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Abstract 

The Earth has experienced large changes in global and regional climates over the past one 

million years. Understanding processes and feedbacks that control those past environmental 

changes is of great interest for better understanding the nature, direction and magnitude of 

current climate change, its effect on life, and on the physical, biological and chemical 

processes and ecosystem services important for human well-being. Microfossils from 

terrestrial plants -- pollen, microcharcoal and phytoliths -- preserved in terrestrial and marine 

sedimentary archives are particularly useful tools to document changes in vegetation, fire and 

land climate. They are well preserved in a variety of depositional environments and provide 

quantitative reconstructions of past land cover and climate. Those microfossil data are widely 

available from public archives, and their spatial coverage includes almost all regions on Earth, 

including both high and low latitudes and altitudes. Here, we i) review the laboratory 

procedures used to extract those microfossils from sediment for microscopic observations and 

the qualitative and quantitative information they provide, ii) highlight the importance of 

regional and global databases for large-scale syntheses of environmental changes, and iii) 
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review the application of terrestrial plant microfossil records in palaeoclimatology and 

palaeoecology using key examples from specific regions and past periods. 

 

1. Introduction 

 

The Intergovernmental Panel on Climate Change (IPCC) was established in 1988 by the 

World Meteorological Organisation (WMO) and the United Nations Environment Programme 

(UNEP) to provide an assessment of the understanding of all aspects of any climate change 

over time, whether driven by natural variability or by human activity IPCC (2001). Thirty 

years later, the scientific consensus is that current climate change, an average global warming, 

is anthropogenically-driven, rapid and of large magnitude. The human population’s daily life 

is already or will be imminently affected and “climate action” is now targeted as one of the 

Sustainable Development Goals by the United Nations. 

Over the last decades our perception of our environment radically changed. The curiosity of 

scientists observing and trying to understand past climate variability has enabled 

contextualization of the current climate change within a long-term perspective. Over 

geological timescales, the Earth experienced large changes in global and regional climates. 

Multi-millennial time scale changes in orbital and greenhouse gas forcings during the 

Quaternary, for example, have produced several glacial and interglacial periods of different 

length and magnitudes (Hays et al., 1976; Masson-Delmotte et al., 2010; Milankovitch, 1941; 

Past Interglacials Working Group of PAGES, 2016; Yin and Berger, 2012). The current 

interglacial period, the Holocene, is part of the 100-ky world established since the Middle 

Pleistocene transition (1.25-0.7 Ma) and characterized by large amplitude glacial-interglacial 

oscillations occurring with a periodicity of 100 kyr (Clark et al., 2006). The Earth’s climate 

also experienced decadal to millennial-scale variability (e.g. Fleitmann et al., 2009; Johnsen et 
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al., 1992; Jouzel et al., 2007; Loulergue et al., 2008; McManus et al., 1999; Sánchez Goñi et 

al., 1999). Observing, modeling, and understanding processes and feedbacks that control 

those past climate changes are of critical importance for a better understanding of the nature, 

direction and magnitude of current climate change, its effect on life, and on the physical, 

biological, and chemical processes and ecosystem services essential for human well-being. 

Climate on Earth is conceptualized as a system where different spheres, i.e. the atmosphere, 

cryosphere, hydrosphere, lithosphere, biosphere, respond to external forcings, such as 

astronomical and anthropogenic forcing (Ruddiman, 2001). The anthroposphere is sometimes 

considered as a sphere of the climate system, and not as an external forcing (Cornell et al., 

2012). The different spheres interact and depend on one another as an interconnected Earth 

system. Palaeoclimate studies not only aim at reconstructing the response of the atmosphere, 

but also of all different spheres as well as their interactions and related feedback mechanisms 

modulating climate changes. Climate models are necessarily now designed to include 

interactive coupled components that extend to all of these aspects of the Earth system. 

Vegetation, which is a major element of the biosphere, develops in response to climate and 

soil characteristics and plays an important role in the climate system. It is involved in vital 

ecosystem services such as nutrient and food production, mitigation of climate change, and 

soil and fresh water production and conservation (Faucon et al., 2017). Terrestrial plants act 

as a carbon sink and can limit the warming of atmospheric and ocean temperature by 

removing carbon from the atmosphere during the photosynthesis. Through the 

evapotranspiration process, plants also increase water vapor locally in the atmosphere, 

enhancing precipitation and cloud cover, which reinforces cooling. Changes in land cover 

further modify the albedo and act as a positive (warming) or negative (cooling) radiative 

forcing. Vegetation is therefore an integral part of the biogeochemical- and -physical 

processes between the land surface and the atmosphere (Foley et al., 2003). 
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All ecosystems experience disturbances at different scales, and fire is one of the most 

widespread and severe disturbances in ecosystems globally, although it may maintain certain 

vegetation types, such as savanna (Bond et al., 2005). Fire is commonly found in intermediate 

environments in terms of climate, vegetation and demography, in all vegetation types 

(Harrison et al., 2010). Fire dynamics today result from the complex interplay between 

climate (precipitation and temperature controlling fuel flammability), vegetation (fuel type 

and load), ignition (lightning and human induced) and human fire suppression (Harrison et al., 

2010). Fires have impacts on climate by modifying the carbon cycle and atmospheric 

chemistry, clouds, and albedo through the release of greenhouse gases and aerosols (Bowman 

et al., 2009; Lavorel et al., 2007). 

Terrestrial plant-derived microfossils, preserved in terrestrial and marine sediments, such as 

pollen, microcharcoal and phytoliths, have greatly contributed to the present knowledge of the 

Quaternary vegetation and fire dynamics, and land-climate interactions. (Fig. 1). Pollen grains 

are part of the reproductive cycle of seed plants (angiosperms and gymnosperms); they are the 

male gametophyte, allowing for dissemination of the genetic material. Fossil pollen consists 

only of the external envelope, the exine, which is made of sporopollenin that is very resistant 

to decay. Microscopic charcoal (microcharcoal) is a carbonaceous material formed by 

pyrolysis, i.e. during the combustion process of vegetal elements (Jones et al., 1997). 

Phytoliths are opaline silica particles that precipitate in and/or between the cells of living 

plant tissues forming particular morphotypes. They are deposited in sediments when the 

plants die or burn. 

Pollen, microcharcoal and phytoliths are studied from both terrestrial and marine archives. 

Terrestrial and marine sequences of plant-derived microfossils may give different but often 

complementary information due to the source vegetation area varying from local (peat, pond, 

small lakes) to regional (large lakes, ocean) and different associated transport processes. 
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Deglacial and Holocene vegetation and fire changes have been extensively studied due to 

easier recovery of short cores and accessibility to recent sediments. For earlier time periods, 

terrestrial sequences become rarer and often suffer from discontinuities, involving 

chronostratigraphic complications that often hamper reliable reconstruction of past vegetation 

and climate changes. For instance, fragmentary Pleistocene sedimentary sequences are 

common in regions that have experienced the repeated expansions and retreats of the large 

northern hemisphere ice-sheets as in northern Europe and North America (de Beaulieu et al., 

2013; Turner, 1998; Zagwijn, 1996), or glacier advances such as in New Guinea and New 

Zealand (Kershaw and van der Kaars, 2013). They are also common in arid and semiarid 

environments of Africa or Australia (Kershaw and van der Kaars, 2013; Meadows and Chase, 

2013). The Pleistocene marine sedimentary archives in which terrestrial microfossils are 

studied, benefit in contrast from a continuous sedimentation. They are mostly located on 

continental margins from the shelf to the deep-sea, usually on seamounts so as to be free from 

turbidites, recruiting terrestrial microfossils produced by the vegetation of the nearby 

continent (Heusser, 1998). Marine records provide information on vegetation and fire changes 

at regional-scale on a chronology, beyond radiocarbon dating, that derives from stable oxygen 

isotope measurements on foraminifera enabling a reliable comparison with oceanic records 

(Heusser, 1998; Sánchez Goñi et al., 2018).  

