, connecting the nasal air space and the posterior roof of 

the pharyngeal cavity (Fig. 2). Study of extant jawed fishes and fossil vertebrates show that 

choanae evolved from a condition in which anterior and posterior external nostrils 

functioned without a connection between the nasal sac and the oral cavity2. The tetrapod 

choanae (“internal nostrils”) are homologous to the posterior external nostrils of jawed 

fishes2 and are a key feature of the evolution of tetrapods, a group that includes, reptiles, 

mammals, and humans. The tetrapod respiratory system appeared with the evolution of the 

palate separating the nasal and oral respiratory systems. Only tetrapods possess choanae2.

Embryogenesis of the choanae is complex, characterized by several distinct developmental 

periods, each requiring the precise spatiotemporal coordination of the development of 

diverse tissues and functioning spaces before the final structure and function are reached 

(Fig. 3). At the end of the seventh week of prenatal ontogeny, the medial nasal prominences 

fuse3, providing the foundation for the primary palate3,4. The posterior portion of the 

intermaxillary process becomes the oro-olfactory, oronasal, or nasobuccal membrane, which 

separates the developing olfactory sac from the oral cavity3,5. When this membrane ruptures, 

the primary choanae are formed, permitting communication between the nasal and oral 

cavities3,6. At this stage, the lateral palatal shelves are still oriented vertically3,6. As these 

shelves transition downward to their final horizontal position, the remnants of the primary 

choanae become the incisive foramen, the primary palate fuses to the secondary palate 

posteriorly, the right and left lateral shelves of the secondary palate fuse along the midline, 
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and the posterior or secondary choanae are formed and shifted posteriorly following this 

progressive fusion3,5–8. During this time, the nasal septum has formed from the roof of the 

nasal cavity to meet the superior surfaces of the primary and secondary palates along the 

midline, dividing the left and right nasal cavities3. The completion of this process results in 

separation of the right and left nostrils and separation of the nasal and oral cavities, with the 

secondary choanae defining the posterior aspect of the left and right nasal cavities 

immediately rostral to the nasopharynx. For the purposes of this article, the secondary 

choanae are referred to generally as the choanae.

Choanal Atresia – Definition, development and diagnosis

Errors in timing, organization, or development of the palate can give rise to numerous 

dysmorphic conditions, including various degrees of clefting of the hard and/or soft palate4. 

Choanal atresia is a less common, though medically significant, anomaly associated with 

errors of development of the nasal cavity and palate. Choanal atresia is defined as the 

complete obstruction of the posterior nasal apertures (choanae) by osseous tissue, either 

alone or in combination with non-osseous tissue1,9–11. This blockage may occur unilaterally 

or bilaterally and results in a lack of communication of the nasal cavity with the pharyngeal 

cavity via the nasopharynx1, thereby preventing inhalation and exhalation of air through the 

affected nasal passage(s). Two major osteological deformities have been described in 

choanal atresia: 1) a medialization of the medial pterygoid plates; and 2) a thickening of the 

posterior vomer9,10,12,13. Either of these deformations can lead to a narrowing of the 

choanae, potentially resulting in complete obstruction of the choanae. Several developmental 

theories are commonly cited in the formation of choanal atresia: (1) persistence of the 

buccopharyngeal membrane from the foregut; (2) persistence or abnormal location of 

mesoderm forming adhesions in the nasochoanal region; (3) persistence of the nasobuccal 

membrane of Hochstetter; and (4) misdirection of neural crest cell migration and subsequent 

flow of mesoderm1,5,9–11,14. However, none of these provides a precise explanation for 

obstruction or minimization of the size of the choanal openings by developmental processes, 

and to date, there has been no definitive evidence supporting one theory over the others.

Significantly, choanal atresia must be differentiated from choanal stenosis, a diagnosis 

defined as the narrowing of the posterior choanae without complete obstruction15, and from 

nasal pyriform aperture stenosis, which involves narrowing of the skeletal borders of the 

anterior nasal cavity1,16,17. Precise definitions are required to correct common errors that 

incorporate narrowing or incomplete obstruction of the choanae within the definition of 

choanal atresia or that conflate choanal atresia with choanal stenosis (see, e.g., 10,18–20). The 

potential for the misdiagnosis of choanal atresia has been recognized in pediatric patients 

with major craniofacial anomalies since these conditions routinely include some form of 

midfacial retrusion. Airway obstruction is common in craniofacial syndromes due to 

potential maldevelopment of the palate (floor of the pyriform aperture), the nasal airway, the 

nasopharynx, or the entire midfacial skeleton in the production of midfacial 

dysmorphogenesis1,21–23.

