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Abstract. Some adaptive analogue of the Mirror Prox method for vari-
ational inequalities is proposed. In this work we consider the adaptation
not only to the value of the Lipschitz constant, but also to the magnitude
of the oracle error. This approach, in particular, allows us to prove a com-
plexity near O

(

1

ε
log2

1

ε

)

for variational inequalities for a special class of
monotone bounded operators. This estimate is optimal for variational in-
equalities with monotone Lipschitz-continuous operators. However, there
exists some error, which may be insignificant. The results of experiments
on the comparison of the proposed approach with some known analogues
are presented. Also, we discuss the results of the experiments for matrix
games in the case of using non-Euclidean proximal setup.

Keywords: Variational Inequality, Mirror Prox, Inexactness, Adapta-
tion, Non-Smooth Operator, Lipschitz-continuous Operator, Matrix Game

1 Introduction

Variational inequalities (VI) and saddle point problems often arise in a vari-
ety of important applications [1]. For solving such problems a lot of algorith-
mic schemes are known (see e.g. [1,2,3,4]). The Mirror Prox method proposed
by A. S. Nemirovski [4] is currently one of the most popular of such methods.
This method goes back to the well-known extragradient method proposed by
G. M. Korpelevich in [5]. At the same time, unlike the standard extragradient
method, Mirror Prox allows to effectively solve problems with non-Euclidean
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number 18-29-03071 mk and project number 18-31-20005 mol-a-ved).
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norms, as well as with the Holder-continuous operators:

‖g(x)− g(y)‖∗ 6 Lν‖x− y‖ν ∀x, y ∈ Q for some ν ∈ [0; 1], (1)

all notations are explained in Sect. 2 below.
Recently, a universal analogue of the A. S. Nemirovski method [4] was pro-

posed in [6,7]. The universality is understood as an adaptive adjustment to the
optimal smoothness level ν in (1), as well as the constant value Lν > 0. Note
that universal gradient method for unconstrained convex optimization problems
was proposed by Yu.E. Nesterov [8] (see also Sect. 5 of the textbook [9]). And
it is possible to observe the convergence rate of the proposed method, which
is typical for the smooth case ν = 1 (Lipschitz-continuous operators), for some
problems with bounded operators (L0 < +∞ and Lν = +∞ for all ν > 0).

This paper is devoted to the modification of Mirror Prox method [6,7] for the
following analogue of the Lipschitz condition for the operator g with constant
L > 0

〈g(y)− g(x), y − z〉 6 LV (y, x) + LV (y, z) + δ‖y − z‖ ∀x, y, z ∈ Q, (2)

where δ > 0 is a fixed value and V (y, x) is the Bregman divergence (see Sect. 2
below).

We propose an analogue of аdaptive Mirror Prox method [6,7]. At the same
time, we consider adaptive tuning both for the value of the parameters L and δ.
One of the features of the proposed method which are important for applications
is the possibility for the value of δ to reflect the inexactness of operator g. In
addition, the value of δ can indicate the degree of discontinuity of the opera-
tor g. Adaptive tuning to its value can approximate the convergence rate for
variational inequalities with bounded operators (ν = 0) to the convergence rate
for variational inequalities with Lipshitz-continuous operators (ν = 1). Effects
of this approach can be observed for the universal method but without a theo-
retical justification for the convergence rate O

(
1
ε

)
for non-smooth operators [6].

This means that the proposed approach in this paper is an alternative to the
universal method.

The contribution of the paper can be summarized as follows:
- An analogue of the Mirror Prox method for variational inequalities with

a monotone Lipschitz-continuous operator, which allows for adaptive tuning to
the value of the Lipschitz constant L, as well as the limit value of the error δ of
the specifying operator g, is proposed.

- The applicability of the proposed method to a certain class of variational
inequalities with bounded operators (ν = 0) is discussed. The rate of convergence
O
(
1
ε

)
of this method is proved with some finite error associated with the non-

smoothness of the operator. Thus, some alternative to the universal method has
been proposed, but with a clearer theoretical rationale for acceleration.

- The results of numerical experiments for finding the equilibrium in a bi-
linear matrix game (or VI with Lipschitz-continuous operator) with a bounded
error in the definition of the operator are given. A comparison of the quality of
the calculated solution is given depending on the number of iterations for the
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adaptive Mirror Prox method from [7] and the method proposed in this paper
with an adaptive setting for the magnitude of the error.

