

The Future Landscape of High-Redshift Galaxy Cluster Science

Adam Mantz, Steven W. Allen, Nicholas Battaglia, Bradford Benson, Rebecca Canning, Stefano Ettori, August Evrard, Anja von Der Linden, Michael Mcdonald, Muntazir Abidi, et al.

To cite this version:

Adam Mantz, Steven W. Allen, Nicholas Battaglia, Bradford Benson, Rebecca Canning, et al.. The Future Landscape of High-Redshift Galaxy Cluster Science. 2019. hal-02322211

HAL Id: hal-02322211 <https://hal.science/hal-02322211v1>

Submitted on 4 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Astro2020 Science White Paper

The Future Landscape of High-Redshift Galaxy Cluster Science

Thematic Areas: • Cosmology and Fundamental Physics • Galaxy Evolution

Abstract:

Modern galaxy cluster science is a multi-wavelength endeavor with cornerstones provided by Xray, optical/IR, mm, and radio measurements. In combination, these observations enable the construction of large, clean, complete cluster catalogs, and provide precise redshifts and robust mass calibration. The complementary nature of these multi-wavelength data dramatically reduces the impact of systematic effects that limit the utility of measurements made in any single waveband. The future of multi-wavelength cluster science is compelling, with cluster catalogs set to expand by orders of magnitude in size, and extend, for the first time, into the high-redshift regime where massive, virialized structures first formed. Unlocking astrophysical and cosmological insight from the coming catalogs will require new observing facilities that combine high spatial and spectral resolution with large collecting areas, as well as concurrent advances in simulation modeling campaigns. Together, future multi-wavelength observations will resolve the thermodynamic structure in and around the first groups and clusters, distinguishing the signals from active and star-forming galaxies, and unveiling the interrelated stories of galaxy evolution and structure formation during the epoch of peak cosmic activity.

Principal Author:

Name: Adam B. Mantz Institution: Kavli Institute for Partical Astrophysics and Cosmology, Stanford University Email: amantz@stanford.edu Phone: +1 650 498 7747

Co-authors:

Steven W. Allen^{1,2,3}, Nicholas Battaglia⁴, Bradford Benson^{5,6}, Rebecca Canning^{1,3}, Stefano Ettori⁷, August Evrard⁸, Anja von der Linden⁹, Michael McDonald¹⁰

Endorsers:

Muntazir Abidi¹¹, Zeeshan Ahmed², Mustafa A. Amin¹², Behzad Ansarinejad¹³, Robert Armstrong¹⁴, Camille Avestruz⁵, Carlo Baccigalupi^{15,16,17}, Kevin Bandura^{18,19}, Wayne Barkhouse²⁰, Kaustuv moni Basu²¹, Chetan Bavdhankar²², Amy N. Bender²³, Paolo de Bernardis^{24,25}, Colin Bischoff²⁶, Andrea Biviano²⁷, Lindsey Bleem^{23,5}, Sebastian Bocquet²⁸, J. Richard Bond²⁹, Stefano Borgani²⁷, Julian Borrill³⁰, Dominique Boutigny³¹, Brenda Frye³², Marcus Brüggen³³, Zheng Cai³⁴, John E. Carlstrom^{35,5,23}, Francisco J Castander³⁶, Anthony Challinor^{37,11,38}, Eugene Churazov^{128,129}, Douglas Clowe³⁹, J.D. Cohn⁴⁰, Johan Comparat⁴¹, Asantha Cooray⁴², William Coulton^{37,38}, Francis-Yan Cyr-Racine^{43,44}, Emanuele Daddi⁴⁵, Jacques Delabrouille⁴⁶, Ian Dell'antonio⁴⁷, Shantanu Desai¹³⁰, Marcel Demarteau²³, Megan Donahue⁴⁸, Joanna Dunkley⁴⁹, Stephanie Escoffier⁵⁰, Tom Essinger-Hileman⁵¹, Giulio Fabbian⁵², Dunja Fabjan^{27,53}, Arya Farahi⁵⁴, Simon Foreman²⁹, Aurélien A. Fraisse⁴⁹, Luz Ángela García⁵⁵, Massimo Gaspari⁴⁹, Martina Gerbino²³, Myriam Gitti⁵⁶, Vera Gluscevic⁵⁷, Anthony Gonzalez⁵⁷,

