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Transformation-adversarial network for road detection in LIDAR rings,
and model-free evidential road grid mapping

Edouard CAPELLIER1,2, Franck DAVOINE2, Veronique CHERFAOUI2, You LI1

Abstract— We propose a deep learning approch to perform
road-detection in LIDAR scans, at the point level. Instead of
processing a full LIDAR point-cloud, LIDAR rings can be
processed individually. To account for the geometrical diversity
among LIDAR rings, an homothety rescaling factor can be
predicted during the classification, to realign all the LIDAR
rings and facilitate the training. This scale factor is learnt
in a semi-supervised fashion. A performant classification can
then be achieved with a relatively simple system. Furthermore,
evidential mass values can be generated for each point from
an observation of the conflict at the output of the network,
which enables the classification results to be fused in evidential
grids. Experiments are done on real-life LIDAR scans that
were labelled from a lane-level centimetric map, to evaluate
the classification peformances.

I. INTRODUCTION

LIDAR sensors are traditionally used within occupancy
grid mapping frameworks, to detect obstacles and infer the
traversability of the environment. Evidential occupancy grid
mapping frameworks usually assume that the ground is fully
traversable, and evaluate the occupancy of cells from strong
geometrical assumptions [1]–[3].

Yet, the applicability of such systems, in the context of
autonomous driving, can be limited. First of all, they might
fail to generate appropriate results, when the geometrical
model they are based on is not satisfied anymore, which
is likely to occur in complex urban areas. For example,
the flat world assumption is not satisfied anymore at a
speed bump. Then, areas that are traversable by an urban
autonomous vehicle usually belong to the road: modelling
the ground is thus not sufficient in most driving situations.
Road detection in LIDAR scans is thus crucial, when aiming
to implement evidential occupancy grid mapping algorithms
in autonomous systems, that are intended to drive in urban
areas. The use of machine learning could leverage the need
for strong geometrical assumptions, as the system could
be able to learn how to behave on edge-cases (speed-
bumps, for instance), instead of relying on strong geometrical
assumptions.

Inspired by the recent PointNet architecture [4] and novel
advances in evidential classification [5], we propose to rely
on a neural network that processes LIDAR rings individually,
and can be used to output evidential mass values for each
LIDAR point. Being able to represent the output of the neural
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Fig. 1: Example of classification result. The grey ego-vehicle drives
towards the road exit. The purpler a point is, the more likely it is
to be on the road.

network as evidential mass values is particularly valuable
when trying to understand what was learnt, since the total
amount of knowledge available at each position can be
quantified. Moreoever, the evidential outputs of the network
can directly be used in a model-free evidential grid mapping
framework.

The paper is organized as follows: in Section II, we
propose a short litterature review ; Section III presents how
evidential mass values can be obtained from a neural network
that was trained on coarse labels ; Section IV presents the
ring-level neural network that we propose to perform road
detection ; Section V presents the data collection and evalu-
ation procedures used to train and evaluate the classifier and
finally, Section VI presents a simple model-free evidential
grid mapping system relying on the proposed classifier.

II. LITTERATURE REVIEW

A. Evidential grid mapping from LIDAR scans

Yu et al. [1] originally proposed an evidential sensor model
to build polar occupancy grids from LIDAR scans. Based
on the angular resolution and the beam divergence of the
sensor, a polar missed detection rate was estimated, and a
false alarm rate was empirically defined. From a ground-
detection step relying on a flat-world assumption, the belief
in the occupancy of each grid cell was then evaluated over
time, according to an evidential framework. Such evidential
polar grids however have to be interpolated, and mapped
into a Cartesian coordinate system to perform fusion over
time, at the cost of a loss in the correctness of the model.
We ourselves proposed in [2] to evaluate a cartesian missed
detection rate, to tackle this limitation while relying again on
a ground detection algorithm and a flat world assumption. We



however observed that such strong geometrical assumptions
lack of flexibility, and are not always satisfied in practice.
Simple ground detection also often fails to properly capture
the actual drivable area. A road detection step, alongside a
more flexible model, are thus needed to generate evidential
grids from LIDAR scans in a more robust fashion.

