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Most of chirped pulse experiments refer to a theoretical study from [J. C. McGurk, T. G. Schmalz,
and W. H. Flygare, J. Chem. Phys. 60, 4181 (1974)] which is well tailored to interpret the signals
obtained with very fast chirped pulses, but is not sufficient to account for the signals in the case of
slower chirped pulses used in spectroscopy to increase the signal to noise ratio. A theoretical study
of the polarization of molecules in a cell, uniform supersonic jet or molecular beam and subjected to
a chirped pulse is presented. Three degrees of approximation for the polarization are introduced and
are compared with the numerical solution of the optical Bloch equations. These expressions enter
the analytic expression of the free induction decay signal which is validated against experimental
data on the rotational emission spectra of OCS molecules. A relation between the pulse duration,
the line position in the chirped pulse and the signal amplitude is proposed in the thermalized case.
It assists in the optimization of the chirped pulse parameters and in the estimation of the error
associated with the line intensity.

I. INTRODUCTION

Chirped Pulse (CP) spectrometers are now widely em-
ployed at microwave and millimeter frequencies to per-
form high resolution spectroscopic studies [1–5]. A small
number of instruments have also been set up in the sub-
millimeter band [6]. Such systems employ a two-step
measurement cycle. Firstly, the gas being studied is po-
larized by a CP emitted from a powerful source. Sec-
ondly, after the source extinction, the emission of the
molecules corresponding to the Free Induction Decay
(FID) is recorded. The signal level is proportional to
the polarization reached at the end of the CP. The spec-
trum of the molecular emission is then recovered by the
use of a Fourier transform. The broadband nature of
CP spectroscopy has the advantage that many rotational
transitions may be probed simultaneously.

While this technique is very well suited to the fre-
quency measurement of rotational transitions, measure-
ments of line strengths require more care. It has already
been shown that the position of the rotational transition
frequency in the pulse can affect the measured intensity,
especially in cases where pulse durations are increased
to obtain sufficient signal to noise ratios [5, 7]. However,
most groups use a model originally developed by McGurk
et al. [8] to model FID signals. It neglects re-emission
effects during the pulse, together with population and
coherence relaxation times, due to a very fast passage on
the transition. In the model, the polarization at the end
of the pulse is proportional to

√
Tc/∆ω where Tc is the

pulse duration and ∆ω is the spectral extension of the
CP. This behaviour is in contradiction with the experi-
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mental measurements for which we observe a maximum
FID signal for a particular pulse duration [5].

This work proposes new analytical expressions for the
polarization which will be helpful to analyze the experi-
ments with slower CP. Section II deals with the polariz-
ing step where the molecules evolve under the influence
of the CP. We propose three approximations and com-
pare them with the numerical integration of the optical
Bloch equations. Both thermalized cases (cell and uni-
form supersonic jet) and non-thermalized cases (molecu-
lar beam) are discussed. Section III presents the second
step of a CP experiment, i.e. the Free Induction Decay.
Results of Section II are leveraged to propose an analyt-
ical expression of the FID recorded signal. This formula
is validated through comparison with experimental data
in the thermalized case using an experimental set-up de-
scribed in [5], similar to those of [2, 4, 6, 9]. We show
how to use this expression to optimize the amplitude of
the signal and to take into account the dependence of the
intensity on the line position.

II. ANALYTICAL EXPRESSION OF THE
POLARIZATION IN A CP EXPERIMENT

A. Optical Bloch equations

The molecular interaction with an electromagnetic
wave has been extensively described in the literature
[8, 10–13]. We discuss for simplicity a two-level isolated
molecular system, given by its energy levels Ea and Eb
with Ea−Eb = ~ω0. We consider the interaction between
this two-level system and an electromagnetic field with
angular frequency ω(t). The system of N molecules with
a transition dipole moment µab is described by the evo-
lution of its density matrix. Introducing the relaxation
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mechanisms by γ1 = 1/T1 and γ2 = 1/T2 (respectively,
inverse of the decay time of the population difference and
inverse of the dipole dephasing time) and Weq, the pop-
ulation difference at thermodynamic equilibrium, we get
the generic form of the optical Bloch equations:

dz

dt
(t) = −(γ2 + iω0)z(t)− iE(t)W (t), (1)

dW

dt
(t) = −γ1(W (t)−Weq) +

1

2i
(E∗(t)z(t)− E(t)z∗(t)),

(2)

where W (t) and z(t) = P(t)/(Nµab) correspond to the
difference of population and the pseudo-polarization re-
spectively, P(t) being the polarization. The function
E(t) = e−iα(t)Ω0 represents the perturbation of the sys-
tem with Ω0 = µab E0