Krzysztof M. G/'orski⁵⁸, Daniel Gruen^{3,1}, Jon E. Gudmundsson⁵⁹, Nikhel Gupta⁶⁰, Tijmen de Haan 30 , Lars Hernquist 61 , Ryan Hickox 127 , Christopher M. Hirata 62 , Renée Hložek 63,64 , Tesla Jeltema 34,65 , Johann Cohen-Tanugi 66 , Bradley Johnson 67 , William C. Jones 49 , Kenji Kadota 68 , Marc Kamionkowski⁶⁹, Rishi Khatri⁷⁰, Theodore Kisner³⁰, Jean-Paul Kneib⁷¹, Lloyd Knox⁷², Ely D. Kovetz⁷³, Elisabeth Krause³², Massimiliano Lattanzi⁷⁴, Erwin T. Lau⁷⁵, Michele Liguori⁷⁶, Lorenze Lovisari⁶¹, Axel de la Macorra⁷⁷, Silvia Masi^{24,25}, Kiyoshi Masui¹⁰, Benjamin Maughan 78 , Sophie Maurogordato 79 , Jeff McMahon, Brian McNamara 80 , Peter Melchior 49 , James Mertens $^{81,82,29},$ Joel Meyers $^{83},$ Mehrdad Mirbabayi $^{84},$ Surhud More $^{85},$ Pavel Motloch $^{29},$ John Moustakas⁸⁶, Tony Mroczkowski⁸⁷, Suvodip Mukherjee⁸⁸, Daisuke Nagai⁸⁹, Johanna Nagy⁶³, Pavel Naselsky, Federico Nati, Laura Newburgh⁸⁹, Michael D. Niemack⁴, Andrei Nomerotski 90 , Emil Noordeh¹, Paul Nulsen 61 , Michelle Ntampaka 61,91 , Naomi Ota 92 , Lyman Page⁴⁹, Antonella Palmese⁶, Mariana Penna-Lima⁹³, Francesco Piacentini²⁴, Francesco Piacentni^{24,25}, Elena Pierpaoli⁹⁴, Andrés A. Plazas⁴⁹, Levon Pogosian⁹⁵, Etienne Pointecouteau⁹⁶, Abhishek Prakash⁹⁷, Gabriel Pratt⁹⁸, Chanda Prescod-Weinstein⁹⁹, Clement Pryke¹⁰⁰, Giuseppe Puglisi^{1,3}, David Rapetti^{101,102}, Marco Raveri^{5,35}, Christian L. Reichardt⁶⁰, Thomas H. Reiprich¹⁰³, Mathieu Remazeilles¹⁰⁴, Jason Rhodes⁵⁸, Marina Ricci⁷⁹, Graça Rocha, Benjamin Rose¹⁰⁵, Eduardo Rozo³², John Ruhl¹⁰⁶, Alberto Sadun¹⁰⁷, Benjamin Saliwanchik⁸⁹, Emmanuel Schaan^{30,108}, Robert Schmidt¹⁰⁹, Sébastien Fromenteau⁷⁷, Neelima Sehgal⁹, Leonardo Senatore³, Hee-Jong Seo³⁹, Mauro Sereno⁷, Arman Shafieloo¹¹⁰, Huanyuan Shan¹¹¹, Sarah Shandera¹¹², Blake D. Sherwin^{11,38}, Sara Simon, Srivatsan Sridhar¹¹⁰, Suzanne Staggs⁴⁹, Daniel Stern⁵⁸, Aritoki Suzuki³⁰, Yu-Dai Tsai⁶, Sara Turriziani¹¹³, Caterina Umiltà²⁶, Franco Vazza³³, Abigail Vieregg³⁵, Alexey Vikhlinin⁶¹, Stephen A. Walker⁵¹, Lingyu Wang^{128,129}, Scott Watson¹¹⁴, Reinout J. van Weeren^{115,61}, Jochen Weller²⁸, Norbert Werner^{116,117,118}, Nathan Whitehorn¹¹⁹, Ka Wah Wong¹²⁰, Adam Wright^{1,3}, W. L. K. Wu⁵, Zhilei Xu¹²¹, Siavash Yasini⁹⁴, Michael Zemcov 122 , Yuanyuan Zhang 6 , Gong-Bo Zhao 123,124 , Yi Zheng 125 , Ningfeng Zhu 121 , Irina Zhuravleva³⁵, Joe Zuntz¹²⁶

- ¹ Stanford University, Stanford, CA 94305
- ² SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- ³ Kavli Institute for Particle Astrophysics and Cosmology, Stanford 94305
- ⁴ Cornell University, Ithaca, NY 14853
- ⁵ Kavli Institute for Cosmological Physics, Chicago, IL 60637
- ⁶ Fermi National Accelerator Laboratory, Batavia, IL 60510

7 INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Piero Gobetti 93/3, I-40129 Bologna, Italy

- ⁸ University of Michigan, Ann Arbor, MI 48109
- ⁹ Stony Brook University, Stony Brook, NY 11794
- ¹⁰ Massachusetts Institute of Technology, Cambridge, MA 02139
- ¹¹ DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, UK, CB3 0WA
- ¹² Department of Physics & Astronomy, Rice University, Houston, Texas 77005, USA
- ¹³ Department of Physics, Lower Mountjoy, South Rd, Durham DH1 3LE, United Kingdom
- ¹⁴ Lawrence Livermore National Laboratory, Livermore, CA, 94550
- ¹⁵ SISSA International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
- ¹⁶ IFPU Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy
- ¹⁷ INFN National Institute for Nuclear Physics, Via Valerio 2, I-34127 Trieste, Italy
- ¹⁸ CSEE, West Virginia University, Morgantown, WV 26505, USA

¹⁹ Center for Gravitational Waves and Cosmology, West Virginia University, Morgantown, WV 26505, USA

University of North Dakota, Grand Forks, ND 58202

University of Bonn, Bonn, Germany

National Center for Nuclear Research, Ul.Pasteura 7,Warsaw, Poland

HEP Division, Argonne National Laboratory, Lemont, IL 60439, USA

Dipartimento di Fisica, Università La Sapienza, P. le A. Moro 2, Roma, Italy

Istituto Nazionale di Fisica Nucleare, Sezione di Roma, 00185 Roma, Italy

University of Cincinnati, Cincinnati, OH 45221

INAF - Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, 34143 Trieste, Italy

²⁸ Ludwig-Maximilians-Universität, Scheinerstr. 1, 81679 Munich, Germany

Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8, Canada

Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAPP, 74000 Annecy, France

³² Department of Astronomy/Steward Observatory, University of Arizona, Tucson, AZ 85721

Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany

University of California at Santa Cruz, Santa Cruz, CA 95064

University of Chicago, Chicago, IL 60637

 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona, Spain

Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK

Kavli Institute for Cosmology, Cambridge, UK, CB3 0HA

Department of Physics and Astronomy, Ohio University, Clippinger Labs, Athens, OH 45701, USA