B. Road detection from LIDAR scans

State-of-the-art approaches for road detection in LIDAR
scans rely on image processing techniques. Fernandes et
al. [6] proposed to project LIDAR points into a 2D image
plane, to upsample them, and to detect the road in this image
plane via an histogram similarity measure. Caltagirone et
al. [7] proposed to project LIDAR points into a 2D sparse
feature grid corresponding to a bird’s eye view, and to train a
convolutional neural network to predict a dense road region
from this sparse representation. Lyu et al. [8] proposed to
train a neural network on range images generated from the
spherical projection of LIDAR scans, and to fit a polygon
representing a dense drivable area on the predicted road
points. Although those approaches are currently the best
performing LIDAR-only road-detection approaches on the
KITTI dataset, they all aim at predicting a dense road area
from a sparse LIDAR scan, and thus rely on upsampling. All
those approaches then predict the presence of road on loca-
tions where no actual LIDAR measurements were actually
available, which is an undesirable behavior for a LIDAR-only
road detection algorithm. Indeed, gaps or small obstacles
could be present but remain unobserved due to the sparsity
of a LIDAR sensor, in areas where those agorithms would
predict the presence of road. Moreover, due to the limitations
of the KITTI dataset, in which the road is only labelled in a
front camera view, those systems do not detect the road on
complete LIDAR scans. Point-level road detection should be
performed in complete LIDAR scans, so as to only represent
information in areas that are actually observed.

C. PointNet: Machine Learning on raw point clouds

The recent PointNet architecture, introduced by Qi et
al. [4], processes vectors of raw point-clouds, in which
the point corrdinates are directly stored. PointNet applies
a multi-layer perceptron to each individual point, and pro-
duces a feature vector describing the whole point-cloud by
applying a global max operator on the features extracted
from each point. Althought simple, this solution has proven
to approach, or overpass, state-of-the-art performances on
several perception tasks relying on point-clouds. It was
extended in [9], by extracting local features in a point-
cloud at several contextual scales, based on the metric
distances between points. The resulting system outperforms
the original PointNet architecture, at the cost of an increased
complexity and inference time. However, PointNet archi-
tectures suffer from several drawbacks. First of all, they
require a fixed number of input points. Secondly, PointNets
usually expect normalized, relatively dense and constrained
inputs. This makes the architecture improper when aiming to
process large-scale LIDAR scans [10], and often requires to

split large point-clouds into individually processed voxels.
Processing LIDAR points at the ring level could however
leverage these limitations, as LIDAR rings are dense. Yet, a
proper grid mapping framework relying on such a point-level
classification is still to be defined. Especially, a proper way
to represent the outputs of such a classifier into an evidential
framework is still to be defined.

III. EVIDENTIAL REINTERPRETATION OF
BINARY GLR CLASSIFIERS

T. Denoeux, in [5], proposed to reinterpret generalized
logistic regression (GLR) classifiers as performing a fusion
of evidential mass functions. With such a view, it is possible
to construct evidential mass values, from the weights at the
output of a neural network. Thanks to this technique, it
becomes trivial to generate and accumulate evidential road
detection results into an evidential 2D grid from a classifier,
without relying on any explicit geometrical model. This is
what we call model-free evidential road grid mapping.

Let a binary classification problem with X = (x1, ..., xd),
a d-dimensional input vector, and Y ∈ Θ = {θ,¬θ} a
class variable. Let p1(x) be the probability that Y = θ
according to the fact that X = x. Let w be the output of
a binary logistic regression classifier, trained to solve the
aforementioned classification problem ; p1(x) is such that:

p1(x) = S(w) = S(

d∑
j=1

βjφj(xc) + β0) (1)

with S being the sigmoid function, and the β values being
usually learnt alongside those of the potentially non-linear
φi mappings. In Eq. 1, w exactly corresponds to the output
of a deep neural network trained as a binary GLR classifier,
with xc being its input. There exist αj values such that:

d∑
j=1

αj = β0 (2)

w =

d∑
j=1

wj =

d∑
j=1

(βjφj(xc) + αj) (3)

