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Visual Abstract

Significance Statement

Current theories suggest that accurately predicting the sensory consequences of one’s actions is central for
perception, awareness of action, and motor learning. In the latter case, it is assumed that prediction errors
are used to train the controller that transforms our desired sensory consequences into motor commands.
Here we show that, following exposure to biased hand visual feedback, people can update their ability to
predict visual consequences of hand movements without necessarily improving their ability to control these
movements. This work challenges the view that the joint update of prediction and control is mandatory when
facing a change in the mapping between motor commands and sensory consequences. Instead, we
propose that task demands mediate the update of prediction and control.
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Current theories suggest that the ability to control the body and to predict its associated sensory consequences
is key for skilled motor behavior. It is also suggested that these abilities need to be updated when the mapping
between motor commands and sensory consequences is altered. Here we challenge this view by investigating the
transfer of adaptation to rotated visual feedback between one task in which human participants had to control a
cursor with their hand in order to track a moving target, and another in which they had to predict with their eyes
the visual consequences of their hand movement on the cursor. Hand and eye tracking performances were
evaluated respectively through cursor–target and eye–cursor distance. Results reveal a striking dissociation:
although prior adaptation of hand tracking greatly facilitates eye tracking, the adaptation of eye tracking does not
transfer to hand tracking. We conclude that although the update of control is associated with the update of
prediction, prediction can be updated independently of control. To account for this pattern of results, we propose
that task demands mediate the update of prediction and control. Although a joint update of prediction and control
seemed mandatory for success in our hand tracking task, the update of control was only facultative for success
in our eye tracking task. More generally, those results promote the view that prediction and control are mediated
by separate neural processes and suggest that people can learn to predict movement consequences without
necessarily promoting their ability to control these movements.

Key words: human; internal model; learning; motor control; prediction; transfer; eye-hand coordination

Introduction
Current theories suggest that skilled motor behavior

depends on the ability to control our body and to predict
the consequences of this control (Flanagan et al., 2003;
Shadmehr et al., 2010; Shadmehr, 2017). Whereas pre-
diction is used to transform motor commands into
expected sensory consequences, control is used to trans-
form desired sensory consequences into motor com-
mands (Kawato, 1999). In the internal model approach,
the former mechanism is accounted for by a forward
model, also called the predictor or state estimator (Miall
and Wolpert, 1996; Wolpert and Ghahramani, 2000; Wol-
pert and Flanagan, 2001; Todorov, 2004); and the second
one is accounted for by an inverse model, also called the
controller (Todorov, 2004; Shadmehr et al., 2010) or con-
trol policy (Diedrichsen et al., 2010; Scott, 2012). When
the mapping between a motor command and its sensory
consequences is altered by a change in the body or the
environment, forward and inverse models may operate
independently of each other or in tandem to preserve
accurate performance (Wolpert and Kawato, 1998; Wol-

pert and Ghahramani, 2000; Haruno et al., 2001; Honda
et al., 2018). Although technically challenging (Lalazar and
Vaadia, 2008; Mulliken et al., 2008), experimental evi-
dence for separate processes underlying prediction and
control are scarce (Flanagan et al., 2003; Honda et al.,
2018). In an elegant study, Flanagan et al. (2003) showed
that anticipatory grip force adjustments were updated
before participants learned to adequately control the tra-
jectory of a grasped object with unusual dynamics. They
interpreted this result as evidence that the update of the
predictor (forward model) precedes the update of the
controller (inverse model). Not only is this finding consis-
tent with the idea that updating a forward model is com-
putationally simpler (Jordan and Rumelhart, 1992;
Wolpert and Kawato, 1998), but it also supports the view
that the forward model plays a role in training the inverse
model (Bhushan and Shadmehr, 1999; Haruno et al.,
2001; Haith and Krakauer, 2013). However, to our knowl-
edge, direct evidence for a causal relationship between
the update of prediction and control is still lacking. In
particular, it remains unknown whether it is possible to
update prediction without promoting the update of con-
trol, and vice versa.

The goal of this study was to investigate the degree of
coupling between the update of prediction and control
during sensorimotor adaptation. To address this issue, we
compared two situations in which participants had to
adapt to visuomotor rotation, a paradigm in which the
visual feedback of the hand is rotated (Krakauer, 2009). In
the first situation, participants were required to manually
control a cursor so as to track a visual target following a
smooth but unpredictable trajectory (Tong and Flanagan,
2003; Ogawa and Imamizu, 2013). In this case, we rea-
soned that an update of both the inverse and forward
models would be beneficial for task success. Indeed, not
only does it appear necessary to update the mapping
between a desired cursor position and hand motor com-
mands, but it is advocated that this update of the inverse
model is guided by the forward model, which itself is
updated based on prediction errors (Haith and Krakauer,
2013). Conversely, computational modeling shows that
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updating the forward model in isolation of the inverse
model is insufficient to produce optimal movements
(Aprasoff and Donchin, 2012; Honda et al., 2018). In the
second situation, participants exposed to the same visuo-
motor rotation were required to track with their eyes a
visual target that was self-moved via random hand mo-
tions (i.e., with no explicit spatial goal), a task used to
probe the ability to predict the visual consequences of
one’s own movement (Vercher et al., 1995; Landelle et al.,
2016) by means of a forward model of the arm (Vercher
et al., 2003). As a result, although in this case the update
of the forward model of the hand seems mandatory for
accurate eye tracking, updating the inverse model of the
hand is not obligatory because producing spatially accu-
rate hand movements is not a task requirement.