Choanal atresia is typically suspected in infants exhibiting respiratory distress, particularly 

when feeding12,13. Bilateral choanal atresia in neonates presents an emergent situation, as 
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infants are obligate nasal breathers. Bilateral choanal atresia leads to cyclic cyanosis relieved 

by crying which facilitates mouth breathing1,10,11. While truly complete obstruction of the 

posterior choanae can only be confirmed through diagnostic imaging or endoscopy, choanal 

atresia is often diagnosed by the inability to cannulate the nasal passage with a small 

catheter, a procedure that cannot definitively distinguish partial stenosis or complete 

obstruction of the choanae9,12,17,22,24. The incidence of choanal atresia ranges from 1 in 

5000–8000 live births, with a 2:1 higher occurrence in females9,10,13,24,25. Unilateral 

choanal atresia is slightly more common than bilateral atresia, while bilateral atresia is more 

common when other craniofacial malformations are present9,10,13,24.

In an early review, Durward and colleagues (1945) defined choanal atresia as a very rare 

condition and concluded that the association between choanal atresia and other syndromic 

craniofacial dysmorphologies was no more than spurious26. Improvements in diagnostic 

imaging and neonatal care have permitted researchers to make the explicit link between 

choanal atresia and a number of craniofacial disorders, most notably CHARGE syndrome, 

with an estimated 7–29% of choanal atresia patients also being diagnosed with CHARGE10. 

Syndromic craniosynostosis patients make up another core subset of patients diagnosed with 

choanal atresia, with specific associations made between choanal atresia and Antley-Bixler, 

Apert, Beare-Stevenson, Crouzon, Crouzonodermoskeletal (Crouzon with acanthosis 

nigricans), Jackson-Weiss, and Pfeiffer syndromes1,10,15,17,18,27–29.

Choanal Atresia and Syndromic Craniosynostosis in Pediatric Patients

Craniosynostosis is a condition of complex etiology that always involves the premature 

fusion of one or multiple cranial sutures and includes various anomalies of the soft and hard 

tissues of the head30. In cases of syndromic craniosynostosis, the closed suture occurs as 

part of a suite of symptoms or features, and mutations in a number of genes have been 

identified as being associated with these syndromes (see, e.g.,30–32). The nearly 200 

identified craniosynostosis syndromes account for approximately 15% of all 

craniosynostosis cases30. Recent work stresses the complexity of craniosynostosis 

phenotypes even in cases of nonsyndromic (isolated) craniosynostosis, emphasizing that 

craniosynostosis conditions need to be defined not simply by premature suture closure, but 

more broadly as growth disorders that affect many different cell and tissue 

lineages30,31,33–35. Consequent to the broad developmental impact of the genes on which 

craniosynostosis-causing mutations are located (e.g., fibroblast growth factor receptors, 

TWIST), many craniofacial tissues are affected in craniosynostosis syndromes, including 

skeletal (bone and cartilage), muscular, neural, and circulatory structures. Facial 

dysmorphologies potentially associated with craniosynostosis syndromes include maxillary 

dysmorphogenesis resulting in a reduced midface, hypertelorism, exopthalmos, depressed or 

low nasal bridge, mandibular prognathism, cleft palate, and highly arched and/or constricted 

palate27,36–40. Any one of these structural anomalies has the potential to contribute to 

altering the position, size, shape, or patency of the choanae.

Craniosynostosis has been explicitly linked with choanal atresia in one of the seminal texts 

on the diagnosis and evaluation of craniosynostosis, noting that atresia or stenosis is an 

“expected” clinical finding in craniosynostosis syndromes, particularly where there have 
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been structural rearrangements in the cranial base27, a region of the skull that forms 

endochondrally from a complex series of cartilages that underlie the brain. Additional links 

between syndromic craniosynostosis and choanal atresia can be found in review and 

research articles throughout the clinical literature (see, e.g.,1,10,15,17,18,29,37). Table 1 lists 

published case reports that have explicitly reported choanal atresia in patients diagnosed 

with syndromic craniosynostosis. Craniosynostosis cases reporting only choanal stenosis are 

not included.

Of the 54 case reports reviewed, none included a definition of choanal atresia, and several 

provide descriptions suggesting that the condition may have more likely been choanal 

stenosis19,20,41. For example, various authors reported (emphases added):

• ”all four of our patients exhibited choanal atresia (narrowed nasal passage)”19

• ”incomplete choanal atresia led to respiratory difficulties”20

• condition was first labeled “choanal atresia” and later as “choanal hypoplasia”41, 

the former being a diagnostic category and the latter being a description that 

suggests the developmental basis of this anomaly.