- The results of numerical experiments for a variational inequality with a
bounded (ν = 0) operator (related to the Fermat-Torricelli-Steiner problem) are
presented. These results show that the method due to the proposed adaptation
of the non-smoothness error can converge much faster than the optimal lower
estimate O

(
1
ε2

)
for the corresponding class of problems.

2 Problem Statement and Some Examples

Let (E, ‖·‖) be a normed finite-dimensional vector space and E∗ be the conjugate
space of E with the norm:

||y||∗ = max
x

{〈y, x〉, ||x|| ≤ 1},

where 〈y, x〉 is the value of the continuous linear functional y at x ∈ E.
Let Q ⊂ E be a (simple) closed convex set, d : Q → R be a distance

generating function (d.g.f.), which is continuously differentiable and 1-strongly
convex with respect to the norm ‖ · ‖ and assume that min

x∈Q
d(x) = d(0).

For all x, y ∈ Q ⊂ E we consider the corresponding Bregman divergence

V (x, y) = d(x) − d(y)− 〈∇d(y), x− y〉. (3)

Let g : Q → E∗ be a continuous operator. We consider the problem of finding
a solution to a variational inequality of the form

〈g(x∗), x∗ − x〉 6 0 ∀x ∈ Q. (4)

Under the assumption of the monotony of the operator g, i.e.

〈g(x) − g(y), x− y〉 ≥ 0 ∀x, y ∈ Q,

the inequality (4) is equivalent to the following weak variational inequality

〈g(x), x∗ − x〉 6 0 ∀x ∈ Q. (5)

Assume that the operator g satisfies the condition (2). In this section, we show
some examples of problems for which a condition of the form (2) naturally arises.
First of all, this is due to the inexactness of the oracle for the operator of a
variational inequality. But also the value of δ‖y − z‖ can describe the degree of
discontinuity of the operator g (i.e. using considered approach, one can propose
an approach to the solution of some VI’s with bounded operators).

Example 1. Let g : Q → R
n be a Lipschitz-continuous operator with constant

L > 0, i.e.
‖g(x)− g(y)‖∗ 6 L‖x− y‖ ∀x, y ∈ Q.
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However, suppose that the exact value of the operator g is not available, and
only an approximate value of g(x), i.e. g̃(x), is known:

‖g̃(x)− g(x)‖∗ 6
δ

2
∀x ∈ Q.

Then for each x, y, z ∈ Q we have:

|〈g̃(y)−g̃(x), y−z〉−〈g(y)−g(x), y−z〉| = |〈g̃(y)−g(y), y−z〉+〈g(x)−g̃(x), y−z〉| 6

6 ‖g̃(y)−g(y)‖∗ ·‖y−z‖+‖g̃(x)−g(x)‖∗ ·‖y−z‖ 6
(
δ

2
+

δ

2

)
‖y−z‖ = δ‖y−z‖.

Therefore,

〈g̃(y)−g̃(x), y−z〉 6 〈g(y)−g(x), y−z〉+δ‖y−z‖ 6 ‖g(y)−g(x)‖∗·‖y−z‖+δ‖y−z‖6

6 L‖y − x‖ · ‖y − z‖+ δ‖y − z‖ 6
L

2
‖y − x‖2 + L

2
‖y − z‖2 + δ‖y − z‖ 6

6 LV (y, x) + LV (y, z) + δ.

Example 2. Note that the term δ‖y− z‖ in (2) can describe non-smoothness for
the operator g along any fixed vector segment {ty + (1 − t)x}0≤t≤1. In general
(if you combine all possible vector segments), on the domain of non-smoothness
points there can be an infinite number.

For example, assume that for some subset Q0 ⊂ Q the function f is differ-
entiable at all points of Q \Q0 and that for an arbitrary x ∈ Q0 there exists a
finite subdifferential ∂f(x) in the sense of convex analysis.

For fixed x, y ∈ Q with t ∈ [0; 1] we denote yt := (1 − t)x+ ty.

Definition 1. ([10]) Fix δ > 0 and L > 0. We say that the convex function
f : Q → R (Q ⊂ R

n) has (δ, L)-Lipschitz subgradient (f ∈ C1,1
L,δ(Q)), if:

(i) for arbitrary x, y ∈ Q the function f is differentiable at all points of the set
{yt}06t61, with the exception of the sequence (possibly finite)

{ytk}∞k=1 : t1 < t2 < t3 < . . . and lim
k→∞

tk = 1; (6)