Space Sciences Laboratory, University of California Berkeley, Berkeley, CA 94720, USA

⁴¹ Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstrasse 1, D-85748 Garching bei München, Germany

University of California, Irvine, CA 92697

Department of Physics, Harvard University, Cambridge, MA 02138, USA

⁴⁴ University of New Mexico, Albuquerque, NM 87131

Service d'Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette cedex, France

⁴⁶ Laboratoire Astroparticule et Cosmologie (APC), CNRS/IN2P3, Université Paris Diderot, 10, rue Alice

Domon et Léonie Duquet, 75205 Paris Cedex 13, France

Brown University, Providence, RI 02912

Michigan State University, East Lansing, MI 48824-2320, USA

Princeton University, Princeton, NJ 08544

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Goddard Space Flight Center, Greenbelt, MD 20771 USA

⁵² Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH, United Kingdom

University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

Department of Physics, McWilliams Center for Cosmology, Carnegie Mellon University

Swinburne University of Technology, Hawthorn, Victoria 3122, Australia

Universita di Bologna, via Gobetti 93/2, 40129 Bologna, Italy `

University of Florida, Gainesville, FL 32611

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

 Oskar Klein Centre for Cosmoparticle Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden

- School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138
- The Ohio State University, Columbus, OH 43212
- Dunlap Institute for Astronomy and Astrophysics, University of Toronto, ON, M5S3H4
- ⁶⁴ Department of Astronomy and Astrophysics, University of Toronto, ON, M5S3H4
- University of California at Santa Cruz, Santa Cruz, CA 95064
- Laboratoire Univers et Particules de Montpellier, Univ. Montpellier and CNRS, 34090 Montpellier, France
- Columbia University, New York, NY 10027
- Institute for Basic Science (IBS), Daejeon 34051, Korea
- Johns Hopkins University, Baltimore, MD 21218
- Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 India
- ⁷¹ Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL),
- Observatoire de Sauverny, 1290 Versoix, Switzerland
- University of California at Davis, Davis, CA 95616
- Department of Physics, Ben-Gurion University, Be'er Sheva 84105, Israel
- Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 40122, Italy
- University of Miami, Coral Gables, FL 33124

Dipartimento di Fisica e Astronomia "G. Galilei",Universita degli Studi di Padova, via Marzolo 8, `

I-35131, Padova, Italy

- ⁷⁷ IFUNAM Instituto de Física, Universidad Nacional Autónoma de Mético, 04510 CDMX, México
- University of Bristol, Tyndall Ave, Bristol BS8 1TL, UK
- 79 Laboratoire Lagrange, UMR 7293, Université de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, 06304 Nice, France

⁸⁰ Department of Physics and Astronomy, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada

- Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3, Canada
- Perimeter Institute, Waterloo, Ontario N2L 2Y5, Canada
- Southern Methodist University, Dallas, TX 75275
- 84 International Centre for Theoretical Physics, Strada Costiera, 11, I-34151 Trieste, Italy
- ⁸⁵ The Inter-University Centre for Astronomy and Astrophysics, Pune, 411007, India
- Siena College, 515 Loudon Road, Loudonville, NY 12211, USA
- European Southern Observatory, Garching, Germany
- Institut d'Astrophysique de Paris (IAP), CNRS & Sorbonne University, Paris, France
- Department of Physics, Yale University, New Haven, CT 06520
- Brookhaven National Laboratory, Upton, NY 11973
- Harvard Data Science Initiative, Harvard University, Cambridge, MA 02138
- Department of Physics, Nara Women's University, Kitauoyanishi-machi, Nara, Nara 630-8506, Japan
- ⁹³ Instituto de Física, Universidade de Brasília, 70919-970, Brasília, DF, Brazil
- University of Southern California, CA 90089
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
- ⁹⁶ IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France
- California Institute of Technology, Pasadena, CA 91125
- ⁹⁸ IRFU, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
- University of New Hampshire, Durham, NH 03824
- University of Minnesota, Minneapolis, MN 55455
- University of Colorado, Boulder, CO 80309, USA
- ¹⁰² NASA Ames Research Center, Moffett Field, CA 94035, USA
- ¹⁰³ Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany

¹⁰⁴ Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

- ¹⁰⁵ Space Telescope Science Institute, Baltimore, MD 21218
- ¹⁰⁶ Case Western Reserve University, Cleveland, OH 44106
- ¹⁰⁷ University of Colorado, Denver, CO 80204, USA
- ¹⁰⁸ Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- ¹⁰⁹ Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstrasse 12-14, D-69120 Heidelberg, Germany
- ¹¹⁰ Korea Astronomy and Space Science Institute, Daejeon 34055, Korea
- ¹¹¹ Shanghai Astronomical Observatory (SHAO), Nandan Road 80, Shanghai 200030, China
- ¹¹² The Pennsylvania State University, University Park, PA 16802
- ¹¹³ Computational Astrophysics Laboratory RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- ¹¹⁴ Syracuse University, Syracuse, NY 13244
- ¹¹⁵ Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
- ¹¹⁶ MTA-Eötvös University Lendület Hot Universe Research Group, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
- ¹¹⁷ Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University,
- Kotlářská 2, Brno, 611 37, Czech Republic
- ¹¹⁸ School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- ¹¹⁹ University of California at Los Angeles, Los Angeles, CA 90095
- ¹²⁰ University of Virginia, Charlottesville, VA 22903
- ¹²¹ Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- ¹²² Rochester Institute of Technology
- ¹²³ National Astronomical Observatories, Chinese Academy of Sciences, PR China
- ¹²⁴ Institute of Cosmology & Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX, UK
- ¹²⁵ School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722, Korea
- ¹²⁶ University of Edinburgh, EH8 9YL Edinburgh, United Kingdom
- ¹²⁷ Dartmouth College, Hanover, NH 03755
- 127 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
- ¹²⁷ Space Research Institute (IKI), Profsoyuznaya 84/32, Moscow 117997,Russia
- ¹²⁸ SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD, Groningen, The Netherlands
- ¹²⁹ Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The **Netherlands**
- ¹³⁰ IIT Hyderabad, Kandi, Telangana 502285, India