Additionally, the methods of evaluation and diagnosis were often not indicated, and the 

fundamental differences among diagnostic tools were not discussed by these authors. Only 

eight cases reported the use of CT imaging to confirm the choanal atresia diagnosis42–49, 

while others cited Doppler evidence50, choanagraphy51, inability to pass a naso-gastric tube 

through the posterior choanae52, simple reference to “imaging”47, and pharyngiogram53. 

Although CT imaging was mentioned in seven additional case reports, those reports did not 

include an indication of whether the scan was utilized in the choanal atresia diagnosis53–59. 

Another nine reports mentioned various types of surgical intervention in which direct 

visualization may have been possible, but no explicit description of the surgical evaluation 

was given54,57,60–66. These reports also varied widely in the detail of the description of co-

occurring facial anomalies that might contribute to respiratory difficulties. It is important to 

note that, unless the above-referenced case reports included images of the diagnostic scans, 

it is impossible to say for certain whether the suggested choanal atresia was correctly 

diagnosed.

Looking Forward

The clear implication of the case reports (Table 1) is the need for a consistent application of 

an invariant clinical definition of choanal atresia that is distinct from choanal stenosis. The 

term “choanal atresia” was used in a number of these case reports, yet the condition 

described may actually be choanal stenosis. Without review of each described patient’s 

medical records and associated diagnostic images and results, we are only able to note that 

the diagnosis is not well supported based on the published information and cannot 

definitively state whether any of these choanal atresia diagnoses are truly erroneous. Other 

reports simply group the conditions together and report a finding of “choanal stenosis/

atresia.” Although options may be similar from a treatment perspective, understanding 

choanal stenosis and atresia as potentially different pathologies with distinct etiologies 

requires more precise descriptions and further research. While several craniofacial textbooks 
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and journal articles provide clear definitions of choanal atresia1,9–11,16, many authors either 

omit a definition from published case reports or fail to explicitly match a given definition to 

their clinical observations and reports. Additionally, while medical CT is acknowledged to 

be the gold standard for the diagnosis of choanal atresia1,11,15,17,18,67, the vast majority of 

published case reports either fail to report the use of this preferred diagnostic methodology, 

or utilize less reliable techniques that may erroneously lead to a choanal atresia diagnosis 

when choanal stenosis or other choanal or nasal dysmorphology is present. Sculerati and 

colleagues’ previous study of over 250 pediatric patients with major craniofacial anomalies 

produced results that support our observations, finding that choanal atresia was often 

misdiagnosed when respiratory difficulties were actually being caused by nasal obstructions 

secondary to midfacial retrusion21. In addition to the need for a better understanding of the 

facial dysmorphologies associated with midfacial retrusion (hypoplasia, flattening, 

dysgenesis), further research should be directed towards the investigation of the relationship 

between choanal stenosis and choanal atresia and whether they are distinct abnormalities or 

represent unique conditions along a continuum of choanal dysmorphogenesis. Given the 

state of the existing literature, it is recommended that case reports and research articles 

focusing on choanal atresia provide both an explicit definition of the condition, as well as 

details regarding the methodology used to detect and diagnose the condition. Recent caution 

regarding radiation exposure when using CT as a primary diagnostic tool68 provides a timely 

opportunity to refine both the clinical definition of choanal atresia, as well as to develop a 

new standard for detection and diagnosis.

Research focused on choanal development, structure, and morphology in humans (especially 

within the pediatric craniosynostosis syndrome population) and animal models is needed to 

better understand the true incidence of choanal atresia within this patient population. Several 

studies have reported nasal airway volume or morphology in pediatric choanal atresia 

patients12,13, but little work has been done to quantify or describe choanal or nasal airway 

morphology in syndromic craniosynostosis patients. Perhaps more importantly, there have 

been few serious attempts to tie craniosynostosis conditions to choanal atresia 

developmentally or by molecular causation.