(ii) for a sequence of points from (6) there exist finite subdifferentials {∂f(ytk)}∞k=1

and

diam ∂f(ytk) =: δk > 0, where
+∞∑

k=1

δk =: δ < +∞, (7)

and diam ∂f(x) = max{‖y − z‖∗ | y, z ∈ ∂f(x)};
(iii) if for x, y ∈ Q the function f is differentiable at each point yt, t ∈ (0; 1),

then the following inequality holds:

min
∂̂f(x)∈∂f(x),

∂̂f(y)∈∂f(y)

‖∂̂f(x)− ∂̂f(y)‖∗ 6 L‖x− y‖. (8)
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Indeed, the property of (δ, L)-Lipschitzness for each subgradient g(x) =

∂̂f(x) means that
‖g(y)− g(x)‖∗ 6 L‖y − x‖ + δ. (9)

To prove (9), it suffices to split the segment {yt}06t61 into the intervals of
smoothness and take into account the boundedness of diameters of the subdif-
ferentials at non-smoothness points of f .

The inequality (9) means that

〈g(y)− g(x), y− z〉 6 ‖g(y)− g(x)‖∗ · ‖y− z‖ 6 L‖y− x‖ · ‖y− z‖+ δ‖y− z‖ 6

6
L

2
(‖y − x‖2 + ‖y − z‖2) + δ‖y − z‖ 6 LV (y, x) + LV (z, y) + δ‖y − z‖.

Let us give a concrete example of a non-smooth functional with a (δ, L)-
Lipschitz subgradient with an arbitrarily large Lipschitz constant.

Example 3. We fix some k > 0, the value δ > 0 and consider the piecewise linear
function f : [0; 1] → R (here Q = [0; 1] ⊂ R) defined as follows

f(x) =






kx ; 0 6 x 6 1
2 ,(

k +
∑n

i=1
δ
2i

)
x−∑n

i=1
δ
2i

(
1− 1

2i

)
; 1− 1

2n < x 6 1− 1
2n+1 ,

limx→+1 f(x) ;x = 1.

(10)

In this case, Q0 = {1− 1
2n }∞n=1, ∂f(qn) =

[
k +

n−1∑
i=1

δ
2i ; k +

n∑
i=1

δ
2i

]
with n > 1,

∂f(q1) =
[
k; k + δ

2

]
(here qn = 1 − 1

2n with n = 1, 2, 3, . . .). It is clear that

∂f(qn) =
δ
2n , which is true for the entered value δ > 0. Moreover, on the intervals

(0; q1), (qn; qn+1) the function f has a Lipschitz-continuous gradient with the
constant L = 0. Therefore, for the function f from (10), we find that f ∈ C1,1

0,δ (Q).

Any functional with a finite set of non-smooth points along an arbitrary
segment will satisfy the proposed Lipschitz condition for the subgradient. Obvi-
ously, this condition holds for each objective function with finite points of non-
smoothnes on each vector segment [x; y]. Thus, it is possible to apply this tech-
nique to problems of minimization for sum distances to several balls in Hilbert
spaces [11]. Such an objective function, obviously, will not be differentiable in
the usual sense at the points of the boundaries of the balls of which there are
infinitely many. Note that among points of each vector segment [x; y] such an
objective function have finite points of non-smoothness. However, the considered
Lipschitz condition for a special choice of subgradient holds for some functions
with infinitely many points of non-smoothness (e.g. for maximum of linear func-
tions).

3 Adaptive Method for Variational Inequalities with

Adaptation to Inexactness

In this section, we introduce a new version of the Mirror Prox method for vari-
ational inequalities (see [7]), which we call Mirror Prox with Adaptation to In-
exactness (MPAI). In this version, which is listed as Algorithm 1 below, we
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consider the adaptation not only to the level of operator smoothness, but also to
the magnitude of the oracle error, which may allow to receive complexity near
O
(
1
ε

)
for VI with bounded operators, i.e. the optimal complexity for VI with

Lipshitz-continuous operators.
We evaluate the solution quality of the problem (4), produced by Algorithm 1,

by using the Bregman divergence (3).

Algorithm 1 Mirror Prox with Adaptation to Inexactness (MPAI).

Input: x0 = argmin
x∈Q

d(x), L0, δ0.

1: N := N + 1; LN+1 := LN

2
; δN+1 := δN

2
.

2: Calculate
yN+1 := argmin

x∈Q
{〈g(xN), x− xN 〉+ LN+1V (x, xN)}, (11)

xN+1 := argmin
x∈Q

{〈g(yN+1), x− xN〉+ LN+1V (x, xN)}. (12)

3: If
〈g(yN+1)− g(xN), yN+1 − xN+1〉 ≤ LN+1V (yN+1, xN)+ (13)

+LN+1V (xN+1, yN+1) + δN+1
∥

∥

∥
yN+1 − xN+1

∥

∥

∥
,

then go to the next iteration (item 1).
4: Else increase LN+1 and δN+1 by two times and go to item 2.