1 Introduction

Observations of clusters of galaxies provide a powerful probe of cosmology and astrophysics (Voit 2005, Allen, Evrard & Mantz 2011, Borgani & Kravtsov 2011). Statistical measurements of the evolution of the cluster population over time constrain both the growth of cosmic structure and the expansion history of the Universe. Such observations have played a key role in establishing the current "concordance" model of cosmology, in which the mass-energy budget of the Universe is dominated by dark matter and dark energy, with the latter being consistent with a cosmological constant (e.g. White et al. 1993, Allen et al. 2004, Vikhlinin et al. 2009, Mantz et al. 2010). Clusters are also remarkable astrophysical laboratories, providing unique insights into, e.g., the physics of galaxy evolution (von der Linden et al. 2010) and structure formation (Simionescu et al. 2019, Walker et al. 2019), the role of feedback processes (Fabian 2012, McNamara & Nulsen 2012), the history of metal enrichment (Mernier et al. 2018), the nature of dark matter (Clowe et al. 2006), and the physics of hot, diffuse, magnetized plasmas (Markevitch & Vikhlinin 2007, Brunetti & Jones 2014, van Weeren et al. 2019). Clusters also serve as natural gravitational telescopes with which to observe the most distant reaches of the Universe (Treu et al. 2015).

The key observations enabling robust population studies of galaxy clusters are: a sky survey on which cluster finding can be systematically performed with a clean selection function (below), accurate redshift estimates, robust absolute mass calibration (typically provided by weak lensing measurements), and targeted follow-up observations (especially at X-ray wavelengths) to provide precise centers and relative masses for the clusters, and measurements of their dynamical states.

2 Exploiting multi-wavelength synergies in cluster searches

Galaxy clusters produce observable signals across the electromagnetic spectrum. At X-ray wavelengths, spatially extended bremsstrahlung emission from the hot intracluster medium (ICM) can be clearly identified. In optical and IR data, we can search for overdensities of galaxies, as well as the red colors typical of cluster members. At mm wavelengths, the spectral distortion of the cosmic microwave background (CMB) due to inverse-Compton scattering with the ICM (the Sunyaev-Zel'dovich or SZ effect) provides a nearly redshift-independent way to find clusters.

The primary observation enabling galaxy cluster science is a sky survey on which cluster finding can be systematically performed, ideally over a large sky area and wide range in redshift. While the construction of cluster catalogs in any single waveband can quickly become a frustrating endeavour hampered by systematic limitations, the complementary nature of X-ray, optical and mm-wavelength data provides direct, observational solutions to most issues. X-ray observations, for example, can provide clean, complete catalogs of clusters, as well as multiple low-scatter mass proxies: quantities that are relatively immune to projection effects, correlating tightly with the true, three-dimensional halo mass. The primary disadvantages of X-ray measurements are the need to make them from space (which brings associated cost and risk), the impact of surface brightness dimming (though this is mild at $z > 1$; Churazov et al. 2015), and the inability to provide precise absolute mass calibration directly. SZ surveys provide a more uniform selection in redshift, with only their sensitivity determining the mass down to which clusters can in principle be detected. This technique provides our best route for finding clusters at high redshifts, although care is needed to understand the impact on selection of radio- and infrared-emissive cluster galaxies, especially at higher redshifts. Future SZ surveys will also have the ability to provide absolute cluster mass calibration through CMB-cluster gravitational lensing (e.g. Hu et al. 2007). Like X-ray surveys, optical and near-infrared (OIR) surveys are most effective at low-to-intermediate redshifts,

Figure 1: Left: Mass–redshift plot showing some existing cluster catalogs used extensively for astrophysics and cosmology (ROSAT in X-rays, SPT-SZ at mm wavelengths; Ebeling et al. 2000, 2010, Böhringer et al. 2007, Bleem et al. 2015), and the discovery space for the Stage 3 CMB (SPT-3G, Advanced ACT, Simons Observatory), CMB-S4, eROSITA, LSST and *Athena* projects. In the standard cosmological model, clusters are not expected to exist in the gray "exclusion" region. Solid lines show "evolutionary" tracks, tracing out the progenitors of present-day massive clusters. Right: The number of SZ cluster detections expected as a function of redshift from Stage 3 SZ surveys and the proposed CMB-S4 project. Blue to red shading shows the transition to the $z \gtrsim 2$ regime that will be unveiled by new cluster surveys, for which high spatial resolution and throughput are key requirements for extracting information about halo centers, relative masses, dynamical states, internal structure, and galaxy/AGN populations. The proposed new programs will enable the first detailed studies of virialized structure at these redshifts.

but have the benefit of finding larger numbers of clusters down to lower masses. The primary challenges for optical cluster selection are projection effects (which can lead to overestimated richnesses for some clusters) and the relatively complex nature of the intrinsic mass-–observable scaling relations. Nonetheless, optical surveys provide an essential complement to X-ray and SZ data in cluster identification, and uniquely provide essential redshift information (from precise multiband photometry or spectroscopy) and precise absolute mass calibration (through galaxy-cluster lensing). Supporting these observational cornerstones, numerical simulations have emerged as a powerful, complementary tool, providing informative priors on the expected correlations between the measured signals (Stanek et al. 2010, Farahi et al. 2018, Truong et al. 2018).