A recent analysis of 3D medical CT scans comprising children diagnosed with Apert, 

Pfeiffer, Muenke, or Crouzon syndrome and typically developing children (aged 0–23 

months) without craniosynostosis who underwent CT imaging for unrelated conditions (e.g., 

seizures) provides information about differences in facial skeletal shape among 

craniosynostosis syndromes40. The 3D isosurfaces were reconstructed from the set of 

DICOM images40, and these 3DCTs were evaluated visually for the presence of choanal 

atresia. Of 33 individuals diagnosed with syndromic craniosynostosis, none had choanal 

atresia. Nasopharyngeal volume, including the ethmoidal air cells, was estimated for each 

patient using the segmentation editor of the software package Avizo 6.3 (Visualization 

Sciences Group, VSG). The nasal vestibule defined the anterior end of the nasal cavity, with 

the borders defined by soft tissue when present in individual 3DCT slices or by manually 

closing the nostrils when soft tissue was not present (Figure 4A–C). Posteriorly, only the 

nasopharyngeal lumen that was present anterior to or coincident with a line connecting the 

most posterior points on the right and left medial plates of the pterygoid was included in the 

segmented volume (Figure 4D). Comparisons between unaffected children and those 
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diagnosed with syndromic craniosynostosis reveal potentially reduced nasal airway volumes 

in children diagnosed with Apert and Pfeiffer syndromes (Figs. 5 and 6). Analysis of cross 

sectional data representing nasal airway volumes of varying groups from birth to ~30 

months of age shows that children diagnosed with Apert and Pfeiffer syndromes appear to 

share similar nasal airway volumes with children diagnosed with Muenke syndromes and 

their typically developing peers at birth. Although the sample size is small, the results also 

indicate that children diagnosed with Crouzon syndrome may have reduced nasal airway 

volumes at birth. Based on this analysis using limited samples, children diagnosed with 

Apert and Pfeiffer syndromes may experience an early postnatal developmental divergence 

that results in smaller overall nasal airways within the first year of life (Fig. 5).

The distinction between true choanal atresia and more diffuse nasal airway stenosis that is 

often present in syndromic craniosynostosis is important for both clinical and basic research 

reasons. While it is paramount that researchers in the field have a clear understanding of the 

correct terminology in order to ensure appropriate communication and reporting, there are 

also potential clinical ramifications to consider. Choanal atresia in the newborn is a 

condition that is very amenable to early surgical intervention, which can often obviate the 

need for tracheostomy, prolonged NICU hospitalization, and continued respiratory 

monitoring. Nasal airway obstruction in the newborn with syndromic craniosynostosis may 

not be as readily surgically correctable in early life. Incorrect terminology may lead a 

surgeon down an errant pathway and may lead the child’s family to have unrealistic 

expectations. Knowledge of associations between craniosynostosis and choanal atresia will 

require development of standards of diagnosis and application of those standards.

Mouse models have been developed for a number of craniosynostosis syndromes that 

replicate the genetic cause as well as the skeletal and soft tissue phenotypes seen in human 

patients, including midfacial hypoplasia69–75. Several of these models have also been 

utilized to investigate nasal airway volumes. A recent study of the soft tissue phenotype of 

the Fgfr2c+/C342Y Crouzon/Pfeiffer syndrome mouse model found a significant reduction in 

nasal airway volumes in littermates carrying this mutation relative to unaffected 

littermates35. The C342Y mutation is equivalent to the most common mutation associated 

with human patients diagnosed with Crouzon syndrome. The human Crouzon syndrome 

phenotype has been associated with a number of craniofacial dysmorphologies related to 

both hard and soft tissues, such as premature closure of the coronal suture, midfacial 

hypoplasia/retrusion, and alterations to nasopharyngeal morphology27,38. Skeletal 

phenotypic correspondences between human patients with Crouzon syndrome and the 

Fgfr2c+/C342Y mouse model of Crouzon syndrome have been demonstrated, and this mouse 

model also mimics the altered human nasopharyngeal phenotype35. At P0 (day of birth), 

heterozygous Fgfr2c+/C342Y littermates exhibited a statistically significant restriction in 

nasal airway volume (2.81 ± 0.17 mm3), as compared to their unaffected littermates (3.28 

± 0.13 mm3, p = 0.012)35. However, choanal atresia was not reported in any of the mice 

studied. As of this date, there have been no published reports of definitive choanal atresia in 

any mouse models of syndromic craniosynostosis.

While murine data provide valuable information about the molecular and developmental 

mechanisms that produce the choanae, significant differences in human and murine 
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craniofacial anatomy and development must be taken into consideration when evaluating the 

comorbidity of choanal atresia and craniosynostosis using cross-species comparisons. Due to 

the rostral-caudal elongation of the murine premaxillae, maxillae, palatine bones, and the 

soft palate, different osteological and soft tissue boundaries define the murine choanae 

relative to humans. In humans, choanal atresia has been attributed to a combination of a 

thickening of the posterior vomer with medialization of the pterygoid plates of the sphenoid. 