Each wj can then be seen as a piece of evidence towards θ
or ¬θ, depending on its sign. Let w+

j be the positive part
of wj , and let w−j be its negative part. Let w+ =

∑
w+

j ,
w− =

∑
w−j . An evidential mass function mLR can be

generated as follows:

mLR = {θ}w
+

⊕ {¬θ}w
−

(4)

This means that any binary GLR classifier can be seen as a
fusion of simple mass functions, that can be derived from
the parameters of the final linear layer of the classifier.
However, the αj values in Eq. 2 have to be estimated. Let
α = (αi, ...αd). T. Denoeux proposed to select the α vector
that maximize the sum of the mLR(Θ) mass values over the
training set, so as to get the most uncertain and cautious
solution. This leads to the following minimization problem:

minf(α) =

n∑
i=1

d∑
j=1

(βjφj(xi) + αj)
2 (5)



with {(xi, yi)}ni=1 being the training dataset.
An exact solution to this minimization problem exists [5],

but it requires to perform an additional post-processing step
after the training, and relies on the assumption that the
parameters obtained after the training are reliable. When
working with unperfect or coarse labels, an approximate
solution is thus needed. We observed in [11] that an approx-
imate solution to the minimization problem in Eq. 5 could
be obtained directly during the training, by considering the
α vector as the bias values of an Instance-Normalization
layer present at the output of the network. Let υ(xc) =
(υ1(xc), ..., υd(xc)) be the mapping modelled by all the
consecutive layers of the classifier but the last one ; let υj
be the mean value of the υj function on the training set, and
σ(υj)

2 its corresponding variance. Then, if it is assumed
that Instance-Normalization is used as the final layer of the
network, Eq. 5 becomes:

minf(α) =
n∑

i=1

d∑
j=1

((βj
υj(xc)− υj√
σ(υj)2 + ε

) +
d∑

j=1

αj)
2 (6)

After development, the following expression is obtained:

minf(α) = n

d∑
j=1

β2
j + n

d∑
j=1

α2
j (7)

By simply applying L2-regularization on the linear param-
eters of the final layer, this expression will be minimized
during the training. The network can then be trained to
generate relevant evidential mass values, even when the
network is optimized on coarse labels.

IV. TRANSFORMATION-ADVERSARIAL
NETWORK FOR POINT-LEVEL ROAD DETECTION

IN LIDAR RINGS

A. Ring-level PointNet

Typically, dense LIDAR sensors rely on stacked lasers
that individually sweep the scene. A LIDAR ring represents
a set of points that is obtained after the sweep of the
environment by a single laser of a LIDAR. To detect the
road in LIDAR scans, without having to transform the raw
points into another representation, a classifier inspired by
PointNet can be used. To leverage the limitations of PointNet
that were exposed in Sec. II, the processing is done at the
ring level. Indeed, the maximum number of points that a
LIDAR ring can include can be computed from the angular
resolution of the LIDAR. Then, contrary to what was done
in [4] and [10], no sampling of the point-cloud is needed.
Moreover, LIDAR rings are often dense, especially at short
range, since each laser sweeps the whole scene, which would
facilitate the reasoning of a PointNet-like network. And in
the event of missing points, the input vector can typically
be padded with an already present point, since the point-
cloud wise max-pooling operation used in PointNet can filter
duplicate point features. Finally, the maximum number of
points in each sweep is relatively small, which means that
the LIDAR rings will be easily processed in parallel.

However, LIDAR rings vary significatively among each
others: a ring acquired by a top laser and a bottom laser
will include points that were acquired at very different
distances. A training scheme, inspired by the recent successes
of generative-adversarial networks (GAN) in the image do-
main [12], was proposed to cope with this issue.

B. Transformation-adversarial network for LIDAR rings

GANs rely on the conjunction of two alternatively trained
systems. The first one, called the generator, is optimized
to generate artificial samples that are as realistic as pos-
sible. The second one, called the discriminator, is trained
to discriminate real and artificial samples. The two systems
are competing against each other: the generator aims at
fooling the discriminator, and the discriminator aims at
detecting samples generated by the generator. Similarly, we
propose a Transformation-adversarial network, or TAdNet,
composed of a Transformation network, and a Classifica-
tion/Discrimination network. In the original PointNet, T-Nets
predict affine transformation matrices applied to the whole
input cloud, and to intermediate features extracted by point-
level MLPs. Those T-Nets are optimized during the training,
alongside the other parameters of the network.