Figure 1a illustrates the mass-redshift coverage for two of the leading, current cluster surveys, which have been used extensively for both cosmology and astrophysics studies, and the expected reach of a number of projects, most of which are approved and funded (for more detail see Section 3). The figure demonstrates how the forthcoming surveys will vastly increase the size and redshift reach of cluster catalogs, extending out to the epoch when massive clusters first formed and when star formation and AGN activity within them peaked.

Uncovering this distant cluster population is non-trivial. At X-ray wavelengths, it requires an imaging facility with a large collecting area (especially at soft X-ray energies, $\langle 1 \text{ keV} \rangle$) and sufficient spatial resolution to distinguish truly extended emission from the intracluster medium (ICM) from associations of point-like AGN sources. SZ surveys likewise require a combination of sensitivity and spatial resolution to detect clusters, as well as sufficient frequency coverage to spec-

Figure 2: Images of the z = 2 cluster XLSSC 122: *Hubble* F140W (left; Willis et al. 2019, in prep), XMM-Newton X-ray (center, 100 ks), and simulated *Lynx* HDXI (right, 100 ks). Dashed circles show the characteristic radius, $r_{200} \sim 54$ ". Realistic densities and luminosities have been generated for cluster and background AGN in the *Lynx* simulation, which includes a simple β model for the ICM, based on the XMM data. Groundbreaking studies of this high-z cluster have benefited from investments of time with XMM, HST, *Spitzer*, ALMA, CARMA, and other ground-based observatories (Willis et al. 2013; Mantz et al. 2014, 2018). Such multi-wavelength studies will be routinely superseded by observations with future facilities such as *Athena*, JWST, single-dish bolometric mm-wavelength observatories, and 30 m-class telescopes. High spatial resolution across the electromagnetic spectrum is particularly important for unambiguously identifying galaxy and AGN counterparts.

trally distinguish measurements of the SZ effect from emissive radio and infrared sources (which contaminate the SZ signal at lower and higher frequencies, respectively). To provide both good redshift estimates and accurate shape measurements for a robust weak lensing mass calibration, optical surveys require exquisite photometric calibration and image quality. To extend the reach of optical measurements significantly beyond $z \ge 1$, space-based near IR measurements are needed, with sufficient resolution and depth to appropriately complement the optical data.

3 The Landscape of Approved Projects

A number of facilities that are approved and in construction will contribute substantially to the future of cluster science. Of special note are the new, dedicated survey instruments: eROSITA in X-rays, LSST and *Euclid* at OIR wavelengths, and several "Stage 3" ground-based mm-wavelength observatories. Also of note is the *Athena* observatory, which will devote a significant fraction of its observing time to performing a deep X-ray survey of several hundred square degrees.

The German-Russian SRG mission, bearing the eROSITA X-ray survey instrument (Merloni et al. 2012), will launch later in 2019. eROSITA will have 30–50 times the sensitivity of the previous all-sky X-ray survey by ROSAT. Figure 1a shows that the all-sky eROSITA survey is expected to identify essentially all groups out to $z \sim 0.3$, all intermediate mass clusters to ~ 0.6 , and the most massive clusters at $z \leq 2$. The FoV-averaged spatial resolution of 26", while an improvement over ROSAT, will be limiting at high redshifts, where the angular extent of clusters is small. Distinguishing ICM and AGN contributions to the emission from faint, modestly extended sources will require follow-up measurements with higher-spatial-resolution X-ray observatories.

LSST will survey the entire southern sky in *ugrizy* over a 10 year period, beginning in 2022. It will identify clusters down to the group scale, constrain their redshifts photometrically, and provide precise, stacked weak lensing mass measurements out to a redshift of ∼ 1.2 (LSST Dark Energy Science Collaboration 2012). Note that the redshift limit reflects the redshift at which the 4000 \AA

break moves out of the reddest band. Combining LSST data with near-IR data from *Euclid*, an ESA M-class mission scheduled for launch in 2021, will extend the range further. Conversely, while *Euclid* will identify overdensities of IR-luminous galaxies out to high redshifts (Laureijs et al. 2011), its ability to characterize the cluster population will be enhanced greatly through combination with precise LSST photometry (as well as complementary X-ray and mm observations).

The "Stage 3" CMB (i.e. mm-wavelength) surveys most relevant to cluster science are those by SPT-3G, AdvancedACT (both ongoing), and the planned Simons Observatory and CCAT-prime. Taking advantage of the SZ effect, these surveys will break new ground in providing the first large, robustly selected catalogs of clusters at $z > 1.5$, as well as the first informative absolute mass calibration from CMB-cluster lensing. They will find > 3000 clusters at $z > 1$ and ~ 50 at $z > 2$ (Benson et al. 2014, De Bernardis et al. 2016, The Simons Observatory Collaboration 2018, Stacey et al. 2018). However, few detections are expected above $z \sim 2.3$ (Fig. 1).