To determine how strongly coupled the update of con-
trol and prediction are, we investigated the transfer of
adaptation between these two tasks, and explicitly asked
whether prior adaptation of hand tracking facilitates the
adaptation of eye tracking, and vice versa. If the update of
control and prediction remain coupled irrespective of
tasks, we expect large and reciprocal transfer of adapta-
tion across the two tasks. In contrast, if a joint update is
only necessary for hand tracking, we expect an asymmet-
rical transfer such that hand tracking benefits eye track-
ing, but not the other way around.

Materials and Methods
Participants

Twenty-four healthy right-handed volunteers (mean �
SD age, 27.2 � 6.9 years; 16 females) were recruited. The
experimental paradigm (2016-02-03-007) was approved
by the local ethics committee of Aix-Marseille university
and complied with the Declaration of Helsinki. All partic-
ipants gave written consent before participation.

Apparatus
Figure 1 shows the experimental setup. Participants

were seated comfortably in a dark room facing a screen
(BENQ; resolution, 1920 � 1080; 27 inches; 144 Hz)
positioned on the frontal plane 57 cm away from partici-

pants eyes (1 cm on the screen � 1° of visual angle).
Participants’ head movements were restrained by a chin
rest and a padded forehead rest so that the eyes in
primary position were directed toward the center of the
screen to block vision of their hands, a piece of cardboard
was positioned under the participants’ chins. They were
required to hold with the right hand a joystick (with �25°
of inclination along the x- and y-axes; Serie 812, Mega-
tron) positioned horizontally on a table in front of them,
along the sagittal plane. Note that there was no assistive
force to bring back the joystick to the central position.
Both right and left forearms were resting on the table. The
output of the joystick was fed into a data acquisition
system (Keithley ADwin Real Time, Tektronix) and sam-
pled at 1000 Hz. Eye movements were recorded using
an infrared video-based eye tracker (Eyelink desktop-
mounted system, SR Research). Horizontal and vertical
positions of the right eye were recorded at a sampling rate
of 1000 Hz. The output from the eye tracker was cali-
brated before every block of trials by recording the raw
eye positions as participants fixated a grid composed of
nine known locations. The mean values during 1000 ms
fixation intervals at each location were then used off-line
for converting raw eye tracker values to horizontal and
vertical eye position in degrees of visual angles.

Procedure
Throughout the main experiment, participants per-

formed two types of tracking tasks. During the hand
tracking task (Fig. 2A), participants had to move the joy-
stick with their right hand so as to bring a cursor (red disk,
0.5° in diameter) as close as possible from a moving
target (blue disk, 0.5° in diameter). This task was designed
to probe the ability to produce hand movements along a
desired trajectory (Tong and Flanagan, 2003; Ogawa and
Imamizu, 2013).

The motion of the target resulted from the combination
of several sinusoids: two along the frontal axis (one fun-
damental and a second or third harmonic), and two on the
sagittal axis (same procedure). The following equations
were used to construct target motion:

Figure 1. Schematic view of the apparatus. Top view of a participant sitting in the experimental setup (see Materials and Methods for
further information).
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xt � A1xcos�t � A2xcos �hx�t � �x�

yt � A1ysin�t � A2ysin �hy�t � �y�

This technique was used so as to generate pseudo-
random 2D pattern while preserving smooth changes in
velocity and direction (Mrotek and Soechting, 2007;
Soechting et al., 2010). A total of five different patterns
were used throughout the experiment (Table 1, Fig. 3). All
target paths had similar lengths (160 cm). The order of
patterns was randomized across trials while making sure
that each block contained a similar number of each pat-
tern. During this task, participants did not receive any

explicit constraints regarding their gaze, meaning that
they were free to look at the target, the cursor, or both.