The Transformation network that we propose, which also
applies a transformation predicted by a T-Net to the input,
is optimized separately from the rest of the system. To
cope with the variability among LIDAR rings, the Trans-
formation network also includes an H-Net. This H-Net, or
homothety network, processes the transformed point-cloud
obtained from the transformation predicted by the T-Net,
and predicts an explicit rescaling factor, that is applied
to the coordinates of all the points. The input points are
represented by their Cartesian coordinates (x,y,z), spherical
coordinates (ρ,φ,θ), and their intensity. To account for the
risk of redundancy among the point features, the φ and
θ angles are the uncorrected azimuth and zenith at which
the point was acquired, while the Cartesian coordinates are
obtained after correction. Let h be the scale predicted by the
H-Net. Then, the coordinates of the input points are rescaled
as follows: x∗ = hx, y∗ = hy, z∗ = hz, ρ∗ = hρ. All the
other features are left unchanged.

The Transformation network can then learn to remap all
the LIDAR rings into a constrained range, that is suitable
for the road classification task. We assumed that it should be
difficult to predict the ring ID of properly remapped and
constrained LIDAR rings. The Transformation network is
thus trained alongside a Classification/Discrimination net-
work, and aims at generating similar LIDAR rings. This
Classification/Discrimination network is in fact a multi-task
PointNet, whithout any initial T-Net. It has to both perform
road detection among the LIDAR points, and predict the ID
of the LIDAR ring that it processes. This ring ID is predicted
from the output of a small Pointnet-like subnetwork that
is fed with the vector of concatenated point-level features
and cloud-level features, that can be obtained after the max-
pooling operation that every PointNet-like network uses.
Following the results in Eq. 7, Instance-Normalization is



Fig. 2: Transformation-adversarial network for road-detection in LIDAR scans

used on the outputs used for road detection. The whole
system is depicted in Fig. 2.

C. Training procedure

A PointNet-like system is typically trained with a multi-
task loss. In the context of this study, the problem is point-
level road detection in LIDAR rings. The loss chosen for
this task, noted Lce was the classical cross-entropy loss. The
second component of the loss used for the training was a
geometrical regularization loss. Let A be the transforma-
tion matrix predicted by the T-Net inside the Classifica-
tion/Transformation network. This 64 by 64 matrix is more
difficult to optimize than the simple transformation matrix
predicted by the first T-Net, but should be as orthogonal as
possible. Then, the loss on A to minimize, noted Lgeo, is:

Lgeo(A) = ||I −AAT ||2 (8)

Finally, the ring ID prediction error is again evaluated from
the cross-entropy loss, calculated from the actual ring ID. We
note this loss Lring. Let LTr, the loss used to optimize the
Transformation network, and LCD, the loss used to optimize
the Classification/Discrimination network. For each ring, let
Proad, Yroad, PRing and YRing be, respectively, the point-
wise predicted probability that each point belongs to the road,
the corresponding road labels, the predicted ring ID and the
corresponding ring label. Then:

LCD = λroadLce(Yroad, Proad)

+ λringLce(YRing, PRing)

+ λgeoLgeo(A)

LTr = λroadLce(Yroad, Proad)

− λringLce(YRing, PRing)

+ λgeoLgeo(A)

The whole system is trained thanks to the algorithm 1. To
facilitate the training, UOut [13] was used. Originally, UOut
was proposed because it was observed that Dropout shifts
the mean and standard deviations of the features, which is
not desirable when using Batch-Normalization, or Instance-
Normalization. Uout, on the other hand, marginally affects
those statistics. As Instance-Normalization is used on the
output features of the network, due to the results of Eq. 7,
UOut is a reasonnable choice to regularize the model.