Since the beginning of the 20
th

 century, a large amount of palynological data was produced, 

revealing the major features of Pleistocene vegetation history and constituting the foundations 

of many basic concepts in Quaternary palaeoecology. For instance, in Europe and North 

America, where there is a long tradition in palynological research, pollen studies have played 

an important role for the understanding of Holocene vegetation history (Birks and Berglund, 

2018; Davis, 1984) and climate. They have yielded important contributions to diverse 

biogeographical and palaeoecological topics such as continental-scale tree migrations 



8 
 

(Huntley and Birks, 1983; Huntley and Webb, 1989) and biome dynamics after the end of the 

last Ice Age (e.g. Overpeck et al., 1992; Williams et al., 2004), the rates and magnitudes of 

species declines (e.g. Peglar, 1993) and vegetation response to interglacial climate changes 

(e.g. Turner and West, 1968; Zagwijn, 1994). Marine palynology greatly developed since 

Heusser’s seminal works in the seventies (e.g. Heusser and Balsam, 1977; Heusser and 

Shackleton, 1979) bringing unique information on the phasing of the terrestrial and marine 

responses to orbital and millennial-scale climatic changes (Dupont, 2011; Sánchez Goñi et al., 

2018). 

Fossil microcharcoal preserved in terrestrial and lacustrine sediments has traditionally been 

counted during pollen analyses as a complementary proxy to vegetation since the eighties 

(Clark, 1982; Tolonen, 1986). It constitutes a powerful approach for reconstructing palaeofire 

histories over timeframes older than a few centuries as provided by remote sensing and by 

dendrochronological and historical records (Whitlock and Larsen, 2001). During the last 

decade, a significant increase in the number of palaeofire records and their regional or global 

syntheses has substantially improved our understanding of key drivers of fire under different 

climate conditions and of anthropogenic fire regime alteration (Daniau et al., 2012; Marlon et 

al., 2008; Vannière et al., 2011). Marine microcharcoal studies also developed relatively 

recently to address regional fire responses to orbital and millennial-scale climatic changes 

(Beaufort et al., 2003; Daniau et al., 2009; Daniau et al., 2013; Daniau et al., 2007). Palaeofire 

science has also led to new perspectives on long-term fire ecology paradigms (Aleman et al., 

2018a). 

Phytoliths were firstly described at the beginning of the 19
th

 century (Struve, 1835) and well-

studied in plant tissues (e.g. Prat, 1932) before being used as palaeoecological indicator in the 

sixties (Twiss et al., 1969). Interpretation of phytolith assemblages is far more complex than 

that of pollen assemblages due to imprecise correspondence between phytolith shapes and 



9 
 

taxonomy. However, phytoliths, unlike pollen, present a high resistance to oxidation and 

therefore are well-preserved in arid environments. The increasing amount of modern 

reference collection from fresh terrestrial plants and soil assemblages enhanced archeological 

and palaeoenvironmental research from the eighties onwards (see Piperno, 2006). Today, 

fossil phytolith assemblages are much better-understood. Combined with a multi-proxy 

approach, they were recently used to discuss the evolution of grassland over the last million 

years in North America (Strömberg et al., 2013), the origin of the domestication of maize in 

Mexico (Piperno et al., 2009), or to examine the late Quaternary vegetation history of C3 and 

C4 grasses in East Africa (Montade et al., 2018). Phytoliths have also been studied from deep-

sea cores to document glacial-interglacial variations in aridity in tropical Africa (Parmenter 

and Folger, 1974; Pokras and Mix, 1985). 

Here we present a review of how terrestrial plant microfossils are extracted from different 

sedimentary archives during laboratory processing, how they are identified and quantified, 

and how they can inform us about past environmental changes at different spatial and 

temporal scales necessary for understanding the Earth system (Fig. 1) focusing on continents 

from both hemispheres: Europe, Africa, North and South America. 

 

Figure 1 

 

2. Microfossil concentrates and slide preparation 

 

Sample processing consists of a series of physical and chemical laboratory treatments in order 

to obtain clean slides of microfossil concentrates, i.e. a sufficient amount of microfossils that 

are observable under the microscope. The different chemical treatments are determined 

according to the composition of the sediments, typically consisting of calcium carbonates, 
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organic matter and siliceous materials. Hydrochloric acid (HCl) is used to remove calcium 

carbonates. A variety of chemical reagents are suited for organic matter removal, such as 

potassium hydroxide (KOH), the acetolysis mixture consisting of acetic anhydride 

((CH3CO)2O) and concentrated sulphuric acid (H2SO4), hydrogen peroxide (H2O2), or a 

mixture of nitric acid (HNO3) with potassium chlorate (KClO3). Hydrofluoric acid (HF) is 

used to eliminate siliceous material, although use of this highly dangerous chemical can be 

substituted by a density separation process using much more benign sodium polytungstate. 

 

2.1 Pollen and spores 

 

Standard procedure for pollen extraction may include short boiling with potassium hydroxide 

(10 % KOH) for deflocculation and humic acid removal, cold diluted hydrochloric acid 

treatment (10 % HCl), to remove calcium carbonates (CaCO3) and hydrofluoric acid (30 % to 

70 % HF) treatment to retrieve siliceous material (Faegri and Iversen, 1964; Moore et al., 

1991). Acetolysis, with concentrated sulphuric acid and acetic anhydride, can also be 

performed after KOH digestion in particular in cellulose-rich material preparation such as 

peat deposits. Successive HCl digestions at higher concentrations (25 %, 50 %) may be 

processed depending on the sample richness in CaCO3. It is recommended to use cold HCl 

since hot reagent can cause corrosion of the pollen wall (Moore et al., 1991). Traditionally, 

cold HF treatment for a long time (at least 24 hours) or hot HF for a few minutes has then 

been performed, followed by another HCl treatment to remove colloidal SiO2 and 

silicofluorides formed during the HF digestion. Alternatively, an inert heavy liquid such as 

sodium polytungstate solution can be used to remove siliceous material, rather than the highly 

dangerous (and expensive) HF (Campbell et al., 2016). This process works by preparing a 

solution of a specific gravity that is sufficiently dense to support the pollen, but allows the 
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denser siliceous material to float to the bottom, allowing the pollen fraction to then be simply 

decanted off. Through a series of washes and filtering using a 5 µm nylon mesh, it is also 

possible to reclaim the sodium polytungstate so that it can be reused. In addition, ultrasonic 

vibration can be used to disperse clays. A final sieving step using a 10 µm nylon mesh screen 

that is particularly useful for removal of fine particles in clay-rich samples can end the 

extraction procedure. The use of 5 µm filter is recommended for tropical pollen flora which 

includes grains of size below 10 µm. 