Although useful murine models of choanal atresia have recently been produced and will be 

critical to determining the molecular and developmental basis of choanal atresia76, species-

specific differences including the anatomical separation of the vomer and pterygoid plates 

along the rostro-caudal axis in mice suggests an alternate structural foundation for murine 

choanal atresia (Fig. 7). While mouse models are an excellent tool for understanding the 

etiology of human craniofacial disorders like craniosynostosis, given the tremendous number 

of genetic mutations implicated in craniosynostosis conditions, each model can represent 

only a single development pathway to the craniosynostosis phenotype. We propose that there 

are potentially as many ways to produce choanal atresia.

The significant correlation between specific craniosynostosis syndromes and reduced nasal 

airway volume in mouse models for craniosynostosis and human pediatric patients indicates 

comorbidity of choanal and nasopharyngeal dysmorphologies and craniosynostosis 

conditions. Genetic, developmental and epidemiologic sources of these interactions are areas 

particularly worthy of further research.
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Figure 1. 
3DCT reconstruction of the cranium of a typically developing child viewed from below 

showing the osteological borders of the choanae: vomer (blue), sphenoid body (pink), 

medial pterygoid plates (red), and horizontal plates of the palatine bones (purple).
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Figure 2. 
Mid-sagittal section of adult human showing the position of the choanae relative to the 

human nasal, oral, and pharyngeal airways.
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Figure 3. 
Formation of the secondary palate and choanae. Inferior view of the forming palate showing 

(left) vertically oriented palatal shelves, (center) the palatal shelves as they rotate downward 

into a horizontal position and begin to approximate one another to form the primary 

choanae, and (right) fused palatal shelves in their final orientation, with the incisive foramen 

at the intersection of the primary and secondary palate and the secondary, or definitive, 

choanal openings at the posterior end of the palate. (Adapted from 3)
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Figure 4. 
Nasal airway segmented from CT image of a typically developing child at 10 months, as an 

example of how the nasal airway volume data presented in Figure 5 were collected. Top 

Left) Axial CT image at the level of the orbits indicating area of close-up (red box) for three 

additional anatomical levels including: Top Right) the nasal cavity (red) with soft tissue of 

the nose bordering the anterior nares at the level of the maxillary sinuses; Bottom Left) mid-

nares level with partial soft tissue border of the anterior nares; and Bottom Right) at the level 

of the alveolar processes of the maxillae showing the nasopharyngeal lumen (red) anterior to 

a line (blue) connecting the most posterior points on the medial plates of the pterygoid bone.
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Figure 5. 
Scatterplot of total nasal airway volume and age (in months) of individuals diagnosed with 

various craniosynostosis syndromes and typically developing individuals. Sample sizes are 

as follows: Apert (n = 13), Crouzon (n = 10), Muenke (n = 5), Pfeiffer (n = 5), unaffected (n 

= 39). Lines representing the results of regression analysis showing the relationship between 

age and total nasal airway volume (including the ethmoidal air cells) for each group. It is 

important to note that this plot and the regression lines estimated from the cross-sectional 

data are used to demonstrate the variation in nasal airway volumes among craniosynostosis 

syndromes. As the nasal airway volume data are based on cross-sectional datasets for each 

diagnostic category, these regression lines do not necessarily indicate growth patterns or 

growth trajectories.
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Figure 6. 
3DCT reconstruction of a typically developing child (left) showing superimposed 

segmentations of skin surface (beige), brain surface (grey) and upper airway lumen (blue). 

At right are “virtual endocasts” of the nasopharynx of a child with Apert syndrome (pink, at 

left) and a typically developing child (maroon, at right) as segmented from high resolution 

3DCT. Superimposition of the two virtual endocasts (center) shows local areas of greatest 

shape difference. This comparison is not a statistical comparison of the nasopharyngeal 

anatomy of patients with Apert syndrome and typically developing individuals; rather, this 

superimposition provides an example of how nasopharyngeal morphology of 

craniosynostosis patients may differ from typically developing individuals.
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Figure 7. 
3DCT reconstruction of the cranium of 6 week old C57BL/6J mouse showing the bones that 

form the osteological borders of the choanae in the human skull: vomer (blue), basisphenoid 

(pink), medial pterygoid plates (red), and horizontal plates of the palatine bones (purple). 

The vomer (which is ghosted in this illustration) lies deep to the maxillae and so is hidden in 

an inferior view. The presphenoid is shown in green. Note the anatomical separation of these 

bones compared to the human skull in Figure 1. The black arrow indicates the position of the 

choanae in mice at the soft tissue intersection of the posterior nasal cavity and nasopharynx.
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