Algorithm 1 Training of the proposed system
Transformation network: T ;
Classification/Discrimination network: CD ;
N training rings are available ;
for e epochs do

for N/n iterations do
Sample n batches (b0, .., bt) from the training set
for i in range(n) do

b∗i = T(bi)
RoadClassif, RingID = CD(b∗i )
Update CD from LCD

end for
for i in range(n) do

b∗i = T(bi)
RoadClassif, RingID = CD(b∗i )
Update T from LTr

end for
end for

end for

V. EXPERIMENTS AND EVALUATION OF THE
CLASSIFICATION PERFORMANCES

A. Automatic labelling of a LIDAR dataset from a lane-level
map

To properly evaluate the system, a dedicated LIDAR
dataset was needed. No open-source LIDAR dataset includ-
ing 360° point-level road labels was available when conduct-
ing this study. An autonomous perception platform equipped
with a Velodyne VLP-32C running at 10 Hz was thus used
to collect raw LIDAR scans in Guyancourt, France, in order
to create a dataset with point-level road labels in LIDAR
scans. Each LIDAR ring was composed of a maximum of
1800 points. The labelling was done automatically thanks to
a pre-existing lane-level centimetric map, as shown in Fig 3.
The data collection vehicle also included a Trimble BX940
inertial positioning system coupled with an RTK Satinfo
modem, for localization.

A ground detection algorithm [14] was used to label
obvious obstacles with a probability of being road-points
equal to 0. The detected ground-points were projected into
the map plane, for labelling. Following [15], the localization
error was assumed to follow a zero-mean Gaussian model.
Covariance matrices corresponding to the estimated position
were provided by the localization system. The variance of



(a) Raw point-cloud, and the cor-
responding map available at the
recording position. Green points
belong to the pre-detected ground.

(b) Resulting point-cloud. Red
points are labelled as obstacles ;
the purpler a point is, the most
likely of being a road point it is

Fig. 3: Automatic labelling procedure of a LIDAR point-cloud from
a lane-level centimetric map.

the localization error was assumed to be the maximum
variance on the easting/northing coordinates, noted σ2

xy .
This pessimistic assumption facilitates the computations, and
accounts for possibly undetected timing or calibration errors.
Let a detected ground-point xi, with di the distance between
its projection on the map plane and the closest mapped road-
edge. The labelled probability of xi being a road point yi can
be computed from the cumulative distribution function of the
normal distribution. If xi was projected into a mapped road:

yi =

∫ di

−∞

1

σxy
√

2π
exp
− 1

2 (
x
σxy

)2
dx (10)

Otherwise:

yi = 1−
∫ di

−∞

1

σxy
√

2π
exp
− 1

2 (
x
σxy

)2
dx (11)

To prevent the presence of redundant data, the labelling
procedure was only launched every ten scans. It was also
disabled when the vehicle was stopped. The final dataset was
finally generated from 2334 labelled LIDAR scans acquired
in Guyancourt, France. In practice, when di was larger than
10 ∗ σxy , yi was set to either 0 (the point is not projected
into a road) or 1 (the point is projected into a road). 0-
1 labels represent more than 96,5% of the labels. A 70/30
split was used to create a training and a validation set from
this data. To ensure that the train and validation dataset are
significantly different, the scans were first ordered according
to their recording date. Then, the validation set was created
from the earliest and latest fifteen percents of the dataset.
With such a dataset of automatically and softly labelled
LIDAR scans, being able to generate evidential mass values
while training on coarse labels, as allowed by the use of
Instance Normalization and L2-regularization, is valuable.

B. Evaluation procedure and results

We report the clssification results in Table I. Three systems
were evaluated: the proposed Transformation-Adversarial
Network (TAdNet), a ring-level PointNet, and a scan-level
PointNet, to quantify the interest of the refinements intro-
duced with TAdNet. The point-level MLPs were following

All labels 0-1 labels

Model F1-score Accuracy F1-score Accuracy

PointNet [4] - ring 0.868 0.973 0.907 0.983
PointNet [4] - scan 0.899 0.980 0.933 0.988