To determine the sample pollen concentration, a tablet containing a known amount of exotic 

marker grains (commonly of Lycopodium spores) is added to the sample at the beginning of 

the preparation. The use of marker tablets has widely replaced other traditional volumetric 

and weighing methods used to establish pollen concentrations (Moore et al., 1991). 

Pollen grains may be stained by adding drops of safranin or fuchsin to the residue with KOH 

during the final wash or directly into the mounting medium. Staining can help observation and 

identification under the microscope, although it is optional. 

Residues obtained after pollen extraction are preferentially mounted in a mobile mounting 

medium such as glycerol or silicone oil since identification requires rotating the pollen grain 

for observation of the polar and equatorial views. Both mount types have side effects: glycerol 

makes the pollen swollen and slides with this media are quite short-lived while silicon oil 

requires an extra-step for dehydrating the residue before mounting (Andersen, 1960). If 

silicon oil does not influence pollen size, dehydrating agents such as ter-butanol (TBA) and 

the formerly used benzene do have an effect (Andersen, 1960; Meltsov et al., 2008). Glycerin 

jelly that does not allow pollen mobility is preferred for permanent slides such as modern 

pollen samples for reference collection, although like glycerol it has an influence on pollen 

size. Before mounting in glycerin jelly, excess water is removed by placing the tube upside 

down on a filter paper for a couple of hours or even a day. In contrast to silicon oil, glycerol 
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and glycerin jelly require slide sealing usually done with histolaque LMR, paraffin or nail 

polish.  

 

2.2 Microcharcoal 

 

Charcoal is mostly composed of pure carbon formed at temperature between 200 and 600°C 

(Conedera et al., 2009). It is divided into two categories based on the size of the particles, 

microscopic (length >10 and <100 µm) and macroscopic (length >100 or 125 µm) charcoal 

particles (Whitlock and Larsen, 2001). It is relatively resistant to chemical decomposition 

(classified as inertite) (Habib et al., 1994; Hart et al., 1994; Quénéa et al., 2006). Microbial 

decomposition is minimal (Hockaday et al., 2006; Verardo, 1997) especially if charcoal burial 

occurs in an environment with high sedimentation rate. Microscopic charcoal particles are 

commonly counted in the same slides used for pollen analyses in transmitted light. In this 

case, concentrates of microcharcoal are obtained following the standard procedure described 

in the pollen section (2.1.1) (Faegri and Iversen, 1964). No ultrasonic baths are used in order 

to avoid charcoal-particle breakage (Tinner and Hu, 2003). Rhodes (1998) proposed the 

extraction of microcharcoal from sediment samples using a dilute solution of hydrogen 

peroxide (6%) for 48 hours at 50°C to bleach the dark organic component, followed by 

sieving at 11µm and another bleaching step. Reflected light (or incident light) has been used 

also during pollen slide analyses (Doyen et al., 2013) to secure the identification of 

microcharcoal from uncharred organic matter, although polished thin sections are generally 

more suitable for analyses using reflected light (Noël, 2001). 

The protocol of Daniau et al. (2009) combines chemical treatments to concentrate 

microcharcoal and polished slides technique allowing both the particle observations in 

transmitted and reflected light. It has been developed on marine samples (Daniau et al., 2009) 
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but has also been recently used for lake sediments (Inoue et al., 2018). It consists of 

concentrating microcharcoal particles by removing carbonates, silicates, pyrites, humic 

material, labile or less refractory organic matter (Clark, 1984; Winkler, 1985; Wolbach and 

Anders, 1989). This procedure bleaches organic matter and does not blacken unburned plant 

materials (Clark, 1984). The chemical treatment consists of successive chemical attacks by 

adding hydrochloric acid (HCl), then cold or hot nitric acid (HNO3) and hydrogen peroxide 

(H2O2) on approximately 0.2 g of dried bulk sediment. A hydrofluoric acid (HF) step can be 

used, followed by rinsing with HCl to remove colloidal SiO2 and silicofluorides formed 

during the HF digestion, as in the pollen and spores protocol. A dilution of 0.1 is applied to 

the residue. The suspension is then filtered onto a membrane of 0.45 mm porosity. A portion 

of this membrane is mounted onto a slide before gentle polishing for observation under the 

microscope. The chemical treatment may be slightly modified, depending on the sample 

sediment composition. 

Although this review focuses on microcharcoal, we briefly present laboratory analyses for 

macrocharcoal because the information used in many fire syntheses was obtained from studies 

using both macro- and microcharcoal records (see section 4.4 and fire discussion section). It is 

suggested, however, that macro- and microcharcoal records follow the same trends and thus 

display similar fire history patterns (Carcaillet et al., 2001). Macrocharcoal is extracted by 

using potassium hydroxide or sodium pyrophosphate solutions to remove humic acid and to 

disaggregate the sediment, followed by a dilute (4-6% only) hydrogen peroxide  step and wet 

sieving through a 125 µm sieve (Stevenson and Haberle, 2005). 

2.3 Phytoliths 

 

Phytolith extraction procedure from soil or lacustrine sediments consists of multiple steps 

following Aleman et al. (2013b). The sediments are deflocculated using a 5 % weight solution 
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of NaPO3 heated at 70 °C, and shaken for twelve hours. Removal of carbonates, using a 1N-

solution of HCl at 70 °C during one hour on a hot plate, is performed prior to the organic 

matter reduction as this step is more efficient in a slightly acid and non-calcareous 

environment (Pearsall, 2000). This step is also crucial to disperse the mineral fraction and 

prevent secondary reactions (Madella et al., 1998). Lake sediments are generally rich in 

organic matter which is removed by using 33 % H2O2 (Kelly, 1990; Lentfer and Boyd, 1998) 

at 70°C to accelerate the reaction to properly obtain cleaned slides for easier identification and 

counting. Alternatively, a mixture of nitric acid (HNO3) with potassium chlorate (at a ratio of 

1:3) heated for two hours at 90°C using glass material on a hot plate can be used to accelerate 

the reaction (Strömberg, 2002; Strömberg et al., 2018). 

For lateritic sediments, removal of oxidized iron using tri-sodium citrate and sodium 

dithionite is recommended (Kelly, 1990). Another deflocculation, using NaPO3 at 70 °C 

(Lentfer and Boyd, 1998) shaken for 12 hours, then is required to remove clay efficiently 

since high clay concentration may affect data quality (Madella et al., 1998). Clay is removed 

by gravity sedimentation using ‘low-speed’ centrifugation to speed up the processing. 

Distilled water is added to the residue to a height of 7 cm and centrifuged for 1 min 30 s at 

2000 rpm (Stokes' law for particles < 2 μm, calculated for a Sigma Aldrich 3–16 centrifuge 

with an RCF.g of 769 at 2000 rpm). The step is repeated until the float is clear. Before 

performing densimetric separation of phytoliths, the residue is dried using ethanol to avert 

dilution of the dense liquor by the water contained in the residue.  