Athena, an ESA mission with NASA involvement, will be the next flagship-class X-ray facility (Nandra et al. 2013). Scheduled for launch in 2031, *Athena* will combine an order of magnitude increase in effective area compared to XMM-Newton, with a smaller 5" (HPD) PSF on axis, degrading only to $\sim 10''$ at 30' radius. *Athena*'s grasp significantly exceeds that of any previous X-ray instrument, including eROSITA. *Athena* will also carry the first large, high-spectral-resolution IFU X-ray calorimeter. With all these advances, we expect to find (Zhang et al. 2019, in prep) and study (Ettori et al. 2013, Pointecouteau et al. 2013) very distant galaxy groups and clusters at $z \gtrsim 2$ over a modest fraction of the sky with *Athena*, revolutionizing studies of cluster evolution, dynamics, thermodynamics and metal enrichment. However, due to the small size of these objects (typically $\lesssim 50$ " in diameter), these studies will rely on spectral modeling to distinguish emission from AGN and the ICM, rather than directly resolving AGN and small-scale structure within clusters.

4 New Opportunities

While the projects described above will undoubtedly transform cluster studies, they are limited in their ability to probe the highest redshifts of interest $(z > 2)$; due to limited sensitivity and/or sky coverage) and, especially, in their ability to study the astrophysical processes within and around these systems. To do so will require new multi-wavelength facilities with improved sensitivity and enhanced spatial and spectral resolution (Figure 2).

At X-ray wavelengths, the primary requirement is for an observatory with comparable throughput and spectral capabilities to *Athena*, but an order of magnitude higher spatial resolution (~ 0.5"). This would open the door to groundbreaking astrophysical measurements, especially (though not exclusively) in the high-z regime (Figure 1b). Recent advances in lightweight, high-resolution, high-throughput X-ray optics have made this goal achievable, as is discussed by the *Lynx* and AXIS teams (Zhang et al. 2018, The Lynx Team 2018). The ability to spatially resolve and separate AGN within clusters, and to cross-match these sources with ground- and space-based observations in other wavebands, will transform our ability to study how the triggering and quenching of star formation and AGN activity correlates with the evolution of galaxies and their surrounding large scale structure. Resolving the thermodynamic structure and turbulent gas motions within halos, and the distribution of metals within the diffuse cluster gas, will reveal the interwoven stories of galaxy evolution and structure formation, and the roles of feedback from AGN and stars (e.g. Gaspari et al. 2012, McDonald et al. 2018), spanning the epochs when the massive virialized structures first formed and AGN and star formation activity within them peaked.

For surveys at mm wavelengths, the primary requirements are for greater sensitivity and im-

proved spectral coverage. At high redshifts, even the largest clusters formed have modest spatial extent, making sensitivity and sufficient $($ \sim 1' $)$ spatial resolution the keys to identifying them through the SZ effect, and to providing precise mass calibration from CMB cluster lensing. Adequate spectral coverage is also crucial to separate the SZ effect from emission due to star formation and AGN activity in cluster member galaxies, which are expected to become increasingly important at high redshifts. Configurations such as those being studied for CMB-S4, using multiple, large-aperture telescopes and large, multichroic detector arrays, appear highly promising (CMB-S4 Collaboration 2016, Madhavacheril et al. 2017). These measurements would also provide precise (percent-level) absolute mass calibration and similarly precise measurements of the mean pressure and density profiles of the hot gas around clusters (out to many virial radii), from the stacked thermal- and kinetic-SZ signals. Follow-up SZ measurements with even higher spatial resolution ($\leq 10''$) and/or greater spectral coverage (extending above the SZ null) will be possible with ALMA interferometry or single-dish observatories (using successors to the MUSTANG-2 and NIKA-2 instruments and/or new proposed facilities such as CCAT-prime or AtLAST; Stacey et al. 2018, Mroczkowski et al. 2019). From space, a new survey such as the proposed PICO mission could build on the legacy of WMAP and Planck, providing all-sky coverage from 20–800 GHz (albeit with lower spatial resolution than ground-based telescopes), and producing its own catalog of clusters and protoclusters (Hanany et al. 2019). All these measurements could be complemented by high-spectral resolution X-ray grating spectroscopy of background AGN. Together, these new X-ray and SZ facilities would provide an unprecedented view of the hot, high-redshift Universe.

At OIR wavelengths, WFIRST will provide exquisite data for measuring redshifts and weak lensing of high-z clusters (e.g. Akeson et al. 2019). These capabilities, along with those of LSST and *Euclid*, should be complemented by high-throughput spectrographs with high-multiplexing capabilities on scales of $\sim 10'$. Such instruments would enable detailed studies of the star-formation and AGN properties of cluster galaxies, spanning the period when they transition from being dominated by star-forming systems to being red-sequence-dominated. Comprehensive multi-object spectroscopy will also provide a valuable complement to X-ray measurements for dynamical studies of clusters, and will be vital for calibration of photometric redshifts in cluster fields.

Powerful synergies will also be found at radio wavelengths, where SKA and its precursors (e.g. JVLA, LOFAR, MWA, HERA), working in concert with X-ray facilities, will extend studies of AGN feedback out to the highest redshifts. The detection of radio halos and relics, and the correlation of these signals with the dynamic and thermodynamic structure observed at X-ray, optical and mm wavelengths, will reveal the acceleration of particles during subcluster merger events and provide further insight into the virialization process.

ALMA follow-up will open the door to measurements of molecular gas in high-redshift clusters. At the highest redshifts ($z > 4$), observations of dusty, star forming galaxies detected by mm surveys will extend studies of dense environments into the pre-virialized, protocluster regime (e.g. Miller et al. 2018). Finally, combining the most powerful facilities across all wavelengths, we will continue to use clusters as gravitational cosmic telescopes, to probe the earliest phases of galaxy evolution, and the roles of young stars and AGN in the reionization of the Universe.