~ the Rabi frequency and α(t) a
generic function of time. Equations (1) and (2) are solved
for given functions W (t) and z(t) respectively. Using the
general solution of a first order differential equation, we
have:

z(t) = z(0)e−(iω0+γ2)t − i
∫ t

0

e−(iω0+γ2)(t−x)E(x)W (x)dx,(3)

W (t) = Weq + (W (0)−Weq)e−γ1t +

1

2i

∫ t

0

e−γ1(t−x)(E∗(x)z(x)− E(x)z∗(x))dx. (4)

We suppose that z(t) and W (t) may be written as series:

z(t) = z(0)(t) + z(1)(t) + z(2)(t) + · · · ,
W (t) = W (0)(t) + W (1)(t) + W (2)(t) + · · · .

(5)
Replacing these series in the Eq. (3) and Eq.(4) and iden-
tifying term by term, we find the series recurrence:

z(n+1)(t) = −i
∫ t

0

e−(iω0+γ2)(t−x)E(x)W (n)(x)dx,

W (n+1)(t) =
1

2i

∫ t

0

e−γ1(t−x)(E∗(x)z(n)(x)− E(x)z(n)∗(x))dx.

(6)

B. Mathematical formulation

We consider in the paper a linear CP with duration
Tc and spectral extension ∆ω. The CP frequency equals
the molecular resonance at time r0Tc with r0 ∈ [0; 1], the
relative line position in the CP (for r0 = 1

2 the chirp is
centered on the resonance ω0). The angular frequency is
given by:

ω(t) =
dα

dt
(t) = ω0 − r0∆ω +

∆ω

Tc
t. (7)

Except for free induction decay or double resonance ex-
periments, we are dealing with z(0) = 0. Only the odd
terms of the z-series and the even terms of the W -series

are non-zero. In particular, the first non zero terms of
the series are:

z(1)(t) = −i
∫ t

0

e−(iω0+γ2)(t−x)E(x)W (0)(x)dx,

W (0)(t) = Weq + (W (0)−Weq)e−γ1t. (8)

A rotating wave approximation is performed by introduc-
ing ξ(n)(t) = eiα(t)z(n)(t). Defining β2 = ∆ω

Tc
, the sweep

speed of the pulse, the pseudo-polarization is then given
by:

ξ(1)(t) = Weqg(t, γ2) + (W (0)−Weq)e−γ1tg(t, γ2 − γ1),
(9)

where

g(t, γ) = −iΩ0

∫ t

0

e−γ(t−x)−icβ2(t−x)Tc+i
β2

2 (t2−x2)dx,

(10)
which can be integrated using the error function:

g(t, γ) = ρ(t, γ)eiθ(t,γ)σ(t, γ), (11)

where

ρ(t, γ) =

√
πΩ0√
2β

exp (−γ (t− r0Tc)) ,

θ(t, γ) = (t− r0Tc)
2 β

2

2
− 3

4
π − γ2

2β2
,

σ(t, γ) =erf

(
ei
π
4

√
2

(
r0Tcβ − i

γ

β

))
+

erf

(
ei
π
4

√
2

[
(t− r0Tc)β + i

γ

β

])
.

(12)

At time t = Tc (polarization at the end of the pulse),
we can simplify the expressions by ignoring small terms
( γβ � 1 ) and taking a first order asymptotic expansion
of the error function [14] in order to obtain:

gasy(Tc, γ) = ρasy(Tc, γ)eiθasy(Tc) + gosc(Tc, γ), (13)

where

ρasy(Tc, γ) =

√
2πΩ0√
∆ω

√
Tc exp [−Tc (1− r0) γ] ,

θasy(Tc) = (1− r0)
2 ∆ω

2
Tc −

3

4
π,

gosc(Tc, γ) =
Ω0

∆ω

(
1

1− r0
+

1

r0
exp

[
i
∆ω

2
Tc(1− 2r0)

])
×

exp [−Tc (1− r0) γ] .
(14)

Using Eq. (9), ξ(1)(Tc) is then approximated by:

ξ(1)
asy(Tc) =Weqgasy(Tc, γ2) (15)

+ (W (0)−Weq)e−γ1Tcgasy(Tc, γ2 − γ1).
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The term gosc(Tc, γ) induces an oscillation whose am-
plitude decreases as Tc and/or ∆ω increases. We neglect
it to get an approximation of the pseudo-polarization:

ξ(1)
app(Tc) =eiθasy(Tc)[Weqρasy(Tc, γ2)

+ (W (0)−Weq) e−γ1Tcρasy(Tc, γ2 − γ1)].
(16)

Finally, the modulus of the pseudo-polarization is ap-
proximated by |ξ(Tc)| ≈

∣∣ξ(1)(Tc)
∣∣ ≈ ∣∣∣ξ(1)

asy(Tc)
∣∣∣ ≈∣∣∣ξ(1)

app(Tc)
∣∣∣, with

| ξ(1)
app(Tc) |=

√
2πΩ0

√
Tc
∆ω
× e−

Tc
T2

(1−r0)

×
∣∣∣Weq + (W (0)−Weq) e−

Tc
T1
r0
∣∣∣ , (17)

which is the product of three terms. The first one corre-
sponds to the polarization in the McGurk approximation
[8]. The second one describes an exponential decay with
relaxation time T2, for a duration of Tc (1− r0) (duration
between the line position and the end of the pulse). The
third term represents the relaxation of the difference pop-
ulation towards the equilibrium with a relaxation time
T1, for a duration r0Tc (duration between the beginning
of the pulse and the line position).

C. Numerical validation of the approximations

Figure 1 compares the three approximations
(
∣∣ξ(1)(Tc)

∣∣, ∣∣∣ξ(1)
asy(Tc)

∣∣∣, ∣∣∣ξ(1)
app(Tc)

∣∣∣) of the modulus of
the polarization with the numerical integration of the
optical Bloch equations using a Rosenbrock method [15]
for three different spectral extensions and three different
line positions r0. We consider a two-level system con-
sisting of the J = 16 and J = 17 rotational levels of the
OCS molecule with W (0) = Weq and T2 = T1 = 0.3µs.
We notice that except for the case ∆ν = 10 MHz and
r0 = 0.9 of Fig. 1(c), the first approximation

∣∣ξ(1)(Tc)
∣∣

given by Eq. (9) (green curve) reproduces the numerical
integration (blue curve). As soon as ∆ν > 100 MHz, the
red curves corresponding to the second approximation∣∣∣ξ(1)

asy(Tc)
∣∣∣ (Eq. (15)) are acceptable. The black curves

corresponding to the third approximation
∣∣∣ξ(1)

app(Tc)
∣∣∣

(Eq. (16)) have no more oscillations and reproduce the
global behavior of the numerical results, in particular
the optimal pulse duration and the corresponding value
of the polarization. Figure 1 suggests however two
remarks. First, the asymptote of the modulus of the
polarization for high Tc value is not zero. This effect is
seen for r0 6 0.5 and would be visible at Tc > 10µs for
r0 = 0.9. This asymptote decreases when ∆ν increases
and/or r0 decreases. Second, for ∆ν = 1000 MHz, the
amplitude of the oscillations decreases from r0 = 0.1 to
r0 = 0.5 but increases from r0 = 0.5 to r0 = 0.9.

D. Discussion

The molecules interacting with a chirped pulse can be
probed under different experimental conditions: in an or-
dinary cell [5, 16, 17], in a uniform supersonic jet [7], or
in a molecular beam [2, 3, 18]. We can take advantage
of the typical characteristics of each experimental setup
summed up in Table I to adapt the analytic approxima-
tion (17) of the modulus of the polarization obtained in
Section II B.

In an ordinary cell or in a uniform supersonic jet, the
molecules are thermalized. The rotational temperature
may be the ambient temperature in the former situation
while it is lowered to a few dozens of kelvins in the latter
one. In both cases, the relaxation time T2 is of the same
order of magnitude as T1 and the initial population differ-
ence W (0) corresponds to its equilibrium value Weq. In
these conditions, the analytic approximation of Eq. (17)
is proportional to |Weq(Trot)| which can be significantly
increased in a uniform supersonic jet with respect to an
ordinary cell at 300 K by decreasing the temperature.
The pulse duration giving the maximal polarization is
found to be Tc,max = T2/ (2 (1− r0)), which depends on
T2 but not on T1.