The density of the heavy liquid is crucial for the densimetric separation step to prevent bias 

regarding phytolith selection, densities of which range from 1.5 to 2.3. Different heavy liquids 

can be used: ZnBr2/HCl solution adjusted to a relative density of 2.3–2.35 (Kelly, 1990) or, 

better, non-toxic sodium polytungstate (Na 6[H2W12O40]). The density 2.3 of 1 L of dense 

liquor is obtained by mixing 1662 g of sodium polytungstate powder with 637 ml of distilled 
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water. The residue and the dense liquor are mixed and then centrifuged for two minutes at 

3000 rpm. Disposable transfer pipets are used to suck the fine white layer floating on the 

dense liquor and transfer it to a 5 μm PTFE filter (Kelly, 1990) mounted on a vacuum glass 

filtration holder. The dense liquor is recycled to reduce the costs of the extraction procedure 

and the environmental pollution. The floating residue on the filter is rinsed with HCl (1 N) if 

ZnBr2 is used, and distilled water; otherwise the supernatant is only washed with distilled 

water. The phytoliths are transferred to a vial and an exotic marker is added (a lycopodium 

tablet or silica microspheres (Aleman et al., 2013b)). The samples are decanted for twelve 

hours and then dried in a drying oven if silica microspheres are used; otherwise naturally 

dried by evaporation. The residue is preserved in ethanol or glycerin. 

 

3. Identification, counting and digital image processing of terrestrial plant microfossils 

 

3.1 Pollen and spores 

 

Microscopic observation of the pollen of flowering plants and gymnosperms and spores of 

pteridophytes allows identification with a taxonomical resolution rarely reaching the specific 

level but more often the family or genus levels and sometimes a group of species within a 

genus (Jackson and Booth, 2007). The identified grains are allocated to a morphotype (or 

pollen taxa) based on various features related to the size and shape of the grain, to the shape, 

number and distribution of the apertures/scars and to the structure and ornamentation of the 

pollen/spore wall (Fig. 2). A large literature describes these features although the associated 

terminology varies depending on the authors (Erdtman, 1954; Faegri and Iversen, 1964; Hesse 

et al., 2009; Kapp's, 2000; Moore et al., 1991; Reistma, 1969). We only report hereafter the 

main characteristics used for identification (see above references for further details), mainly 
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with the terminology used in Moore et al. (1991). The descriptive terminology can be 

bewildering for the novice but provides an essential basis for accurate description, comparison 

and identification of morphotypes; a valuable illustrated glossary is provided by Punt et al. 

(2007).  

Pollen size varies mostly between 15 and 100 µm although some grains can be as large as 140 

µm such as Malvaceae pollen or slightly less than 10 µm such as pollen from tropical and 

subtropical trees and shrubs, like Elaeocarpus and Cecropia. The shape of a pollen grain 

generally varies from spherical to elliptical, either oblate when the polar axis is shorter than 

the equatorial axis or prolate for the reverse. An aperture is a thin area or a missing part of 

the exine, either circular to elliptical (porus or pore) or elongated (colpus or furrow), that 

allow the germination of the pollen tubes for plant reproduction. The shape, number and 

arrangement of the apertures constitute a primary criterion for identification of pollen types. 

Type names include the terms porate, colpate or colporate describing the aperture shape with 

a prefix (mono-, di-, tri-, tetra-, penta-, hexa- and poly-) defining the aperture number. It is 

possible to find grains without apertures, corresponding to the inaperturate pollen type. 

Another prefix describing the aperture arrangement can also be added: zono- and panto-, 

following Erdtman (1954) and Moore et al. (1991) or stephano- and peri- following Faegri 

and Iversen (1964) for apertures distributed in the equatorial zone or all over the surface of 

the grain, respectively. The structure and sculptures of the pollen wall present a large 

variability constituting precious criteria for the identification of the pollen grains. The fossil 

pollen wall of angiosperms, namely the exine, is composed of a homogenous inner layer, the 

endexine, and a complex outer layer, the ectexine, which may include a foot layer, with above 

radial rods, named columellae, supporting a tectum with various supratectatal sculpturing 

elements (bacula, clavae, echinae, pila, gemmae, verrucae, scabrae or granules). All layers 

may be continuous, discontinuous or absent, may present particular thickening features such 
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as arcus or annuli (cf. Alnus and Poaceae pollen grains). When there is no tectum (intectate 

grain as opposed to tectate grain), sculpturing elements may be found on the top of the foot 

layer. Columellae can also be partially joined at their heads; the grain is described in this case 

as semitectate. The arrangement of the columellae or of the supratectal sculpturing elements 

or their fusion in elongated elements can give rise to a network (reticulum) or striations. The 

gymnosperm pollen wall differs slightly: the endexine is lamellate and the ectexine never has 

columellae but alveoli or granula (Hesse et al., 2009). Pinaceae and Podocarpaceae pollen 

grains display a special feature: the air sacs (sacci).  

Pteridophyte spores have the same size range but depart from pollen for the presence of 

monolete and trilete scars and a simpler wall structure, although it can be multilayered and 

ornamented (Kapp's, 2000). 

 

Figure 2 

 

An exhaustive list of pollen atlases is referenced in Hooghiemstra and van Geel (1998). Pollen 

atlases published since 1998 are reported in Table 1. In addition, an initiative has been 

developed to aid the identification of pollen grains, and provide virtual access to reference 

material at https://globalpollenproject.org/ (Martin and Harvey, 2017). 

 

Region Reference 

Europe Beug (2004) 

Africa Schüler and Hemp (2016) 

Scott (1982) 

Gosling et al. (2013) 

Asia For Japan: Demske et al. (2013) 

For Indonesia: Jones and Pearce (2014) 

For India: Kailas et al. (2016); Mudavath et al. (2017) 

https://globalpollenproject.org/
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For China: Fujiki et al. (2005); (Yang et al., 2015) 

North America Kapp's (2000); (Willard et al., 2004) 

Central and 

South America 

For the whole Neotropics, freeware online database: Bush and Weng 

(2007) 

For Amazonian taxa: Colinvaux et al. (1999) 

For Paramo and high elevation Andean taxa: Velasquez (1999) 

For Brazil: Cassino and Meyer (2011) 

For Venezuela: Leal et al. (2011) 

For Atlantic forest: Lorente et al. (2017) 

 

Table 1. List of pollen atlases for different regions of the world available for pollen grains 

identification (not referenced in Hooghiemstra and van Geel (1998)). 

 

Counting is routinely done with a light microscope at 400x although use of an oil immersion 

objective allowing 1000x magnification is required in some cases (Birks and Birks, 1980). 

The number of pollen grains and spores counted varies depending on the research objectives 

although it should be enough high to reach constant percentages of the different taxa and at 

least exceed a minimum count of 100 to calculate the relative proportions (expressed as 

percentages of the pollen sum). For terrestrial sediments, 300 to 500 grains are usually 

counted (Birks and Birks, 1980). For marine sediments, counting usually aims to reach a total 

of 300 pollen and spore grains with at least 100 pollen grains excluding Pinus, a well-known 

over-represented taxon (Desprat, 2005; Turon, 1984). At least 20 taxa are usually identified to 

provide a representative image of the composition and diversity of the European or North 

American vegetation (McAndrew and King, 1976; Rull, 1987). In tropical regions where the 

taxa diversity is far more important and largely variable, saturation curves can be used to 

determine the number of grains that have to be counted to reach a plateau in the number of 

taxa found (Birks and Birks, 1980).  
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3.2 Microcharcoal 

 

Microcharcoal is identified microscopically in transmitted light as debris that is black, 

opaque, and with sharp edges, according to criteria from Boulter (1994) (Fig. 3). Petrographic 

criteria in reflected light include visible plant structures characterised by thin cell walls and 

empty cellular cavities, or particles without plant structure but of similar reflectance than the 

previous ones (Noël, 2001). 