During the eye tracking task, participants were in-
structed to wiggle a red target (0.5° in diameter) on the
screen by means of the joystick held in their right hand
while concurrently keeping their eyes as close as possible
from the self-moved target (Fig. 2B). This task was de-
signed to probe the ability to predict the visual conse-
quences of one’s hand movement (Vercher et al., 1995;
Chen et al., 2016; Danion et al., 2017). Participants were
asked to generate random target movements so as to
make target motion as unpredictable as possible (Stein-
bach and Held, 1968; Landelle et al., 2016; Mathew et al.,

Figure 2. Experimental tasks. A, Schematic view of the screen in the hand tracking condition. B, Schematic view of the screen in the
eye tracking condition (see Materials and Methods for further information).

Table 1: Target trajectory parameters

Trajectory A1x (cm) A2x (cm) Harmonic x Phase x (°) A1y (cm) A2y (cm) Harmonic y Phase y (°)
1 5 5 2 45 5 5 3 �135
2 4 5 2 �60 3 5 3 �135
3 4 5.1 3 �60 4 5.2 2 �135
4 5 5 3 90 3.4 5 2 45
5 5.1 5.2 2 �90 4 5 3 22.5

Figure 3. Target paths used across all experimental conditions. The blue dot shows the initial position of the target, and the arrow
shows its initial direction. The paths are shown in the vertical plane (see Materials and Methods for more details).
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2017). However, to maintain consistency across subjects
and trials, we ensured that, over each trial, joystick move-
ment led to a mean tangential target velocity close to
16°/s (thereby maintaining task difficulty relatively un-
changed). Note that the mapping between hand and cur-
sor tangential velocities was unaffected by the visuomotor
rotation. To facilitate the production of random move-
ments, a template was provided on the screen during
demonstration trials. In addition, during the experimental
trials, mean target velocity was computed on-line so that
experimenters could provide verbal feedback to the par-
ticipants such as “please move faster” or “please slow
down” when necessary. This procedure ensured minimal
differences in mean target velocity across participants
(SD � 1°/s) and trials (SD � 0.66°/s). Note that partici-
pants were encouraged to cover the whole extent of the
screen, but the gain of the joystick (25° inclination � 15
cm on the screen) was adjusted to prevent excursion of
the target outside of the screen. Thanks to this procedure,
corrections in hand movements were unnecessary to
keep the cursor within the screen.

For both eye and hand tracking, the task could be
performed under a simple and a complex mapping. Under
the simple mapping, the relation between the joystick
motion and its visual consequences on the screen was
very intuitive, mimicking the behavior of a computer
mouse. This mapping was intended to provide baseline
tracking performance. Under the complex mapping, the
previous mapping was rotated counterclockwise by 90°
(Ogawa and Imamizu, 2013). This unusual mapping was
intended to elicit adaptation. Note that, however, this
visuomotor rotation does not alter the mapping between
hand motor command and tangential velocity of hand
movement consequences on the screen. The duration of
a trial was 10 s for both the eye- and hand tracking tasks.

As shown in Figure 4, participants were split into two
groups that both practiced the eye and hand tracking
tasks, under the simple and the complex mapping, albeit
in different orders. The experimental session consisted of
three phases. During the initial phase (baseline, 0°), the
first group of participants (N � 12) performed one block of
10 trials of hand tracking followed by one block of 10 trials
of eye tracking. Subsequently during the adaptation
phase (90°), this group performed one block of 40 trials of
the hand tracking task followed by one block of 40 trials of
the eye tracking task, both under the rotated mapping.

During the final phase, the initial mapping was unexpect-
edly restored (0°), allowing to test for aftereffects with two
trials of hand tracking followed by two trials of eye track-
ing. The second group of participants followed the same
protocol (baseline, adaptation, and aftereffects), but, for
each phase, the order of eye and hand blocks was re-
versed. This experimental design was selected to assess
the possible transfer of learning between our two tracking
tasks by means of group comparisons (Danion et al.,
2012).

Control experiment
To demonstrate the involvement of predictive mecha-

nisms in our eye tracking task, we also performed a
control experiment with 10 right-handed new participants
(mean age, 28.6 � 7.3 years; 5 females) in which we
compared eye tracking performance with a self-moved
target versus an externally moved one. Practically, each
participant completed one block of 10 trials using the
original version of the eye tracking task (self-moved tar-
get, no rotation), followed by a block of 10 trials in which
participants had to track with the eyes the target trajec-
tories that they had produced during the first block (Lan-
delle et al., 2016).