TAdNet - ours 0.933 0.987 0.959 0.993

TABLE I: Classification results for PointNet on LIDAR scans and
tings, and for the proposed TAdNet, on the validation set

the original architecture proposed in [4], with a ReLU acti-
vation function and systematic use of Batch Normalisation.
The three systems were implemented in PyTorch. The two
PointNets consisted in exactly the same layers as TAdNet,
except for the H-Net and the ring-ID prediction subnetwork
that were removed. Instance Normalization and UOut were
still used, as the resulting systems were all intended to be
used for model-free evidential road-grid mapping. The Adam
optimizer was used for the three networks, with a learning
rate of 0.0001. Following the recommendations from the
original authors of Uout, the random numbers generated
by the Uout layers were sampled from a [−0.1, 0.1] range.
Empirical observations showed that, instead of only applying
L2-regularization to the final layer of the networks, applying
it to all the parameters led to better numerical stability. Then,
a weight-decay of 0.0001 was applied to all the parameters
of the three networks, except for the parameters of the
Transformation-network in TAdNet, on which a weight-
decay of 0.00001 was applied. All the T-Nets and the H-Net
were initialized with identity transformations. Following [4],
all the parameters of the multi-task losses were set to 1 for
the regular PointNets, and for TAdNet, λring was set to
0.8, λroad was set to 1.2 and λgeo was set to 1. TAdNet
and the ring-level PointNet were trained on mini-batches
including 64 rings, and the scan-level PointNet was trained
on mini-batches of 2 scans, as each scan was composed of
32 rings. We report F1-scores and accuracies on the full
validation dataset, and on only the 96.5% of 0-1 labels. In
the case of non-binary labels, a point was considered to
be labelled as a road-point if its labelled probability was
higher than 0,5. And a point was considered to be classified
as road if the predicted probability was higher than 0,5.
Table I reports the respective results of those approaches in
the validation set. All approaches have satisfactory results,
even if TAdNet outperforms all the approaches in all the
indicators. The interest of the rescaling performed by TAdNet
is obvious, as the ring-level PointNet is by far the worst
performing approach, while TAdNet outperforms the scan-
level PointNet, even though it only processes rings.

VI. MODEL-FREE EVIDENTIAL ROAD GRID
MAPPING FROM THE CLASSIFICATION RESULTS

Evidential road grids can easily be generated from TAd-
Net, and the expression in Equation 4. For each point, three
evidential mass values can be extracted: m({R}), for the
road class ; m({¬R}), for the obstacle class ; and m({R,
¬R}), for the unknown class. Then, a grid can be obtained
by projecting all the LIDAR points into the xy-plane. The



Fig. 4: Simple model-free evidential road grid mapping algorithm

(a) m({R}) (b) m({¬R}) (c) m({R, ¬R})

Fig. 5: Model-free evidential road grid mapping. The accumulated
evidential grid is overlayed with the point-level evidential mass
values generated from the LIDAR sensor

Dempster-Shafer operator can then be used to fuse the mass
values of all the points that are projected into a given
cell. Finally, the evidential grids can be fused over time
thanks to the algorithm in Fig 4, which follows the approach
in [1] but applies it to evidential mass values generated from
TAdNET, instead of using a geometrical model. Figure 5
presents an example of model-free evidential road grid map
generated from this algorithm, and TAdNet. A (45m×45m)
area around the vehicle was covered by a road grid having
a cell size of (0.1m×0.1m). A decay rate of 0.98 was used,
and the odometry was coming from the IMU present in the
localization system previously used for the collection of the
labelled LIDAR scans. Only the 20 lowest LIDAR rings were
used. A video of a grid accumulation in a roundabout is
available1.

VII. CONCLUSION

We presented TAdNet, a Transformation-adversarial net-
work inspired by PointNet that performs road detection in
LIDAR rings. The classification results can be used to gen-
erate evidential road grid maps without needing an explicit
geometrical model, as showed by some experiments done
on real-life data, and a TAdNet trained on coarse LIDAR
labels obtained from a map. The next step will consist in
evaluating other approaches for model-free evidential road
grid mapping, in a more reliable fashion. To do so, a dataset
of 368 LIDAR scans was already finely labelled by hand,
and will be used for validation purposes in the future.

1https://drive.google.com/file/d/1R7WuZaIvUqPHVRbplDLglea5b46zugE5/view?usp=sharing
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