Originally, both the number and area of microcharcoal fragments were analysed in pollen 

slides. The area of microcharcoal was estimated using tedious methods, the square eye-piece 

grid method (Swain, 1973) or the point-count method (Clark, 1982). Concentrations of 

microcharcoal fragments and areas are highly positively correlated (Tinner and Hu, 2003). It 

was therefore suggested avoiding the quantification of microcharcoal areas because it was 

time consuming for gaining little additional information compared to a simple counting of 

microcharcoal fragments. Counting microcharcoal on pollen slides is currently performed at 

200x or 500x magnification (Doyen et al., 2013; Morales-Molino et al., 2011) by counting 

only the number of microcharcoal in pollen slide (Tinner and Hu, 2003) with a minimum of 

two hundred items (the sum of charcoal and exotic marker grains) (Finsinger and Tinner, 

2005). 

More recently, some studies indicated that fragmentation of charcoal particles may occur 

during taphonomical processes (Crawford and Belcher, 2014; Leys et al., 2013). This 

potential fragmentation may lead to an overrepresentation of microcharcoal, i.e. a virtual 

increase of the number of fragments per gram, while this increase would not have been seen 

in the total area concentration (see below for an explanation of the two concentrations). Using 

the total area helps therefore interpreting charcoal fragment concentration. Counting and area 

measurement of individual charcoal particles is recommended further because it provides an 
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opportunity to link both particle counts and particle areas to different metrics of fires, such as 

burned area, fire number, fire intensity or fire emissions (Adolf et al., 2018b; Hawthorne et 

al., 2018). 

Digital image processing can be used to generate microcharcoal data more efficiently and to 

conduct morphological particle analyses. Image analysis can be carried out in software such 

as ImageJ (open source) (Abramoff et al., 2004) which can be used to measure the individual 

area of each particle, total area of all particles and the number of particles that are observed in 

each microscopic field (Beaufort et al., 2003; Daniau et al., 2009; Doyen et al., 2013; Inoue et 

al., 2018; Thevenon et al., 2004). The shape is studied using the length, width and the 

elongation measurements. 

Automated image analysis consists of scanning the slides in a controlled light adjustment 

(transmitted light) to detect and measure microcharcoal using a threshold value in red, green 

and blue (RGB), or in tint, saturation and lightness (TSL) color space (see for example Daniau 

et al., 2009). Automated scanning of the slides requires the microscope to be equipped with a 

stage motorized in the X, Y and Z axes. Moving on the X and Y axes permits to scan different 

separate fields of the slide (150 or 200 images with a pixels digitising camera to provide 

reproducible results, Beaufort et al., 2003; Daniau et al., 2007; Doyen et al., 2013). The Z-axis 

permits to adapt the focus for each field. Observations and automated image analysis is 

performed in general at 400x (Doyen et al., 2013) or 500x magnification (Daniau et al., 2009; 

Inoue et al., 2018). Identification of uncharred organic matter (in reflected light, using oil 

immersion), characterized by the absence of plant structures and distinct level of reflectance, 

can be used to set the best-fit threshold level to secure identification of microcharcoal by 

image analysis. 

From these measurements, two types of concentration per gram of dry bulk sediment are 

calculated, i.e. the number of fragments of microcharcoal (fragments, #/g) and the total area 
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of microcharcoal (mm
2
 or μm

2
/g). When the density or the volume of the treated sediment is 

known, concentrations are expressed per volume (cm
3
). The total area corresponds to the sum 

of the individual areas of microcharcoal. The shape is studied using the elongation ratio (or 

aspect ratio) expressed as the ratio Length on Width (Crawford and Belcher, 2014; 

Umbanhowar and McGrath, 1998); or as the ratio Width on Length (Aleman et al., 2013a).  

 

Figure 3 

 

3.3 Phytoliths 

 

The recovered phytolith fraction from the extraction procedure is mounted on microscope 

slides using mobile mounting medium, glycerin or immersion oil, to allow the rotation of 

phytolith for observation. Phytoliths are counted at 400x or 600x magnification. Immersion 

oil may be preferred as mounting media to facilitate observation because phytolith show a 

better contrast under the microscope rather than by using glycerin. Phytoliths are amorphous 

silicate and are distinguishable from quartz grains using a polarizing filter on the microscope. 

Other siliceous components can be diatoms, freshwater sponge spicules or siliceous 

protozoans such as testate amoebae (Rhizopoda). Diatoms, or even parts of valves, are easily 

distinguishable from phytoliths via finer ornamentations compared to phytoliths. Sponge 

spicules are generally needle-like in form and are either smooth or spined. They are visually 

distinguishable from phytoliths because their surfaces are generally smooth and the purity of 

the silicate makes it translucent. Finally, testate amoebas are recognizable when they are 

entire, but the tests are composed of siliceous plates that may be disarticulated during 

taphonomic processes or lab treatments. These plates have round to square shapes and usually 
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measure between 5 to 15 µm. Rounded curved plates can be confused with microspheres. In 

this case rotation of the particle is needed for identification. 

During the counting procedure, sufficient items (exotic marker and the most frequent 

phytolith morphotype with taxonomic significance) should be counted to reach an estimate of 

the total phytolith concentration with a precision of at least ±15 %, as described in (Aleman et 

al., 2013b). In general, this consists in counting at least 300 phytoliths of morphotypes with 

taxonomic significance per sample and with size greater than 5 µm. 

Description of phytolith morphotypes should be done according to their three-dimensional 

shape and classification should follow the International Code for Phytolith Nomenclature 

(ICPN; Madella et al. (2005)). The ICPN was developed in order to use a standard protocol to 

name and describe new phytoliths, and to provide a glossary of descriptors for phytoliths. As 

such, when describing a phytolith type the following information are necessary: 1) description 

of the shape (3D and 2D), 2) description of the texture and/or ornamentation, and 3) 

symmetrical features. Other information can also be provided when possible (e.g. 

morphometric data, illustrations and anatomical origin, Madella et al. (2005)). Because of 

redundancy and multiplicity in phytolith shape (Fredlund and Tieszen, 1994; Mulholland, 

1989; Rovner, 1971), one phytolith type can rarely be related to one plant taxon and therefore 

in order to use this vegetation proxy, the whole phytolith assemblage must be considered. Past 

tree cover, aridity/humidity changes and plant water stress can be assessed by grouping 

morphotypes into specific indices. In addition, phytoliths from the Poaceae family produce 

peculiar morphotypes that provide information about past grass dynamics and evolution 

(Strömberg, 2002). 

In general, phytolith morphotypes are grouped into five large categories (Fig. 4): 

 

Figure 4 
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1. Grass silica short cells (GSSC) are produced by Poaceae (Mulholland and Rapp, 1992). 