Extracting science from more sensitive measurements requires concurrent advances in modeling, including simulations designed to map physical models directly to the space of observable features. Empowering the interpretation of new observational capabilities over the coming decade will require large simulated ensembles of massive halos from cosmological volumes, as well as improvements in resolution and new physical treatments.

References

Akeson R., et al., 2019, preprint, ([arXiv:1902.05569](http://arxiv.org/abs/1902.05569))

- Allen S. W., Schmidt R. W., Ebeling H., Fabian A. C., van Speybroeck L., 2004, [MNRAS,](http://dx.doi.org/10.1111/j.1365-2966.2004.08080.x) [353,](http://adsabs.harvard.edu/abs/2004MNRAS.353..457A) [457](http://adsabs.harvard.edu/abs/2004MNRAS.353..457A)
- Allen S. W., Evrard A. E., Mantz A. B., 2011, [ARA&A,](http://dx.doi.org/10.1146/annurev-astro-081710-102514) [49, 409](http://adsabs.harvard.edu/abs/2011ARA%26A..49..409A)
- Benson B. A., et al., 2014, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. p. 91531P ([arXiv:1407.2973](http://arxiv.org/abs/1407.2973)), [doi:10.1117/12.2057305](http://dx.doi.org/10.1117/12.2057305)
- Bleem L. E., et al., 2015, [ApJS,](http://dx.doi.org/10.1088/0067-0049/216/2/27) [216, 27](http://adsabs.harvard.edu/abs/2015ApJS..216...27B)
- Böhringer H., et al., 2007, [A&A,](http://dx.doi.org/10.1051/0004-6361:20066740) [469, 363](http://adsabs.harvard.edu/abs/2007A%26A...469..363B)
- Borgani S., Kravtsov A., 2011, Adv. Sci. Lett., [4, 204](http://adsabs.harvard.edu/abs/2009arXiv0906.4370B)
- Brunetti G., Jones T. W., 2014, [International Journal of Modern Physics D,](http://dx.doi.org/10.1142/S0218271814300079) [23, 1430007](http://adsabs.harvard.edu/abs/2014IJMPD..2330007B)
- CMB-S4 Collaboration, 2016, preprint, $(arxiv:1610.02743)$
- Churazov E., Vikhlinin A., Sunyaev R., 2015, [MNRAS,](http://dx.doi.org/10.1093/mnras/stv743) [450, 1984](http://adsabs.harvard.edu/abs/2015MNRAS.450.1984C)
- Clowe D., Bradač M., Gonzalez A. H., Markevitch M., Randall S. W., Jones C., Zaritsky D., 2006, [ApJ,](http://dx.doi.org/10.1086/508162) [648, L109](http://adsabs.harvard.edu/abs/2006ApJ...648L.109C)
- De Bernardis F., et al., 2016, in Observatory Operations: Strategies, Processes, and Systems VI. p. 991014 ([arXiv:1607.02120](http://arxiv.org/abs/1607.02120)), [doi:10.1117/12.2232824](http://dx.doi.org/10.1117/12.2232824)
- Ebeling H., Edge A. C., Allen S. W., Crawford C. S., Fabian A. C., Huchra J. P., 2000, MNRAS, [318, 333](http://adsabs.harvard.edu/abs/2000MNRAS.318..333E)
- Ebeling H., Edge A. C., Mantz A., Barrett E., Henry J. P., Ma C. J., van Speybroeck L., 2010, [MNRAS,](http://dx.doi.org/10.1111/j.1365-2966.2010.16920.x) [407, 83](http://adsabs.harvard.edu/abs/2010MNRAS.407...83E)
- Ettori S., et al., 2013, preprint, ([arXiv:1306.2322](http://arxiv.org/abs/1306.2322))
- Fabian A. C., 2012, [ARA&A,](http://dx.doi.org/10.1146/annurev-astro-081811-125521) [50, 455](http://adsabs.harvard.edu/abs/2012ARA%26A..50..455F)
- Farahi A., Evrard A. E., McCarthy I., Barnes D. J., Kay S. T., 2018, [MNRAS,](http://dx.doi.org/10.1093/mnras/sty1179) [478, 2618](http://adsabs.harvard.edu/abs/2018MNRAS.478.2618F)
- Gaspari M., Ruszkowski M., Sharma P., 2012, [ApJ,](http://dx.doi.org/10.1088/0004-637X/746/1/94) [746, 94](http://adsabs.harvard.edu/abs/2012ApJ...746...94G)
- Hanany S., et al., 2019, preprint, $(\text{arXiv:1902}.10541)$
- Hu W., DeDeo S., Vale C., 2007, [New Journal of Physics,](http://dx.doi.org/10.1088/1367-2630/9/12/441) [9, 441](http://adsabs.harvard.edu/abs/2007NJPh....9..441H)
- LSST Dark Energy Science Collaboration 2012, arXiv:1211.0310,
- Laureijs R., et al., 2011, preprint, $(\text{arXiv}:1110.3193)$
- Madhavacheril M. S., Battaglia N., Miyatake H., 2017, [Phys. Rev. D,](http://dx.doi.org/10.1103/PhysRevD.96.103525) [96, 103525](https://ui.adsabs.harvard.edu/#abs/2017PhRvD..96j3525M)