Data analysis
To assess hand tracking performance, we measured

the mean Euclidian distance between the cursor (moved
by hand) and the externally moved target for each trial.
For eye tracking, we measured the mean Euclidian dis-
tance between the eye and the self-moved target. To gain
more insight about gaze behavior during hand tracking,
we also measured the mean Euclidian distance between
eye and target, as well as between eye and cursor. Our
motivation was to assess whether gaze tracked more
closely the cursor or the target. For all these computa-
tions, the first second of each trial was discarded. Fur-
thermore, all eye, cursor, and target x and y signals were
separately low-pass filtered with a Butterworth filter (4th
order) using a cutoff frequency of 25 Hz. Note that, based
on the pupil diameter (which was also recorded), blinks
were removed from our eye recordings (�0.9%). The
temporal relationship between eye and target was esti-
mated by means of cross-correlations that simultaneously
took into account the vertical and horizontal axes. To
simultaneously cross-correlate horizontal (x) and vertical

Figure 4. Experimental design for each group of participants (see Materials and Methods for further information).
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(y) position signals between effectors, we interleaved the
x and y signals and always time shifted these interleaved
signals by a multiple of two samples (Flanagan et al.,
2008; Danion and Flanagan, 2018). Further analyses
showed that this method led to results similar to those
obtained by averaging the lags provided by cross-
correlations conducted separately for x and y signals.

To provide further information about gaze behavior, we
also assessed the characteristics of catch-up saccade
(Steinbach and Held, 1968; Mathew et al., 2017). The
identification of catch-up saccades required computing
the tangential velocity and acceleration of the eye. First, x
and y eye position signals were differentiated to obtain the
velocity traces. Then the eye velocity signals were low-
pass filtered with a cutoff frequency of 25 Hz to remove
the noise from the numerical differentiation. The resultant
tangential eye velocity was then differentiated to provide
the tangential acceleration that we also low-pass filtered
at 25 Hz to remove the noise. Saccades were identified
based on the acceleration and deceleration peaks of the
eye (�1500°/s2). Further visual inspection allowed the
identification of smaller saccades (�1°) that could not be
identified automatically by our program. Following the
identification of catch-up saccades for each trial, we com-
puted their average number of saccades per second (sac-
cade rate) as well as their mean amplitude; again, the first
second of each trial was excluded.

To assess the randomness of hand motion during eye
tracking, approximate entropy (ApEn) was used as an index

that characterizes the unpredictability of a signal (Pincus,
1991); the larger the ApEn, the more unpredictable the signal
is. To compute ApEn, we used the following Matlab code:
https://fr.mathworks.com/matlabcentral/fileexchange/
32427-fast-approximate-entropy [with the following set-
tings: embedded dimension � 2, tolerance � 0.2 � SD
(target trajectory)]. Note that ApEn was computed separately
for the x and y components of the joystick motion.

Statistics
Two-way ANOVAs were used to assess the effects of

GROUP (i.e., with/without prior experience) and trial rank
(TIME). The Newman–Keuls technique was used for post
hoc tests to correct for multiple comparisons. A logarith-
mic (z score) transformation was used to normalize the
distribution of R values. A 0.05 significance threshold was
used for all analyses.

Results
Representative trials

Figure 5 plots representative trials collected from two
naive participants in each task at various stages of expo-
sure. As can be seen, in both tasks, tracking performance
was substantially altered immediately after the introduc-
tion of the visuomotor rotation (PRE vs EARLY). However,
for both tasks tracking performance improved across tri-
als as suggested by the comparison between EARLY and
LATE trials. When the rotation was unexpectedly removed
(POST), tracking performance was altered, demonstrating

Figure 5. Typical trials under each experimental condition at various moments. A, Target, cursor, and eye position signals in the hand
tracking task, during pre-exposure, early exposure, late exposure, and after exposure to the 90° visuomotor rotation. B, Same as A
for eye and cursor position signals in the eye tracking task. Trials presented on the top and bottom rows were performed by two
distinct participants. Although each trial was 10 s long, only 2.5 s of signals are displayed for clarity.
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the presence of sensorimotor adaptation (i.e., afteref-
fects). In the next sections, we analyze in more detail the
time course of this adaptation to the rotation and assess
whether adaptation in a given task was facilitated by prior
experience in the other task.

Adaptation and transfer of adaptation
In Figure 6, we present the mean tracking performance

across trials in each group separately for the hand-
tracking task (Fig. 6A) and the eye tracking task (Fig. 6B).
We first address the effect of the visuomotor rotation on
naive participants (Fig. 6A,B, blue dots; i.e., participants
that did not receive prior exposure to the perturbation).
When first exposed to the visuomotor rotation, perfor-
mance in both hand and eye tracking was severely al-
tered. Indeed, the cursor–target distance in the hand-
tracking task (first two trials) increased by 345% with
respect to baseline (last two trials). Similarly, the eye–
target distance in the eye tracking task (first two trials)
increased by 50% with respect to baseline (last two trials).
As expected, tracking performance improved across tri-
als, but learning curves exhibited different dynamics
across tasks. Indeed, hand tracking performance never
returned to baseline, even after the 40th trial, whereas eye
tracking performance returned to baseline around the
10th trial. When the rotation was unexpectedly removed
aftereffects were observed in both cases (see later section

on aftereffects), thereby confirming the adaptation of an
internal model accounting for the mapping between hand
motor commands and visual consequences.