The behaviour of experiments in the non-thermalized
case is different. In a molecular beam experiment, the
rotational temperature is lowered to a few kelvins, the
difference populationW (0) can be as high as 50Weq. The
analytic approximation of Eq. (17) simplifies to:

| ξ(1)
app(Tc) |∝

√
Tc
∆ω

e−
Tc
T2

(1−r0) |W (0)| e−
Tc
T1
r0 .

The collisional linewidth is strongly reduced, implying
generally T2, T1 � Tc [13, 19]. Under these conditions,
the modulus of polarization reduces to the McGurk’s
model [8]. The optimal pulse duration is then no longer
visible. The molecular beam chirped pulse setup is very
advantageous in term of signal to noise ratio. First, the
signal is enhanced by the difference populations W (0).
Second, the duration of the FID signal increases due
to the relaxation time T2 (see III) to such an extent
that the decay of the FID signal is often driven by the
Doppler inhomogeneous broadening (see Appendix A).
The Doppler width is indeed proportional to ω0 (see
Eq. (A5)) and more pronounced in the millimeter or sub-
millimeter ranges than in the microwave range. Unfor-
tunately, the drawback of a molecular beam experiment
is a limited operating frequency range due to the peaked
shape of the population of energy levels towards the low
J values [20].

III. FREE INDUCTION DECAY SIGNAL

A. Mathematical formulation

The source extinction occurs at t = Tc. The emission
of the polarized molecules which evolve freely is observed
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Figure 1: Polarization modulus at the end of the CP against the chirp duration Tc for three spectral extensions
∆ν ∈ {10, 100, 1000} MHz and three line positions r0 ∈ {0.1, 0.5, 0.9}. Blue curves: numerical integration of optical

Bloch equations. Green curves: first non zero term
∣∣ξ(1)(Tc)

∣∣ of the series. Red curves: asymptotic expansion∣∣∣ξ(1)
asy(Tc)

∣∣∣ of the polarization. Black curves: polarization
∣∣∣ξ(1)

app(Tc)
∣∣∣ after the last approximation. Parameters are:

J = 17→ 16 rotational transition of OCS at 206.745 GHz, Ω0 = 2.4 rd/µs, W (0) = Weq = 6 10−4, T2 = T1 = 0, 3 µs.

with time t′ = t − Tc. The polarization in the rotating
wave approximation P̃(t′) is given by (see Appendix A):

P̃(t′) = Nµabξ(Tc) exp

[
− t′

T2
− t′2∆ω2

D

4 ln 2

]
, (18)

where ∆ωD is the Doppler width. The electric field
is emitted at angular frequency ω0, the molecular res-
onance, with an amplitude proportional to the polariza-
tion module [2]:

E(t′) ∝
∣∣∣P̃(t′)

∣∣∣ e−i(ω0t
′+Φ) + cc. (19)

Chirped pulse experiments use an heterodyne detection
scheme [5] where a local oscillator of angular frequency
ωLO is used to shift the spectrum from ω0 to the inter-
mediate angular frequency ωIF = ω0 − ωLO. If φ is a
phase term at the time origin, the output signal is (see
Appendix B):

S(t′) ∝ Nµab
∣∣∣ξ(1)

app(Tc)
∣∣∣ (20)

×e−
t′
T2 e−

t′2∆ω2
D

4 ln 2 × cos(ωIF t
′ + φ).

The exponential terms describe dampings respectively
due to the dephasing polarization and Doppler broad-
ening. The last term is an oscillation at the intermediate
angular frequency ωIF .

B. Experimental results

CP experiments have been performed in order to check
the validity of the FID signal model of Eq. (20) in the case
of a thermalized sample (W (0) = Weq). We recorded the
FID signal of the OCS molecule around 206.745 GHz cor-
responding to the rotational transition J = 17→ 16. For
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(a)

(b)

(c)

Figure 2: Comparison between experiment and models,
the line position r0 as parameter, P = 100 µbar and
∆ν = 1000 MHz. Blue points are experimental data
and black curve is the fit using Eq. (22). The green

curve is a fit where the polarization used in Eq. (18) is
given by Eq. (9) rather than Eq. (17). The red vertical

dotted lines indicate the positions of Tc,max. (a)
r0 = 0.1. (b) r0 = 0.5. (c) r0 = 0.9.