Among the GSSCs, the bilobates (a), polylobates and crosses (b) are mainly produced by the 

Panicoideae subfamily (Fredlund and Tieszen, 1994; Kondo et al., 1994; Mulholland, 1989; 

Twiss et al., 1969) which is C4 grasses adapted to warm and humid climate. The saddle (c) 

type occurs dominantly in the Chloridoideae subfamily (Fredlund and Tieszen, 1994; Kondo 

et al., 1994; Mulholland, 1989; Twiss et al., 1969), C4 grasses adapted to a warm and dry 

climate. The rondel type (d), corresponding to the pooid type defined by Twiss et al. (1969) 

and the conical, keeled and pyramidal types (e) from Fredlund and Tieszen (1994), include 

conical, conical bilobate (f), conical trilobate and conical quadrilobate morphotypes. The 

trapeziform short cell type (Fredlund and Tieszen, 1994; Kondo et al., 1994; Mulholland, 

1989; Twiss et al., 1969) comprises trapeziform, trapeziform bilobate (g), trapeziform 

trilobate (h) and trapeziform quadrilobate morphotypes. The rondel and trapeziform short cell 

types are preferentially produced by the Pooideae subfamily (C3, high elevation grasses), but 

also by the other subfamilies (Barboni and Bremond, 2009). Zea mays produces a particular 

cross type, and using morphometric analysis it is possible to precisely identify its presence in 

archeological records (Piperno, 2006). Bambusoideae grasses produce Bilobate and Saddle 

short-cells and some genus produce distinct phytolith types such as Chusquoid body or 

collapsed saddles in Chusquea (Piperno and Pearsall, 1998). 

2. The bulliform cells category relates to cell morphology trackers that can be identified. For 

example, epidermal cells have been calibrated to reconstruct leaf area index (LAI) (Dunn et 

al., 2015). Bulliform cells (i) from the leaves of Poaceae are used as a proxy of aridity 

(Bremond et al., 2008). 

3. The woody dicotyledon category is composed of globular granulate (j) (Alexandre et al., 

1997; Bremond et al., 2005a; Kondo et al., 1994; Scurfield et al., 1974), globular decorated 
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(k) (Neumann et al., 2009; Novello et al., 2012; Piperno, 2006; Runge, 1999), sclereid 

(Mercader et al., 2000; Neumann et al., 2009; Runge, 1999), blocky faceted (l) (Mercader et 

al., 2009; Neumann et al., 2009; Runge, 1999) and blocky granulate morphotypes (Mercader 

et al., 2009). 

4. The other family-specific morphotypes are composed of morphotypes that can be attributed 

to specific families. Papillae types (m) (Albert et al., 2006; Gu et al., 2008; Novello et al., 

2012; Runge, 1999) are produced by Cyperaceae (Kondo et al., 1994) that mainly grow in 

wetlands. The globular echinate morphotype (n) is produced by palms (Arecaceae) (Kondo et 

al., 1994; Runge, 1999). Phytoliths of Musa are volcaniform (o) (Ball et al., 2016) when the 

ones from Cucurbita are spheroidal or hemispheroidal with deeply scalloped surfaces of 

contiguous concavities (Piperno et al., 2000). Other specific phytoliths can be attributed to 

rice, Maize or Marantaceae (see the exhaustive discussion in Piperno (2006)). 

5. Non-diagnostic morphotypes (p) such as globular smooth, elongated or tabular and blocky 

types are sometimes attributed to specific vegetation types, such as closed environments. 

However, the diversity of shapes behind the generic terms makes it difficult to be exhaustive 

for this category (see Garnier et al., 2012; Novello et al., 2012; Runge, 1999). 

 

Comprehensive databases and atlases for phytolith identification do not exist yet. The web 

and scientific papers provide some atlases but the data are diverse, dispersed and not easily 

comparable. The data are presented generally by taxon (Family, Genus or Species) or by 

phytolith morphotypes. Modern phytolith assemblages have been extensively studied in 

Africa (Barboni et al., 2007). The PhytCore DB (http://www.phytcore.org) provides modern 

phytolith assemblages but it is very oriented for archeological studies. It is therefore important 

analysing modern soil or recent sediment samples in the surrounding vegetation types of the 

http://www.phytcore.org/
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“fossil” studied area. Here, we provide a non-exhaustive list of different phytolith atlases 

available on the web (Table 2). 

 

Name Website link 

PhytCore (Archeological sites from Spain, East 

and South Africa) 

http://www.archeoscience.com/ 

The University of Missouri Online Phytolith 

Database (essentially the flora of Ecuador) 

http://phytolith.missouri.edu/ 

Paleobot (collaborative, open-access web 

resource for scientists and scholars engaged in 

palaeobotanical research) 

http://www.paleobot.org/ 

Old World reference phytoliths http://www.homepages.ucl.ac.uk/~tcrndf

u/phytoliths.html 

The Blinnikov's Phytolith Gallery http://web.stcloudstate.edu/msblinnikov/

phd/phyt.html 

 

Table 2: List of phytolith atlases available online. 

 

4. Terrestrial plant microfossils for qualitative and quantitative environmental 

reconstructions 

 

4.1 Information from pollen 

 

4.1.1 Environmental information 

 

Fossil pollen assemblages are widely used for reconstructing past vegetation composition and 

distribution, and thereby climate and land-use changes. Pollen analysis is based on a set of 

principles that allow the pollen assemblage found in sedimentary archives to be related to the 

surrounding vegetation (e.g. Birks and Birks, 1980; Prentice, 1988). Information on the 

http://www.archeoscience.com/
http://phytolith.missouri.edu/
http://www.paleobot.org/
http://www.homepages.ucl.ac.uk/~tcrndfu/phytoliths.html
http://www.homepages.ucl.ac.uk/~tcrndfu/phytoliths.html
http://web.stcloudstate.edu/msblinnikov/phd/phyt.html
http://web.stcloudstate.edu/msblinnikov/phd/phyt.html
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pollen-vegetation relationship in particular is derived from the extensive study of surface 

(modern) pollen samples, taken in defined vegetation units characterizing an ecosystem or a 

bioclimate, as well as in various sedimentary contexts. Modern pollen rain-vegetation 

relationships were therefore investigated in a wide variety of landscapes worldwide, although 

some regions are still under-studied, such as arid and semiarid environments. From these 

studies arose several regional modern pollen databases for Europe (Davis et al., 2013; Fyfe et 

al., 2009), North America (Whitmore et al., 2005), East Asia (Zheng et al., 2014), Africa 

(Gajewski et al., 2002) and South America (Flantua et al., 2015).  

Surface sample studies have shown there is no linear relationship between pollen proportions 

and plants abundances. Pollen proportions from a sedimentary archive give qualitative 

information on changes in vegetation composition through time and over a spatial area. Many 

studies demonstrated that pollen assemblages clearly discriminate between vegetation 

formations or forest-types and that pollen proportions of the major taxa reflect their relative 

importance in the vegetation (Prentice, 1988). Individual calibration studies prior to the 

analysis of a sedimentary archive are recommended to provide the characterization of the 

relationship between the pollen rain and local and regional vegetation essential to interpret the 

fossil pollen records in terms of vegetation changes. For example, in Southern Africa, 

Poaceae percentages were demonstrated to be critical to distinguish the pollen signal of the 

major biomes and associated climatic zones (Urrego et al., 2015). In the Mediterranean 

region, pollen assemblages within degraded maquis, for instance, appear largely influenced by 

adjacent land-covers such as conifer woodland and open vegetation (Gaceur et al., 2017).  