We next address our main issue, namely whether prior
adaptation to the visuomotor rotation during eye tracking
benefited hand tracking, and vice versa. We first focus on
the hand tracking task (Fig. 6A) by comparing the learning
curve exhibited by naive participants (Fig. 6A, in blue) to
that of participants having already adapted to the eye-
tracking task (Fig. 6A, in orange). A conventional two-way
ANOVA was conducted comparing early (1–2), intermediate
(19–20), and late (39–40) trials across the two groups. Not
surprisingly, the effect of TRIAL was significant (F(2,44) �
152.70; p � 0.001). Most importantly, however, there was no
main effect of GROUP (F(1,22) � 0.12; p � 0.72), as well as no
interaction between TRIAL and GROUP (F(2,44) � 0.79; p �
0.46), suggesting similar learning curves. To further investi-
gate this issue, we extracted exponential fitting parameters (
Error � aeb � trial � c) for each participant (individual R values
ranging from 0.65 to 0.98; p � 0.001). For each of the three
fitting parameters, the ANOVA showed no significant effect
across groups. Namely, the initial performance (parameter a;
F(1,22) � 2.62; p � 0.12), the learning rate (parameter b; F(1,22)

� 0.45; p � 0.51), and the asymptote (parameter c; F(1,22) �
0.07; p � 0.78) were similar across groups. Overall, we
found no evidence for a transfer of adaptation from eye to
hand tracking, suggesting that prior adaptation to the visuo-

Figure 6. Time course of adaptation in each task as a function of prior experience in the other task. A, Comparison of hand tracking
performance with and without prior eye tracking experience. B, Comparison of eye tracking performance with and without prior hand
tracking experience. Although prior eye tracking experience did not influence hand tracking adaptation, prior hand tracking
experience markedly facilitated eye tracking adaptation. Error bars represent the SEM.
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motor rotation though eye tracking does not benefit hand
tracking.

In contrast, prior adaptation of hand tracking appeared
to markedly facilitate adaptation of eye tracking. Indeed,
as evidenced in Figure 6B, there was a clear difference in
initial performance between the naive and the experi-
enced group. A key observation is that the group that
previously adapted to the rotation during hand tracking
showed no initial alteration in eye tracking performance. In
support, two-way ANOVA comparing eye–target distance
among early (1–2), intermediate (19–20), and late (39–40)
trial pairs across the two groups showed a significant
interaction between TRIAL and GROUP (F(2,44) � 8.36; p
� 0.001). Breakdown of the interaction revealed that the
initial trial pair of naive participants (1.82 cm) was greater
than any of the five other trial pairs, none of which differed
from baseline (1.30 cm). To further explore this issue, we
used our exponential regression technique over the first
10 trials. For the naive group, individual regressions were
significant for 10 of the 12 participants (R � 0.76 � 0.07;
p � 0.01). In contrast for the group that received prior
exposure, none of the individual regressions was signifi-
cant (R � 0.14 � 0.04; p � 0.05). A similar contrast across
groups was found when we examined the temporal rela-
tionship between the eye and the cursor motion. Two-way
ANOVA comparing early (1–2) and late (39–40) trials
across the two groups showed a significant interaction
between TRIAL and GROUP (F(1,22) � 5.39; p � 0.05).
Post hoc analysis of the interaction showed that during
early trials, this lag was greater for naive participants than
for participants with prior training (88 vs 64 ms; p � 0.05).
In contrast, during late trials the eye–target lag was similar
for both groups of participants (55 vs 52 ms; p � 0.71).
Overall, these analyses show that that prior adaptation of
hand tracking strongly improved eye tracking, leading in
fact to nearly complete transfer of adaptation from hand
to eye tracking.

After-effects
After-effects are crucial to assess the presence of sen-

sorimotor adaptation. For both tasks, visual inspection of
the right side of Figure 5, as well as the mean group data
presented on the right side of Figure 6 (see red circles,
POST), indicates the presence of after-effects when the
visuomotor rotation was unexpectedly removed. This
scheme was confirmed by two-way ANOVA comparing
late trials (39–40) and post trials. During the hand-
tracking task, there was a main effect of TRIAL (F(1,22) �
8.726; p � 0.001), consistent with an increase in error
(	34%). However, there was no main effect of GROUP
(F(1,22) � 0.215; p � 0.65) and no interaction (F(1,22) �
0.001; p � 0.96). A similar pattern was observed for the
eye tracking task, as there was a main effect of TRIAL
(F(1,22) � 8.65; p � 0.01; 	17%), but there was no main
effect of GROUP (F(1,22) � 2.38; p � 0.14) or an interaction
(F(1,22) � 1.25; p � 0.27). The fact that after-effects had
similar amplitude when being tested immediately after the
removal of the perturbation, or when being tested after
measuring after-effects in the other task rules out the
possibility of strategic/explicit adaptation. Instead, our

results are consistent with the view that, in both of our
tasks, 40 trials of exposure to the visuomotor rotation
induced sensorimotor adaptation.