a given pressure (i.e. T2 fixed) and a given relative po-
sition r0, we measured the FID signal for different pulse
durations Tc. After a Fast Fourier Transform, the ampli-
tude at the intermediate frequency ωIF is proportional
to:

F (ω = ωIF , Tc) = N

√
Tc
∆ω

e−
Tc
T2

(1−r0). (21)

These amplitudes F (ω = ωIF , Tc) measured for different
Tc values have been compared with two models. The
simplest is given by:

B P

√
Tc
∆ω

exp [−Tc(1− r0)2πγOCSP ] , (22)

which is Eq. (21) reformulated with experimental pa-
rameters. In the second model, the polarization used in
Eq. (18) is given by Eq. (9) rather than Eq. (17), corre-
sponding to

∣∣ξ(1)(Tc)
∣∣. The number of molecules N is as-

sumed proportional to the gas pressure P , T2 = 1
2πγOCSP

is determined by the OCS self pressure broadening coef-
ficient γOCS = 4.8 GHz/atm of the J = 17 → 16 tran-
sition, measured in Ref. [21]. The parameter B corre-
sponds to the instrument sensitivity of a given experi-
mental configuration. It accounts for variations in mixer
conversion losses and amplifier gains. The value of B is
constant for a given experimental configuration. This
parameter and the pressure are fitted against the ex-
perimental data sets in the second model. These two
values are also used to plot the black curve correspond-
ing to the simplest model. Figure 2 superposes the ex-
perimental data (blue points) with the fitted model of
Eq. (22) (black curves) and the model corresponding to∣∣ξ(1)(Tc)

∣∣ (green curves). A good agreement between the
experimental and fitted data is observed for the three
different line positions r0 at P = 100 µbar (correspond-
ing to T1 ≈ T2 = 0.3µs) and ∆ν = 1000 MHz. For
all experimental curves, the relative difference between
measured and fitted amplitudes with the simplest model
never exceeds 30%. Such differences, especially around
Tc ≈ Tc,max for r0 = 0.1 and 0.5, are attributed to the os-
cillations mentioned above in Section IIC and seen again
on the green curves. For r0 = 0.9 the oscillations are
present over the entire Tc range. Oscillations have also
been discussed as “edge effects” by Park et al. [22] for
short pulse durations due to the “windowing” of the per-
turbating electric field. This effect is reduced in our ex-
periment by programming raised cosine edges (5 ns rise
time) rather than a rectangular time window in the Ar-
bitrary Wave Generator. The edge effects might explain
the underestimated amplitude of the oscillations, given
by our model (green curves), visible for r0 = 0.5 at low Tc
values. The signal does not fall to zero for large Tc values
which is consistent with Fig. 1, where the first approx-
imation coincides exactly with the numerical simulation
for ∆ν = 1000 MHz. The amplitude of the experimental
data in this region is nonetheless higher than the fitted
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Figure 3: Three dimensional view of the amplitude of
the signal S in arbitrary unit from Eq. (23) versus

Tc/T2 and r0 at T2 fixed.

curve. This might suggest a shortcoming in the isolated
two-level model itself. However, the results exhibited in
Fig. 2 demonstrate that our simplest model with its ap-
proximations is sufficient to reproduce the behaviour of
the emitted intensities in the chirped pulse experiment.
This conclusion is supported by the analyses of experi-
mental data at P = 20µbar and P = 50µbar which show
strictly identical patterns.

C. Discussion

1. Optimization of the CP parameters at a given pressure

Eq. (20) in the case of a thermalized sample is rela-
tively simple but depends on parameters Tc, r0, T2 and
N . The signal amplitude at t′ = 0 can be rewritten in the
form of Eq. (22) to show the influence of the gas pres-
sure or equivalently in the following form to show the
influence of Tc/T2:

Sr0Tc/T2
∝ 1√

T2∆ω

√
Tc
T2
e−

Tc
T2

(1−r0). (23)

Experimentally, T2 (adjusted with the gas pressure) is
fixed by considerations of Fourier transform resolution.
For a given T2, the optimal pulse duration is given by
Tc,max = T2