Theorem 1. After N iterations of Algorithm 1, the following estimate holds:

N−1∑

k=0

1

Lk+1
〈g(yk+1), yk+1−x〉 6 V (x, x0)−V (x, xN )+

N−1∑

k=0

δk+1

Lk+1

∥∥yk+1 − xk+1
∥∥ .

Proof. One can directly check the following inequalities:

〈
∇xV (x, xk)

∣∣
x=xk+1, x− xk+1

〉
= V (x, xk)− V (x, xk+1)− V (xk+1, xk), (14)

〈
∇xV (x, xk)

∣∣
x=yk+1 , x− yk+1

〉
= V (x, xk)− V (x, yk+1)− V (yk+1, xk). (15)

Further, for each x ∈ Q and k = 0, N − 1:

〈
∇x

(〈
g(xk), x− xk

〉
+ Lk+1V (x, xk)

) ∣∣
x=yk+1 , x− yk+1

〉
> 0,

〈
∇x

(〈
g(yk+1), x− xk

〉
+ Lk+1V (x, xk)

) ∣∣
x=xk+1 , x− xk+1

〉
> 0.

Thus,

〈
g(yk+1), xk+1 − x

〉
6 Lk+1V (x, xk)− Lk+1V (x, xk+1)− Lk+1V (xk+1, xk)
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and
〈
g(xk), yk+1 − x

〉
6 Lk+1V (x, xk)− Lk+1V (x, yk+1)− Lk+1V (yk+1, xk).

Taking into account (13), we have for each k = 0, N − 1:
〈
g(yk+1), yk+1 − x

〉
=

〈
g(yk+1), xk+1 − x

〉
+
〈
g(xk), yk+1 − xk+1

〉
+

+
〈
g(yk+1)− g(xk), yk+1 − xk+1

〉
6

6 Lk+1V (x, xk)− Lk+1V (x, xk+1)− Lk+1V (xk+1, xk) + Lk+1V (xk+1, xk)−
−Lk+1V (xk+1, yk+1)− Lk+1V (yk+1, xk) + Lk+1V (yk+1, xk)+

+Lk+1V (xk+1, yk+1) + δk+1
∥∥yk+1 − xk+1

∥∥ ,
i.e.

1

Lk+1

〈
g(yk+1), yk+1 − x

〉
6 V (x, xk)− V (x, xk+1) +

δk+1

Lk+1

∥∥yk+1 − xk+1
∥∥ .
(16)

After summing (16) by k = 0, N − 1, we have

N−1∑

k=0

1

Lk+1
〈g(yk+1), yk+1−x〉 6 V (x, x0)−V (x, xN )+

N−1∑

k=0

δk+1

Lk+1

∥∥yk+1 − xk+1
∥∥ .

�

Let us denote

SN =
N−1∑

k=0

1

Lk+1
, ỹ =

1

SN

N−1∑

k=0

yk+1

Lk+1
and R2 = max

x∈Q
V (x, x0).

Theorem 2. For monotone operator g after N iterations of Algorithm 1, the
following estimate holds:

max
x∈Q

〈g(x), ỹ − x〉 6 R2

SN

+
1

SN

N−1∑

k=0

δk+1

Lk+1

∥∥yk+1 − xk+1
∥∥ . (17)

Assume that for fixed ε
N−1∑

k=0

1

Lk+1
>

R2

ε
. (18)

Then the following inequality holds:

max
x∈Q

〈g(x), ỹ − x〉 6 ε+
1

SN

N−1∑

k=0

δk+1

Lk+1

∥∥yk+1 − xk+1
∥∥ . (19)

If L0 6 2L, then inequality (18) holds at no more than

N =

⌈
2LR2

ε

⌉

iterations of Algorithm 1.
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Proof. By monotony of g we have for each k = 0, 1, ...:

〈g(x), yk+1−x〉 = 〈g(yk+1), yk+1−x〉+〈g(x)−g(yk+1), yk+1−x〉 6
〈
g(yk+1), yk+1 − x

〉
,

so the inequality

1

SN

max
x∈Q

N−1∑

k=0

1

Lk+1

〈
g(yk+1), yk+1 − x

〉
6

6
R2

SN

+
1

SN

N−1∑

k=0

δk+1

Lk+1

∥∥yk+1 − xk+1
∥∥ 6 ε+

1

SN

N−1∑

k=0

δk+1

Lk+1

∥∥yk+1 − xk+1
∥∥

(20)

can be replaced by

max
x∈Q

〈g(x), ỹ − x〉 6 R2

SN

+
1

SN

N−1∑

k=0

δk+1

Lk+1

∥∥yk+1 − xk+1
∥∥ 6

6 ε+
1

SN

N−1∑

k=0

δk+1

Lk+1

∥∥yk+1 − xk+1
∥∥ .