Supplementary analyses
Although evidence for an asymmetrical transfer be-

tween eye tracking and hand tracking is central to our
objective, we felt the need to address possible con-
founds. First, we felt it was important to characterize gaze
behavior during hand tracking. We found that while adapt-
ing to the rotation during hand tracking, both naive and
experienced participants directed their gaze at the target,
not at the cursor (i.e., rotated hand position). During the
early stage of learning (first two trials), the eye–target
distance was 3.5 times smaller than the eye–cursor dis-
tance (1.80 vs 6.31 cm; p � 0.001). Even during the last
phase of adaptation (last two trials) in which cursor and
target were closest to each other, gaze was still markedly
closer to the target than the cursor (1.75 vs 2.83 cm; p �
0.001). Overall, this analysis suggests that the transfer of
adaptation seen from hand tracking to eye tracking does
not follow from gaze behavior given that, during hand
tracking, gaze was poorly tied to the visual consequences
of hand movement (i.e., cursor motion).

Second, we found that prior adaptation of hand track-
ing strongly influenced the accuracy of subsequent eye
tracking, but was this effect corroborated by more intri-
cate parameters of gaze behavior? To explore this issue,
we examined the characteristics of catch-up saccades, a
special type of saccade initiated to assist smooth pursuit
when position and/or velocity error become too prominent
(de Brouwer et al., 2002). When comparing the amplitude
and rate of catch-up saccades during PRE and EARLY
trials, we found in both cases a GROUP by TRIAL inter-
action (F(1,22) � 7.65; p � 0.05). Breakdown of the inter-
action showed that for naive participants both the
amplitude and rate of catch-up saccades increased by
28% when the rotation was introduced (p � 0.01), al-
though no similar detrimental effect was observed for
experienced participants (p � 0.17). Overall, these anal-
yses confirm substantial improvements in gaze behavior
following adaptation of hand tracking.

Third, we felt the need to ensure that the degree of
randomness of target trajectories produced by naive and
experienced participants during eye tracking was similar
by means of ApEn (Pincus 1991; see also Landelle et al.,
2016; Mathew et al., 2017). ANOVAs on target trajectory
complexity showed no significant differences across
groups for early (1–2), intermediate (19–20), and late (39–
40) trials (F(1,22) � 0.41; p � 0.52). As a result, we conclude
that the higher accuracy of eye tracking exhibited by
experienced participants does not stem from the fact that
they performed fewer random hand movements than na-
ive participants. Finally, using the same procedure, it was
also found that the degree of target randomness was
greater during eye tracking than during hand tracking
(F(1,22) � 15.75; p � 0.001). This observation rules out the
possibility that the lack of transfer from eye tracking to
hand tracking stems from the fact that participants were
possibly exposed to more complex target trajectories
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during hand tracking than they previously were during eye
tracking.

Fourth, given the emphasis on predictive mechanisms
in our eye tracking task, we felt it was crucial to provide
baseline data regarding eye tracking performance when
the target was no longer moved by the participant’s hand,
but instead moved by an external agent. To explicitly
address this issue, we ran a control experiment with 10
new participants that performed the original version of our
eye tracking task (with no rotation), but also subsequently
performed an eye tracking task in which their hand was
immobile while we played back target trajectories they
had generated when performing the previous task (Lan-
delle et al., 2016; Danion et al., 2017; Mathew et al., 2017).
The results presented in Figure 7 showed that, as ex-
pected, eye tracking performance was less accurate for
playback trials than for those in which the target was
self-moved. This view was confirmed by a one-way
ANOVA showing a main effect of AGENCY such that
during playback trials the eye–target distance increased
by 24% (2.04° vs 1.68°; F(1,9) � 8.9; p � 0.01; see Fig. 7A),
and the eye–target lag doubled (104 vs 47 ms; F(1,9) �
58.88; p � 0.001; Fig. 7B). Altogether, these results are
consistent with the involvement of predictive mechanisms
linking eye and hand actions when participants track a
self-moved target. Finally, we observed that individual
performance in each of these two tasks were uncorre-
lated. Indeed, the coefficient of correlation for eye–target
distance, and eye–target lag were respectively 0.25 (p �
0.48) and 0.14 (p � 0.70). Based on these observations,
we conclude that participants relied on separate control
schemes to achieve these two types of eye tracking tasks.

Discussion
Our main objective was to determine the extent of the

coupling between the update of motor prediction and
control when the mapping between hand motor com-
mands and visual consequences is altered. To achieve
this, we investigated the transfer of adaptation between a
hand tracking and an eye tracking task both performed
under visuomotor rotation. Our results showed an asym-
metrical transfer such that prior adaptation with the rota-
tion under hand tracking markedly improved eye tracking,
but prior adaptation with the rotation under eye tracking
did not benefit hand tracking. These findings have several

implications relevant for prediction and control processes
underlying hand movements.