2(1−r0) . Figure 3 is a three dimensional view of
the amplitude of the signal from Eq. (23), versus Tc/T2

and r0 at T2 fixed. The dashed line gives the signal am-
plitude of S0

2 . It shows that as long as Tc
T2

< 0.2, the
signal amplitude is quasi independent of the line position
r0. Inside this region, the output signal is proportional

to
√
Tc/∆ω and corresponds to the approximation of a

fast chirped pulse obtained by McGurk et al. [8]. Out-
side this region, the signal amplitude can be increased
significantly but at the expense of a dependence on the
line position r0 within the pulse. However, we observe
that up to Tc

T2
= 2, the amplitude of the signal for r0 = 0

is always greater than the amplitude for T#
c

T2
≈ 0.04. In

other words, working at Tc/T2 = 2 is more interesting
than Tc/T2 6 T#

c

T2
in term of signal to noise ratio: the

gain in amplitude for r0 = 1 is an order of magnitude
while the gain for r0 = 0 is at least one.

2. Dependence of the line strength on the line position

Abeysekera et al. experimentally discovered the line
position effect on the line intensity [7]. They considered
two related experiments to mitigate the problem: in the
first experiment, the frequencies are swept to higher val-
ues, whereas the frequencies are swept to lower values in
the second experiment.. They proposed to average the
two CP spectra to compensate for the line position effect:
Save = (Sup + Sdown) /2. They worked with a uniform
supersonic jet for which Eq. (23) applies. The signals are
the same in the two experiments except that r0 in the
first one is replaced by 1−r0 in the second one. The cor-
responding signals are respectively Sup = Ae−

Tc
T2

(1−r0)

and Sdown = Ae−
Tc
T2
r0 where A is a proportionality con-

stant. The average of the two signals,

Save = Ae−
Tc
2T2 cosh

[
Tc
T2

(
r0 −

1

2

)]
,

is quasi-independent of the line position r0 if the argu-
ment of the cosh is small, i.e. for a chirp duration shorter
than T2. The series expansion of the hyperbolic cosine
gives:

Save = Ae−
Tc
2T2

(
1 +

1

2

(
Tc
T2

(
r0 −

1

2

))2

+ ...

)
.

indicating that the error done is always lower than 12.5%
if Tc/T2 6 1.

IV. CONCLUSION

The FID signal of a two-level system interacting with
a linear CP depends on the polarization at the end of the
CP. The value of this polarization, either in thermalized
cases (cell or uniform supersonic jet) or non-thermalized
cases (molecular beam), was approached through three
consecutive analytical approximations which improve the
model proposed by McGurk [8]. In particular, the last ap-
proximation neglected the oscillations in the polarization
and a very simple formula for the optimal pulse duration
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(for which the modulus of the polarization is maximum)
was obtained.

The simple expression between the pulse duration, the
line position in the CP and the signal amplitude will
certainly be useful in spectroscopy, where it is conve-
nient to use slower CPs to increase the signal over a fast
CP. Moreover, this relation describing the connection be-
tween the position of the lines in the CP and their inten-
sity will allow for a correction of the intensities required
for high resolution molecular spectroscopic studies.
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Appendix A: Doppler broadening in the Free
Induction Decay

The FID corresponds to the extinction of the source
at t = Tc and the reemission of the polarized molecules
which freely evolve. We perform a change of variable in
this section: t′ = t− Tc.

1. System evolution

Since the source is switched off, the Rabi frequency is
set to zero and the optical Bloch equations in the rotating
frame [12, 23] reduce to:



dU

dt
(t′) = −γ2U(t′)− δ V (t′)

dV

dt
(t′) = −γ2V (t′) + δ U(t′)

dW

dt
(t′) = −γ1(W (t′)−Weq)

, (A1)

where δ is the detuning from the resonance, null if the in-
homogenous broadening is negligible andWeq is the pop-
ulation difference at the thermal equilibrium. (U, V,W )
is the Bloch vector and the polarization is P(t′) =
[U(t′)− iV (t′)]Nµab. This is a simple coupled system
of differential equations. The third equation is directly
integrable giving:

W (t′) = [W (Tc)−Weq] e−γ1t
′
+Weq, (A2)

where W (Tc) = W (t′ = 0). The remaining part of the
system is then:


dU

dt
(t′) = −γ2U(t′)− δ V (t′)

dV

dt
(t′) = −γ2V (t′) + δ U(t′)

, (A3)

which may be diagonalizable to find eigenvalues and
eigenvectors and finally the solution:

⇒

[
U(t′)

V (t′)

]
=

[
e−

t′
T2 (cos (δt′)U0 − V0 sin (δt′))

e−
t′
T2 (sin (δt′)U0 + V0 cos (δt′))

]
,

(A4)
where U0 = U(t′ = 0) and V0 = V (t′ = 0).