A large literature aims at understanding and estimating the factors that determine the source 

vegetation and modifies the pollen representativeness in terms of vegetation composition and 

abundance (e.g. Broström et al., 2008; Bunting et al., 2013; Gaillard et al., 2008; Havinga, 

1984; Prentice, 1985; Sugita, 1994; Traverse, 2007). The differential pollen production, 
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dispersal and preservation between pollen taxa lead to the over- or under-representation of 

some morphotypes. The long-distance transport of anemophilous taxa is a common factor 

biasing the representation of the local vegetation by pollen assemblages (e.g. Traverse, 2007). 

This is particularly true in mountain regions where wind drives uphill transport of tree pollen 

(Ortu et al., 2006). The most widely known example is the over-representation of Pinus pollen 

that produces a large quantity of highly buoyant saccate pollen.  

The structure and composition of the surrounding vegetation affect the source area of pollen. 

For instance, pollen rain in an open landscape is prone to increased contribution of pollen 

originating from distant vegetation (Bunting et al., 2004). The size (i.e. few meters to 

kilometers) and type (e.g. bogs, mires, lakes and ocean) of the sampling site also influence the 

pollen source area from local to regional inputs (e.g. Prentice, 1985; Sugita, 1994; Traverse, 

2007). Ponds and small lakes mostly receive pollen from the vegetation surrounding the 

sampling site and therefore represent more local estimates of vegetation than large lakes (in 

their centers) that collect predominantly wind-transported pollen from the regional vegetation 

background (e.g. Sugita, 1994, 2007a, b). Note that without using specific pollen-based 

modelling approaches (see section 4.1.2) the dissociation between local and regional pollen 

signals cannot be assessed. Pollen studies on modern marine surface sediments showed that 

pollen assemblages reflect an integrated image of the regional vegetation of the adjacent 

continent (e.g. Heusser, 1983; Naughton et al., 2007). Such studies revealed that pollen grains 

are mainly transported to the ocean realm by wind and rivers but the role of these transport 

agents depends essentially on the environmental conditions of each area (e.g. Dupont et al., 

2000; Groot and Groot, 1966). Pollen is predominantly supplied to the ocean by fluvial 

transport, in regions where hydrographic systems are well-developed such as in the western 

Iberian margin, northern Angola basin, western North Atlantic margin and in the Adriatic Sea 

(e.g. Bottema and van Straaten, 1966; Dupont and Wyputta, 2003; Heusser, 1983; Naughton 
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et al., 2007). In arid zones, such as northwest Africa, with weak hydrological systems and 

strong winds, pollen are mainly wind-blown (e.g. Hooghiemstra et al., 2006; Rossignol-Strick 

and Duzer, 1979). A mixture of fluvial and wind pollen transport may also occur as shown in 

the Gulf of Guinea (Lézine and Vergnaud-Grazzini, 1993) and the Alboran Sea (Moreno et 

al., 2002). Once in the ocean, pollen grains sink rapidly through the water column thanks to 

processes decreasing its buoyancy such as agglomeration (taking part to the marine snow), 

flocculation and incorporation in fecal pellets (Mudie and McCarthy, 2006) and thereby 

preventing long-distance transport by marine currents (Hooghiemstra et al., 1992). 

 

4.1.2 Pollen-based land cover reconstruction 

 

Pollen assemblages extracted from terrestrial sedimentary cores reflect a mix of both local and 

regional vegetation, and this makes difficult the assessment of quantitative vegetation 

reconstruction based on pollen proportions. Correction factors were proposed as early as the 

fifties to minimize biases in the representativeness of pollen assemblages (see Birks and 

Berglund (2018) and references therein). From the eighties, important methodological 

improvements took place with the development of models taking into account the differential 

production and dispersal of pollen, and the size and type of the sedimentary basin (e.g. 

Prentice and Parsons, 1983; Sugita, 1993, 1994, 2007a, b). These models have resulted in the 

development of the Landscape Reconstruction Algorithm (LRA, Sugita, 2007b) for 

quantitative reconstruction of past vegetation composition. 

The LRA approach corresponds to two sub-models, REVEALS (Regional Estimates of 

Vegetation Abundance for Large Sites, Sugita, 2007a) and LOVE (Local Vegetation 

Estimate, Sugita, 2007b). REVEALS reconstructs the regional vegetation composition in a 

radius of ca. 50 km using pollen counts from large lakes (>50 ha). REVEALS can also be 
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used for a combination of small and large lakes and bogs, although the standard errors would 

be greater than when using for a large lake only (Marquer et al., 2017; Trondman et al., 2016). 

LOVE reconstructs the local vegetation composition in a radius of few meters to kilometers 

that corresponds to the relevant source area of pollen (RSAP). To calculate quantitative 

estimates of local vegetation composition, LOVE uses pollen counts from small sites (lakes 

and bogs <50 ha) and subtracts the regional background of pollen using REVEALS 

estimates(i.e. pollen coming from beyond the RSAP) . LOVE estimates represent the local 

vegetation composition within the RSAP. The LRA models incorporate critical parameters to 

correct the non-linear relationships between pollen percentages and plant abundances, e.g. 

pollen productivity estimates of specific plant taxa, fall speed of pollen and basin size, and 

several assumptions, e.g. specific wind speed and characteristics of atmospheric conditions. 

Current model improvements correspond to the implementation of an alternative pollen 

dispersal model in the LRA approach (e.g. Theuerkauf et al., 2016; Sugita, unpublished). 

The REVEALS and LOVE models are now increasingly applied to provide quantitative 

reconstructions of the Holocene vegetation composition from local, regional to sub-

continental spatial scales (e.g. Cui et al., 2014; Fyfe et al., 2013; Hellman et al., 2008a; 

Hellman et al., 2008b; Marquer et al., 2017; Marquer et al., 2014; Mazier et al., 2015; Nielsen 

et al., 2012; Nielsen and Odgaard, 2010; Overballe‐Petersen et al., 2013; Soepboer et al., 

2010; Sugita et al., 2010; Trondman et al., 2015; Trondman et al., 2016). The REVEALS 

model has largely been used for pollen-based land cover reconstruction in Europe and it is 

now applied to other regions (essentially in the northern hemisphere) via the support of the 

PAGES LandCover6k initiative (Gaillard et al., 2018). Evaluation of the LRA models 

reliability in the southern hemisphere and tropics (Southern Asia, Central Africa and South 

America) is in progress. 
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Contrary to the MAT method, the REVEALS approach requires some a priori information 

(i.e. explicit assumptions) on pollen productivity estimates (PPEs), lake size and wind speed. 

PPEs are difficult to estimate and time and resource consuming considering that taxon pollen 

productivity presents a high regional and interannual variability. Since all these parameters 

may vary through time, treating them as known processes increases the uncertainties of 

REVEALS land-cover reconstructions. However, REVEALS remains the only method that 

addresses these uncertainties directly, and at the taxon level. In addition, there are also subtle 

differences in the nature of the land-cover reconstruction between methods. For instance, 

REVEALS reconstructs the proportion of the land cover occupied by taxa in the landscape, 

irrespective of their physical size. In contrast, MAT methods often have a specific physical 

definition associated with the remote sensing datasets that are used for calibration, such as a 

minimum height (e.g. greater than 5 m) for forest taxa. This has implications in, for instance, 

shrub dominated landscapes such as forest-tundra landscapes where REVEALS may indicate 

more “forest” than MAT due to the low physical stature of the taxa (Zanon et al., 2018). 