A central assumption of the present protocol is that a
forward model is updated during eye tracking. While this
is supported by much work demonstrating that visuomo-
tor adaptation is mediated by the reduction of visual
prediction error generated by a forward model (Krakauer,
2009; Krakauer and Mazzoni, 2011), another possibility is
that adaptation is due to model-free mechanisms that rely
on reward prediction error (Izawa and Shadmehr, 2011;
Haith and Krakauer, 2013). In such a scheme, a control
policy could be improved through trial and error without
the need of a forward model. Specifically, one could argue
that, since in both tasks gaze was involved in tracking a
moving target, improvements in the eye tracking task
could follow from participants becoming better at tracking
a moving target in general, which would then account for
a transfer effect when switching from hand to eye tracking
(given greater experience). Still, several observations
make this possibility very unlikely. First, the fact that
tracking a self-moved target and an externally moved
target led to marked differences in terms of gaze behavior
(Fig. 7), and that individual performances in these two
tasks were uncorrelated, suggest that participants relied
on different eye control policies to complete the eye- and
hand tracking task. Second, if both tasks were to improve
the same eye control policy, we should have observed
some transfer of learning when switching from the eye-
tracking task to the hand tracking task. In contrast, both
groups exhibited similar gaze behavior during hand track-
ing. Namely, even during early trials of exposure, experi-
enced participants did not exhibit a smaller eye–target
distance compared with naïve participants. Third, when
the rotation was introduced or removed, alterations in eye
tracking were observed. Again, these alterations cannot
be accounted for by an eye control policy that would
simply improve eye tracking in general. Last, it has been
shown that learning from sensory prediction errors is both
faster and leads to a wider generalization function than
learning from reward prediction errors (Izawa and Shad-
mehr, 2011; Haith and Krakauer, 2013). The fact that
participants returned to baseline eye tracking perfor-
mance within 10 trials and subsequently kept accurate
eye tracking while still creating new hand trajectories

Figure 7. Comparison between eye tracking a self-moved target and an externally driven target. A, Distance between eye and target.
B, Temporal lag between eye and target. Error bars represent the SEM. For both indices, eye tracking performance was more accurate
during SELF.
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demonstrates that this learning was rapid and generalized
well (i.e., was not restricted to a single hand trajectory).

Following the adaptation of hand tracking, eye tracking
performance under the rotation was immediately ade-
quate (i.e., similar to baseline), which contrasts markedly
with naive participants whose initial performance was
clearly altered by the rotation. This near-complete transfer
of adaptation is interpreted as evidence that, not only was
the ability to generate hand motor commands to reach a
desired cursor position updated, but so was the ability to
predict visual consequences of hand movements. This
observation fits well with the view that, at least for hand
tracking, the update of both the inverse and forward
model is mandatory for success. It is also consistent with
computational work suggesting that force field and prism
adaptation of reaching movements is best accounted for
by a joint update of the forward and inverse models
(Bhushan and Shadmehr, 1999; Honda et al., 2018), and
that the update of a forward model is insufficient to pro-
duce optimal movements (Aprasoff and Donchin, 2012).
Altogether, our study strongly suggests that to sustain
accurate manual tracking under altered visual feedback,
participants updated both the controller and the predictor
of hand movements.

In contrast, hand tracking did not benefit from prior
adaptation of eye tracking, as evidenced by similar poor
performances in naive and experienced participants. We
interpret this finding as evidence that, although partici-
pants were able to update their ability to predict visual
consequences of hand movements, they did not update
their ability to perform spatially directed hand movements.
This observation supports the view that updating the
neural mechanisms predicting the visual consequences of
hand movement is not sufficient to subsequently control
the cursor motion. With respect to internal models, this
result can be taken as evidence that the forward model of
hand movement can be updated in isolation of the inverse
model.

To account for the present pattern of results, we pro-
pose that the update of an internal model is driven by task
constraints, rather than by a systematic coupling between
forward and inverse models. Indeed, in our eye tracking
task, spatial constraints for hand movements were rather
scarce, making the update of the inverse model unnec-
essary for success. We conclude that the update of con-
trol is task dependent and is achieved only if it is
mandatory for the task. In contrast, the update of predic-
tion was observed in both our tasks, suggesting that
maintaining accurate sensory predictions of our move-
ments is mandatory for efficient visuomotor adaptation.
The fact that accurately predicting the consequences of
our actions is key for many other brain functions, such as
awareness of action, sensory cancellation, motor imag-
ery, and social cognition (Wolpert and Flanagan, 2001;
Schubotz, 2007; Bubic et al., 2010; O’Reilly et al., 2013;
Kilteni et al., 2018), has perhaps also encouraged this
update.