(21)

Remark 1. Due to adaptive choice of parameters Lk+1 and δk+1 at each iteration
of Algorithm 1 the expression

R2

SN

+
1

SN

N−1∑

k=0

δk+1

Lk+1

∥∥yk+1 − xk+1
∥∥

in (21) may be small enough even in the case of L = +∞ or δ = +∞ in (2).

Remark 2. Clearly, for each k, we have δk 6 CLδ (CL = max
{
1, 2L

L0

}
) and:

1

SN

N−1∑

k=0

δk+1

Lk+1

∥∥yk+1 − xk+1
∥∥ 6 CLδ max

k=0,N−1

∥∥yk+1 − xk+1
∥∥ .

This means that the value associated with the error in the specifying opera-
tor g is bounded on the set Q of a finite diameter.

Remark 3. If g 6≡ 0, then the condition L0 6 2L can be satisfied by choosing

L0 :=
‖g(x)− g(y)‖∗

‖x− y‖ at g(x) 6= g(y).

Remark 4. Note that the estimate of the number of iterations N =
⌈
2LR2

ε

⌉

with accuracy to a numerical factor is optimal for variational inequalities with a
Lipschitz-continuous operator [12]. Note that the evaluation of the inexactness
of the value of the operator, as we see from the previous remark, is bounded and
does not accumulate.

Note that similarly Remark 4 in [13] the total number of attempts to solve
(11) and (12) is bounded by 4N +max

{
log2

2L
L0 , log2

2δ
δ0

}
.



Mirror Prox for VI with Adaptation to Inexactness 9

Remark 5. It was pointed earlier that δ can describe the degree of non-smoothness
of the operator g. Let us show how Algorithm 1 can be slightly modified in order
to provably obtain an approximate complexity estimate

O

(
1

ε2
log2

1

ε

)

to achieve the quality of the solution ỹ:

max
x∈Q

〈g(x), ỹ − x〉 6 ε

in the case of a bounded operator g (generally speaking, non-smooth).
Suppose that at each iteration L 6 Lk+1 6 2L (this can always be achieved

with a constant number of calculations in item 2 of the listing of Algorithm 1).
We propose such a procedure for some positive integer p: repeat the opera-

tions item 2 of Algorithm 1, p times, each time

Lk+1 := 2 · Lk+1 with the same δk+1 6 2δ (22)

(for each iteration of the algorithm 1, k = 0, 1, 2, . . . , N − 1). A procedure of
type (22) will be stopped if one of the following two inequalities holds:

δk+1

∥∥yk+1 − xk+1
∥∥ 6

ε

2
, (23)

or
〈
g(yk+1)− g(xk), yk+1 − xk+1

〉
6 2p−1L

(∥∥yk+1 − xk
∥∥2

+
∥∥yk+1 − xk+1

∥∥2
)
.

(24)
Note that the procedure (22) involves updating xk+1 and yk+1 during rep-

etitions. Let us estimate p (the number of times required for executing (23) or
(24) to repeat a procedure of type (22)).

It is clear that ∀xk, xk+1, yk+1 ∈ Q it is true that

〈
g(yk+1)− g(xk), yk+1 − xk+1

〉
6

L

2

∥∥yk+1 − xk
∥∥2+L

2

∥∥yk+1 − xk+1
∥∥2

+δ
∥∥yk+1 − xk+1

∥∥ .

Moreover, δk+1 6 2δ. If (23) is not true, then
∥∥yk+1 − xk+1

∥∥ >
ε

4δ
and the

inequality (24) is obviously satisfied at

2p > 1 +
16δ2

Lε
, (25)

since in that case

2p − 1

2
L
∥∥yk+1 − xk+1

∥∥2 > δ
∥∥yk+1 − xk+1

∥∥ .

So, after repeating the p procedures of type (22) at each of the N iterations
of the method, the following inequality holds:

max
x∈Q

〈g(x), ỹ − x〉 6 R2

SN

+
ε

2
.
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Further,

SN =

N−1∑

k=0

1

Lk+1
>

N

2p+1L
.