- Mantz A., Allen S. W., Rapetti D., Ebeling H., 2010, [MNRAS,](http://dx.doi.org/10.1111/j.1365-2966.2010.16992.x) [406, 1759](http://adsabs.harvard.edu/abs/2010MNRAS.406.1759M)
- Mantz A. B., et al., 2014, [ApJ,](http://dx.doi.org/10.1088/0004-637X/794/2/157) [794, 157](http://adsabs.harvard.edu/abs/2014ApJ...794..157M)
- Mantz A. B., et al., 2018, [A&A,](http://dx.doi.org/10.1051/0004-6361/201630096) [620, A2](http://adsabs.harvard.edu/abs/2018A%26A...620A...2M)
- Markevitch M., Vikhlinin A., 2007, [Phys. Rep.,](http://dx.doi.org/10.1016/j.physrep.2007.01.001) [443, 1](http://adsabs.harvard.edu/abs/2007PhR...443....1M)
- McDonald M., Gaspari M., McNamara B. R., Tremblay G. R., 2018, [ApJ,](http://dx.doi.org/10.3847/1538-4357/aabace) [858, 45](http://adsabs.harvard.edu/abs/2018ApJ...858...45M)
- McNamara B. R., Nulsen P. E. J., 2012, [New Journal of Physics,](http://dx.doi.org/10.1088/1367-2630/14/5/055023) [14, 055023](http://adsabs.harvard.edu/abs/2012NJPh...14e5023M)
- Merloni A., et al., 2012, arXiv:1209.3114,
- Mernier F., et al., 2018, [Space Sci. Rev.,](http://dx.doi.org/10.1007/s11214-018-0565-7) [214, 129](https://ui.adsabs.harvard.edu/#abs/2018SSRv..214..129M)
- Miller T. B., et al., 2018, [Nat,](http://dx.doi.org/10.1038/s41586-018-0025-2) [556, 469](http://adsabs.harvard.edu/abs/2018Natur.556..469M)
- Mroczkowski T., et al., 2019, [Space Sci. Rev.,](http://dx.doi.org/10.1007/s11214-019-0581-2) [215, 17](http://adsabs.harvard.edu/abs/2019SSRv..215...17M)
- Nandra K., et al., 2013, arXiv:1306.2307,
- Pointecouteau E., et al., 2013, preprint, $(\text{arXiv}:1306.2319)$
- Simionescu A., et al., 2019, preprint, ([arXiv:1902.00024](http://arxiv.org/abs/1902.00024))
- Stacey G. J., et al., 2018, in Ground-based and Airborne Telescopes VII. p. 107001M ([arXiv:1807.04354](http://arxiv.org/abs/1807.04354)), [doi:10.1117/12.2314031](http://dx.doi.org/10.1117/12.2314031)
- Stanek R., Rasia E., Evrard A. E., Pearce F., Gazzola L., 2010, [ApJ,](http://dx.doi.org/10.1088/0004-637X/715/2/1508) [715, 1508](http://adsabs.harvard.edu/abs/2010ApJ...715.1508S)
- The Lynx Team 2018, preprint, $(\text{arXiv:1809.09642})$ $(\text{arXiv:1809.09642})$ $(\text{arXiv:1809.09642})$
- The Simons Observatory Collaboration, 2018, preprint, ([arXiv:1808.07445](http://arxiv.org/abs/1808.07445))
- Treu T., et al., 2015, [ApJ,](http://dx.doi.org/10.1088/0004-637X/812/2/114) [812, 114](http://adsabs.harvard.edu/abs/2015ApJ...812..114T)
- Truong N., et al., 2018, [MNRAS,](http://dx.doi.org/10.1093/mnras/stx2927) [474, 4089](http://adsabs.harvard.edu/abs/2018MNRAS.474.4089T)
- Vikhlinin A., et al., 2009, [ApJ,](http://dx.doi.org/10.1088/0004-637X/692/2/1060) [692, 1060](http://adsabs.harvard.edu/abs/2009ApJ...692.1060V)
- Voit G. M., 2005, [Reviews of Modern Physics,](http://dx.doi.org/10.1103/RevModPhys.77.207) [77, 207](http://adsabs.harvard.edu/abs/2005RvMP...77..207V)
- Walker S., et al., 2019, [Space Sci. Rev.,](http://dx.doi.org/10.1007/s11214-018-0572-8) [215, 7](https://ui.adsabs.harvard.edu/#abs/2019SSRv..215....7W)
- White S. D. M., Navarro J. F., Evrard A. E., Frenk C. S., 1993, [Nat,](http://dx.doi.org/10.1038/366429a0) [366, 429](http://adsabs.harvard.edu/abs/1993Natur.366..429W)
- Willis J. P., et al., 2013, [MNRAS,](http://dx.doi.org/10.1093/mnras/sts540) [430, 134](http://adsabs.harvard.edu/abs/2013MNRAS.430..134W)
- Willis J., et al., 2019, in preparation
- Zhang W. W., et al., 2018, in Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. p. 106990O, [doi:10.1117/12.2312879](http://dx.doi.org/10.1117/12.2312879)

Zhang C., Ramos-Ceja M., Pacaud F., Reiprich T., et al., 2019, in preparation

- van Weeren R. J., de Gasperin F., Akamatsu H., Brüggen M., Feretti L., Kang H., Stroe A., Zandanel F., 2019, preprint, ([arXiv:1901.04496](http://arxiv.org/abs/1901.04496))
- von der Linden A., Wild V., Kauffmann G., White S. D. M., Weinmann S., 2010, [MNRAS,](http://dx.doi.org/10.1111/j.1365-2966.2010.16375.x) [404,](http://adsabs.harvard.edu/abs/2010MNRAS.404.1231V) [1231](http://adsabs.harvard.edu/abs/2010MNRAS.404.1231V)