2. Inhomogeneous broadening

We must take into account all the contributions due to
inhomogeneous broadening characterized by ∆ωD, the
Half Width at Half Maximum (HWHM) given by:

∆ωD =
ω0

c

√
2RT ln 2

M
, (A5)

where T is the temperature and M is the molecular
weight. Different molecules have different frequency res-
onances due to the Doppler effect and thus different de-
tuning δ. The polarization is given by the integral of
Eq. (A4) over all the detunings:

[
U(t′)

V (t′)

]
=


∫ +∞
−∞ e−

t′
T2 [cos (δt′)U0 − V0 sin (δt′)]

√
ln 2
π

e
− ln 2 δ2

∆ω2
D

∆ωD
dδ∫ +∞

−∞ e−
t′
T2 [sin (δt′)U0 + V0 cos (δt′)]

√
ln 2
π

e
− ln 2 δ2

∆ω2
D

∆ωD
dδ

 . (A6)
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These integrals are tabulated or can be computed with Maple [15] giving:

[
U(t′)

V (t′)

]
= e−

t′
T2 e−

t′2∆ω2
D

4 ln 2

[
U0

V0

]
(A7)

Appendix B: Detection of the FID signal

In a CP experiment we are interested by the electric
field reemitted during the FID sequence with the polar-
ization given by equation (A7). We calculate the electric
field in the Slowly Varying Amplitude and Phase (SVAP)
approximation [8, 12]. The general forms for electric field
and polarization that propagates along the y axis are:

E(y, t′) =
1

2
[Er(y, t

′) + iEi(y, t
′)] e−i(ω0t

′−ky) + cc,

(B1)

P (y, t′) =
1

2
Nµab [U(t′)− iV (t′)] e−i(ω0t

′−ky) + cc.

(B2)

The SVAP approximation neglects the amplitude and
phase variations during temporal and spatial periods:

∂E

∂y
� kE ,

∂E

∂t′
� ωE ,

∂P

∂t′
� ωP.

If we neglect also 1
c
∂E
∂t′ compared to ∂E

∂y , we get simplified
propagation equations for the real and imaginary parts:

∂Er
∂y

=
k

2ε
NµabV, (B3)

∂Ei
∂y

=
k

2ε
NµabU, (B4)

equations that we can easily integrate between y = 0 and
y = L corresponding to the length of the gas cell:

E(L, t′) =
k

4ε
NµabL (V + iU) e−i(ω0t

′+Φ) + cc.

Finally, taking Eq. (A7) into account, we get:

E(L, t′) =
k

4ε
NµabLe

− t′
T2 e−

t′2∆ω2
D

4 ln 2

√
U2

0 + V 2
0 e
−i(ω0t

′+Φ−θ)+cc,

(B5)
where [U0;V0] = [U(t = Tc);V (t = Tc)].

In the experiment, we access the electric field by an
heterodyne scheme tuned in the way to observe S(t′) =
AE(t′) cos(νIF t

′ + φ) where A is a constant depending
on mixer efficiency, amplifier gain etc.., νIF is the inter-
mediate frequency (νIF = ν0 − νLO) and φ the phase at
the origin of time.

S(t′) ∝ |P(Tc)| e−
t′
T2 e−

t′2∆ω2
D

4 ln 2 cos(νIF t
′ + φ). (B6)
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Table I: Characteristic parameters for three experimental setups. The simplified modulus of polarization (see text)
and the optimal duration Tc,max for the maximum signal are reported. Trot is the molecular rotational temperature.

Thermodynamic cond. Thermalized case Non thermalized case
Experiment Ordinary cell Uniform supersonic jet Molecular beam

Trot 300 K 10− 150 K 5− 10 K

T2 ≈ T1 < T1

W(0) Weq(Trot) up to 50Weq∣∣∣ξ(1)
app(Tc)

∣∣∣ ∝
√

Tc
∆ω
|Weq(Trot)| e−

Tc
T2

(1−r0) ∝
√

Tc
∆ω
|W (0)|

Tc,max
T2

2(1−r0)
−