Therefore,
R2

SN

6
2p+1LR2

N
6

ε

2
at N >

2p+2LR2

ε
, whence, taking into

account (25)

N >
4LR2

ε
+

64δ2R2

ε2
. (26)

Generally speaking, we need O

(
log

1

ε

)
additional steps of item 2 of listing 1

of Algorithm 1 at each iteration. So, the final estimate of complexity to achieve

the quality of max
x∈Q

〈g(x), ỹ−x〉 6 ε will be O

(
1

ε2
log2

1

ε

)
. It is well-known that

this estimate is optimal up to a logarithmic factor.

However, for small enough δ in (26) we have complexity near O

(
1

ε
log2

1

ε

)
.

4 Numerical Experiments for Non-smooth Problem:

Variational Inequality for Some Analogue of

Fermat-Torricelli-Steiner Problem

In this section, to show the advantages of the proposed Algorithm 1, we consider
some numerical experiments for the saddle point problem (and the corresponding
VI), which corresponds to the convex programming problem for some analogues
of the Fermat-Torricelli-Steiner problem with functional constraints. Note that
the objective functions are non-smooth and the corresponding operators of the
variational inequality of the problem under consideration are bounded (ν = 0).
However, experimentally, due to adaptation, we can observe an estimate of the
complexity inherent in the case of Lipshitz-continuous operators of VI.

All experiments in this section were implemented in Python 3.4, on a com-
puter equipped with Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz,
4 Core(s), 8 Logical Processor(s). RAM of the computer is 8GB.

For a given set of N points {Ak = (a1k, a2k, . . . , ank); k = 1, N}, that rep-
resent the centers of the balls ωk with radii rk, in the n-dimensional Euclidean
space R

n, we need to find such a point X = (x1, x2, . . . , xn) of the objective
function [11]

f(x) :=

N∑

k=1

d(X,Ak), (27)

where

d(X,Ak) =

{
XAk − rk, if |XAk| > rk

0, otherwise,
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would take the minimal value on the set Q, which is given by several functional
constraints:

ϕ1(x) = α11x
2
1 + α12x

2
2 + . . .+ α1nx

2
n − 1,

ϕ2(x) = α21x
2
1 + α22x

2
2 + . . .+ α2nx

2
n − 1,

. . .

ϕm(x) = αm1x
2
1 + αm2x

2
2 + . . .+ αmnx

2
n − 1,

(28)

where the coefficients α11, α12, . . . , αmn are represented by the matrix




α11 α13 . . . α1n

α21 α23 . . . α2n

. . . . . . . . . . . . . . . . .
αm1 αm3 . . . αmn


 ,

in which one element of each row is an integer belonging to the interval (1; 10),
and the remaining elements of the row are equal to 1.

To solve such a problem, we can consider a saddle point problem min
x

max
λ

L(x, λ),

where

L(x, λ) = f(x) +

m∑

p=1

λpϕp(x),
−→
λ = (λ1, λ2, . . . , λm).

Consider the corresponding variational inequality:

〈G(x∗,
−→
λ ∗), (x∗,

−→
λ ∗)− (x,

−→
λ )〉 6 0 ∀(x,−→λ ) ∈ B ⊂ R

n+m,

where

B =

{
(x,

−→
λ ) |

n∑

k=1

x2
k +

m∑

p=1

λ2
p 6 1

}
,

G(x, λ) =


 ∇f(x) +

m∑
p=1

λp∇ϕp(x),

−ϕ1(x),−ϕ2(x), . . . ,−ϕm(x)


 .

We give an example for n = 100, m = 20, N = 5, initial approximation

(x0, λ0) =

(
1√

m+ n
,

1√
m+ n

. . . ,
1√

m+ n

)
∈ R

n+m,

and δ0 = 1
20 . The coordinates of the points Ak are chosen in such a way that

‖Ak‖ ∈ [1; 2]. We choose the standard Euclidean proximal setup as a prox-
function.

Note that the centers of the balls were chosen with the norm in the interval
[1; 2], and the radii of the balls are 1. Therefore, in a single ball with the center
at zero there will be points of the boundary of the balls in which the objective
function (27) and the operator of the corresponding variational inequality will
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be bounded. At the same time, it can be shown that the diameter of the subdif-
ferential at such points will be at least 1. It means that theoretically δ can be at
least 1. However, experimentally, we can see significantly better solution quality
(see the column "General estimate" in Table 1).

The results of the work of Algorithm 1, for objective function (27) are rep-
resented in Table 1 below.

Table 1: The results of Algorithm 1 for objective function (27).