Experimental and computational work has already pro-
posed that the update of prediction and control can ex-
hibit different dynamics, the update of prediction being

significantly faster than the update of control (Bhushan
and Shadmehr, 1999; Flanagan et al., 2003; Yavari et al.,
2013). This scheme is supported by our study in which
adaptation was found to be faster and more complete
during eye tracking (return to baseline within 10 trials only)
compared with hand tracking (no return to baseline after
40 trials). One possible reason for this discrepancy is that
the update of an inverse model is computationally more
demanding than the update of a forward model (Jordan
and Rumelhart, 1992; Miall and Wolpert, 1996; Wolpert
and Kawato, 1998). Indeed, although many motor com-
mands can potentially provide the same desired output
(i.e., for redundancy problem, see Bernstein, 1967), a
motor command is unambiguously linked to a particular
sensory feedback. It is of interest to note that asymmet-
rical transfer has been previously reported in the context
of visuomotor adaptation (Morton and Bastian, 2004;
Krakauer et al., 2006; Wang and Sainburg, 2006). In par-
ticular, it has been shown that during exposure to a 30°
visuomotor rotation, arm training benefited subsequent
wrist training, but not vice versa (Krakauer et al., 2006).
Moreover, the adaptation of wrist movements was mark-
edly faster than the adaptation of arm movements. Alto-
gether, this study and the current one suggest that there
might be a tradeoff between the speed of visuomotor
adaptation and the flexibility for generalizing this adapta-
tion to other contexts.

In most experiments that investigate sensorimotor ad-
aptation of arm movements, it is challenging to dissociate
the influence of forward and inverse models (Lalazar and
Vaadia, 2008; Mulliken et al., 2008), because, as sug-
gested by our study and others, both contribute to adap-
tation but do so in different ways (Honda et al., 2018).
However, the present design combining hand- and eye-
tracking movements allowed us to unpack these two
contributions and to isolate the update of the forward
model. Further studies will have to explore whether our
findings, obtained through adaptation to visuomotor rota-
tion, extend to prismatic adaptation and/or force field
adaptation, two other key paradigms used to investigate
the update of internal models (Shadmehr, 2004, 2017;
Petitet et al., 2018). Note that this is not necessarily the
case, as for prismatic adaptation it has been shown that
the viewing of active (but not passive) rhythmic arm move-
ment with no explicit target leads to subsequent adapta-
tion of discrete arm movements toward explicit targets
(Held and Freedman, 1963; see also Held and Gottlieb,
1958). However, it is not straightforward to circumvent the
origin of a discrepancy between our current observations
and this previous finding. First, as pointed out recently,
the transfer profile of prism adaptation contrasts in sev-
eral ways with other adaptation paradigms (including
visuomotor rotation), which thereby requires special at-
tention for this experimental model of sensorimotor inte-
gration (Petitet et al., 2018). Second, unfortunately gaze
analysis as well as possible instructions given to the
participants regarding gaze behavior were not included in
those early prismatic adaptation studies (Held and Got-
tlieb, 1958; Held and Freedman, 1963).

New Research 10 of 12

November/December 2018, 5(6) e0280-18.2018 eNeuro.org



In general anticipatory control, as evidenced when eye
tracking a self-moved target (Scarchilli et al., 1999;
Vercher et al., 2003), manipulating objects (Flanagan and
Wing, 1997; Danion and Sarlegna, 2007) or coordinating
several effectors (Diedrichsen et al., 2007) is often taken
as evidence of forward models that predict the conse-
quences of an upcoming action (Miall and Wolpert, 1996;
Wolpert et al., 2011), but alternatively, anticipatory control
can reflect a feature of a good control policy that was
learned via model-free or model-based mechanisms
(Haith and Krakauer, 2013). Although additional experi-
ments are needed to tease these two options apart, within
the framework of internal models, our study challenges
the view that forward and inverse models are coupled
during their acquisition (Wolpert and Kawato, 1998; Ka-
wato, 1999; Haruno et al., 2001; Honda et al., 2018) and
suggests a more flexible relationship between the two.
Not only would this confirm that the update of forward and
inverse models can exhibit different dynamics (Bhushan
and Shadmehr, 1999; Flanagan et al., 2003; Honda et al.,
2018), but we propose that the forward model can be
updated independent of the inverse model. More gener-
ally, our study promotes the view that prediction and
control are mediated by separate neural processes (Shad-
mehr et al., 2010; Scott, 2012), and suggests that people
can learn to predict movement consequences, without
necessarily promoting their ability to control these move-
ments. Finally, it has been demonstrated recently that
task demands are critical for the update of sensory pre-
dictions (Auksztulewicz et al., 2017), and the current study
extends this notion to the update of movement control.
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