Iterations General estimate Time (sec.)

17 0.1051 0.264

19 0.0527 0.291

21 0.0266 0.315

22 0.0212 0.342

23 0.0177 0.354

24 0.0133 0.364

25 0.0106 0.380

26 0.0082 0.427

27 0.0063 0.467

28 0.0048 0.423

29 0.0044 0.443

It is known ([12,14]) that for variational inequalities with bounded opera-
tors, the theoretical estimate of the complexity (the convergence rate) O

(
1
ε2

)

is theoretically optimal. However, experimentally we see from Table 1 that, for
example, an accuracy of 0.1051 is achieved in 17 iterations, and a 10-fold greater
accuracy of 0.0106 is achieved in 25 iterations and approximately in the same
time. If the method worked without adaptation and strictly according to opti-
mal lower bounds for the specified class of problems, then the increase in costs
could be approximately 100 times. Thus, due to the adaptability of the proposed
method, we observe a convergence rate close to O

(
ln
(
1
ε

))
.

Now for a given set of N points {Ak = (a1k, a2k, . . . , ank); k = 1, N} in n-
dimensional Euclidean space Rn we need to find such a point x = (x1, x2, . . . , xn),
that the objective function

f(x) :=

N∑

k=1

√
(x1 − a1k)2 + . . .+ (xn − ank)2 =

N∑

k=1

‖x−Ak‖2 (29)

would take the minimal value on the set Q, which is defined by the previous
constraints (28). The coordinates of the points Ak for k = 1, N , are chosen as
the rows of the matrix A ∈ R

N×n. The entries of the matrix A are random inte-
gers in the closed interval [−10; 10], which are drawn from the discrete uniform
distribution.

The results of the work of Algorithm 1, for objective function (29) and for
some different values of n,m and N , are presented in Table 2 below. These
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results demonstrate the number of iterations produced by Algorithm 1 to reach
the solution of the problem, the quality of the solution "General estimate",
which is the right side of inequality (17), and the running time of the algorithm
in seconds.

Table 2: The results of Algorithm 1 for objective function (29).

n = 600, m = 400, N = 25 n = 1000, m = 500, N = 50

Iteration General estimate Time (sec.) Iteration General estimate Time (sec.)

22 0.122 67.955 19 0.1343 252.151

23 0.061 70.587 20 0.0672 252.673

24 0.0305 75.107 21 0.0336 266.636

25 0.0153 72.917 22 0.0168 279.883

26 0.0076 76.686 23 0.0084 293.866

As we see from Table 2 we also observe a convergence rate close to O
(
ln
(
1
ε

))
,

due to the adaptability of the proposed method.

Remark 6. Now we take all previous parameters but with points Ak(k = 1, N)
in the unit ball. The results of Algorithm 1, for objective function (29) and for
some different values of n, m and N , with constraints (28), are presented in
Table 3 below.

In this case, since the points Ak are chosen in the unit ball, the operator of
the variational inequality is bounded. The results of experiments in Table 3 show
that the rate of convergence of the proposed method is close to O

(
1
ε

)
, which

is significantly better than the optimal one, which is O
(

1
ε2

)
, for non-smooth

convex optimization problems and bounded variational inequalities [14].
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Table 3: The results of Algorithm 1 for objective function (29), with points Ak in the
unit ball.

n = 100, m = 50, N = 25 n = 200, m = 100, N = 50

Iteration General estimate Time (sec.) Iteration General estimate Time (sec.)

318 0.2539 35.805 684 0.2522 441.744

468 0.1702 52.809 1016 0.1688 645.082

618 0.1279 71.484 1350 0.1267 857.185

768 0.1026 87.851 1682 0.1015 1049.885

918 0.0857 103.686 2016 0.0846 1305.006

1068 0.0736 123.056 2349 0.0727 1534.333

1218 0.0645 141.044 2683 0.0637 1753.489

1368 0.0575 153.877 3014 0.0567 2026.402

1518 0.0518 173.538 3348 0.0511 2210.362

1668 0.0472 190.714 3680 0.0465 2301.327

1818 0.0434 208.966 4014 0.0427 2611.942

1968 0.0401 228.198 4346 0.0394 2970.324

2118 0.0373 243.970 4678 0.0367 3153.905

2268 0.0349 253.112 5012 0.0343 3387.451

2426 0.0323 266.583 5346 0.0322 3619.831

5 Numerical Experiments for Matrix Games with

Inexactness

We continue our experiments with computing a Nash equilibrium of a matrix
game. For that purpose one should solve the saddle point problem

min
x∈∆n

max
y∈∆m

xTAy, (30)

where x = (x1, x2, . . . , xn) ∈ R
n, y = (y1, y2, . . . , yn) ∈ R

m, ∆n is a standard

simplex in R
n, i.e. ∆n = {x ∈ R

n |x ≥ 0,
n∑

i=1

xi = 1}, ∆m is a standard simplex

in R
m, A is the payoff matrix for the y player. In all experiments we use payoff

distributions centered at zero. Consider the following operator

g(u) =

(
∇x(x

TAy)
−∇y(x

TAy)

)
=

(
AT y
−Ax

)
, u = (x, y) ∈ Q ≡ ∆n ×∆m. (31)

The operator g(u) from (31) is monotone on Q, and with this operator the VI (5)
has the same solution as the saddle point problem (30). So, Mirror Prox methods
could be used for solving it.

In all experiments with matrix games we use the entropy prox-function

d(x) =
n∑

i=1

xi lnxi in Bregman divergence (3). Entropy prox for matrix games on

simplex is the best option (see [15]).
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Fig. 1: The first kind of experiments with matrix games. Dependence between experi-
mental and theoretical number of iterations for different ε. (a) 10 × 10 matrix A from
(30), (b) 100 × 100 matrix A from (30).

First of all, we calculate experimental numbers of iterations for adaptive
proximal method for VI [7] and compare these numbers with theoretical estima-
tion N = C

ε
, for some C > 0 [4]. For that kind of experiments we run simulations

on two classes of random matrix games: 10 × 10 and 100 × 100 normally dis-
tributed payoff matrices. For the first setting we create 50 games at random and
calculate average experimental number of iterations over all games. Fig. 1 shows
the results for different ε. The experimental results are better than theoretical
estimation in all cases.
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Fig. 2: The second kind of experiments with matrix games. The logarithmic scale on
the Error-axis. (a) ε = 1/100, δ = 1/300, (b) ε = 1/1000, δ = 1/6000.
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Fig. 3: The second kind of experiments with huge-scale matrix games. The logarithmic
scale on the Error-axis. 1000 × 1000 matrix A from (30).

In the second part of experiments with matrix games we compare the pro-
posed Algorithm MPAI with adaptive Mirror Prox method from [7]. In this part
of experiments we modified problem (30) by adding inexactness (a bounded
by δ) random noise) to the operator g of VI (5). Fig. 2-3 show the results of
these experiments.

For comparison we calculate the specific values that determine the degree
of influence of the inexactness on the final estimate of the decisions’ accuracy.
So, not the whole error estimations are compared, but only improved by our
approach part of the error estimations.

For Algorithm 1 this specific value is equal to (see (19)):

1

SN

N−1∑

k=0

δk+1

Lk+1

∥∥yk+1 − xk+1
∥∥ (32)

and for adaptive Mirror Prox [7] method we can estimate the analogous value
in the following way:

1

SN

N−1∑

k=0

δ

Lk+1

∥∥yk+1 − xk+1
∥∥ .

According to the scheme of the proofs of Theorems 1 and 2, we can obtain the
analogous value for non-adaptive Mirror Prox with constant step 1/L:

1

N

N−1∑

k=0

δ
∥∥yk+1 − xk+1

∥∥ . (33)
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It is worth mentioning that estimate (32) should be less than (33) because of
adaptive reduction δk+1 < δ.

We may see that the accumulated error for proposed MPAI method is smaller
than the error for adaptive Mirror Prox method from [7].

6 Conclusion

The paper proposes an analogue of the Mirror Prox method for variational in-
equalities with adaptive tuning not only for the constant Lν , but also for the
magnitude of the operator’s error. Moreover, such an error can set the degree of
discontinuity of the operator. It is proved that the proposed method converges
with the optimal estimate of complexity O

(
1
ε

)
for the Lipschitz-continuous op-

erator and the magnitude of the error is limited. It is important that the result
applies to a certain class of variational inequalities with bounded (generally, dis-
continuous) operators (ν = 0). The paper also presents the results of experiments
that demonstrate the ability to work with the estimate of the complexity close
to O

(
ln
(
1
ε

))
even for a problem with bounded operator (ν = 0) and the exper-

imental comparison between adaptive Mirror Prox and the proposed algorithm
for a special application (matrix games with inexactness). We also note that all
result of this paper is applicable for VI with relatively smooth operators (with
the exception of Remark 5). More precisely, the prox-function and Bregman di-
vergence in (2) may not be strongly convex (for convex optimization problems
this situation was studied e.g. in [16,17]).
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