An alternative and less resource intense approach has been developed by Williams (2003), 

based on the popular modern analogue technique (MAT) applied in pollen-climate 

reconstructions, whereby analogues of fossil pollen samples are found in a modern pollen 

database. In the land-cover reconstruction method, the fossil sample is assigned to the remote-

sensing derived forest cover of the closest matching modern pollen sample site. 

This method is particularly useful to reconstruct past forest cover at continental scales. It was 

used to reconstruct Holocene forest cover in North America (Williams, 2003), Europe (Zanon 

et al., 2018), Northern Eurasia (Tarasov et al., 2007), and time slices for the whole of the 

northern hemisphere mid and high latitudes (Williams et al., 2011). 

Zanon et al. (2018) showed that both methods generally provide comparable results. 

However, the MAT systematically estimates lower forest cover than REVEALS although this 
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offset reduces in some pioneer vegetation landscapes. This discrepancy may be due to 

different definitions of ‘forest cover’ between the two methods, with trees greater than 5 m in 

the case of MAT, whereas forest is simply defined as the proportion of forest forming taxa 

irrespective of their size in REVEALS. 

Other semi-quantitative methods for reconstructing land-cover are based on the ‘biomisation’ 

method (Prentice et al., 1996). This essentially compensates for differing pollen productivity 

and dispersion by transforming pollen percentages data using the square-root method. 

This has the effect of de-emphasising the taxa which represent the larger proportions (often 

the trees) and emphasizing more the taxa with the smaller proportions (often the herbaceous 

taxa). Taxa are then grouped according to common plant functional types (PFT’s) grouped in 

turn into biomes. The sum of the square rooted percentages of each group of taxa represents 

its ‘score’. The highest ‘score’ represents the vegetation biome of the pollen sample 

assemblage. Biomisation classification schemes have been developed for almost all regions of 

the world (Prentice and Jolly, 2000). The original motivation for this work was the evaluation 

of climate model simulations through forward modelling. This side-steps the problems 

associated with pollen-climate based data-model comparisons (see section 4.1.3) because the 

vegetation represented by the pollen record is directly compared with the vegetation generated 

by a process based vegetation model fed with output from the climate model simulation 

(Prentice et al., 1998). This approach has many advantages, not least the ability to take into 

account the complex response of vegetation to many different aspects of climate, such as 

temperature, precipitation, seasonality, cloudiness and frost frequency. Unfortunately, one of 

the main disadvantages is the difficulty in aligning the vegetation generated by the vegetation 

model with that represented by the pollen record. For instance, the link between the original 

biome vegetation model and pollen biomisation classification schemes (Prentice et al., 1996) 

is based on the unproven assumption that modelled Net Primary Productivity (NPP) is 
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directly linked to pollen percentages. Similarly, because the model generates potential natural 

vegetation, and the pollen data reflects actual vegetation, it becomes difficult to judge the 

accuracy of a pollen biomisation scheme with, for instance, over eight different schemes 

available in Europe alone (Allen et al., 2010; Allen et al., 2000; Bigelow et al., 2003; Binney 

et al., 2017; Marinova et al., 2018; Peyron et al., 1998; Prentice et al., 1996; Tarasov et al., 

1998). 

However, considering the simplicity of the approach, the biomisation procedure nevertheless 

proved to work remarkably well in many regions at continental scales. While the original 

procedure was developed specifically to reconstruct the natural potential vegetation, the 

procedure has also been adapted to reconstruct human impacted landscapes, the pseudo-

biomisation approach (Fyfe et al., 2010). It was used to reconstruct the land-use and forest 

cover of Europe throughout the Holocene (Fyfe et al., 2015). Roberts et al. (2018) showed 

that the three methods, pseudo-biomisation, REVEALS and biomisation approaches, captured 

the basic trend in forest cover change over Europe during the Holocene. 

Biomisation, pseudo-biomisation and modern analog technique can be used at continental and 

global scales and provide semi-quantitative estimates for biomes, plant functional types, land 

cover classes and tree covers, when LRA provides quantitative estimates of the cover of plant 

taxa at specific spatial scales, i.e. from local, regional to continental scales. Those quantitative 

estimates of vegetation are critical to i) evaluate climate and human-induced changes in 

vegetation composition and diversity, ii) answer archaeological questions about land use, iii) 

inform strategies related to conservation of natural resources and iv) be used as inputs for 

climate and dynamic vegetation modelling (e.g. Cui et al., 2014; Gaillard et al., 2010; 

Marquer et al., 2018; Marquer et al., 2017; Mazier et al., 2015). 

 

4.1.3 Pollen-based climate reconstruction 
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Fossil pollen data have been used for quantitative reconstructions of past climate for over 70 

years (Iversen, 1944). Pollen remains the main terrestrial proxy used for continental-scale 

evaluation of climate model simulations as part of the Paleo-climate Model Intercomparison 

Project (PMIP) for key time periods of the last climatic cycle (126, 21 and 6 ka) (Otto-

Bliesner et al., 2017), and as far back as the mid-Pliocene (3.0-3.3 Ma) under the Pliocene 

Model Intercomparison Project (PlioMIP) (Haywood et al., 2013). Those models are used to 

simulate future climate and their palaeo-climate evaluations provide the only real test of 

reliability outside of our modern climatic experience. Palaeo-climate reconstructions have 

been based on widely spaced time-slices. It becomes possible now to produce spatially 

explicit continuous reconstructions through time in data rich regions such as Europe (Davis et 

al., 2003b; Mauri et al., 2015) and North America (Viau and Gajewski, 2009). Spatially 

explicit reconstructions allow us to view the spatial structure of climate change, much of 

which is driven by change in atmospheric circulation which appears to be under-estimated in 

climate models (Mauri et al., 2014). The high spatial variability indicated by pollen synthesis 

studies (and others, see de Vernal and Hillaire-Marcel, 2006; Kaufman et al., 2004) suggests 

strong sampling bias in regional or even global interpretations from one or very few sites 

(Hansen et al., 2006; Marcott et al., 2013). Large networks of pollen sites allow area-average 

estimates that reflect more accurately climate system energy-balances. They are also more 

comparable with climate models with their large grid box resolutions (Bartlein et al., 2011).  

The main advantage of pollen data is its almost unrivalled spatial coverage from virtually all 

terrestrial regions of the Earth, together with the wide range of seasonal and annual climate 

parameters that can be commonly reconstructed. Disadvantages include relatively low 

centennial-scale temporal resolution (especially when multiple records are combined at large 

spatial scales), and the possibility that non-climatic environmental factors may also influence 
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the vegetation record through disease, succession, migration lag, soils and human action 

(Mauri et al., 2015). Another issue is the no-analogue-vegetation problem (Jackson and 

Overpeck, 2000; Williams et al., 2001), i.e. unique associations of taxa in the past that do not 

occur today, such as during the rapid post-glacial re-colonisation of higher mid-latitudes 

following the retreat of LGM ice sheets. This problem is also related to the no-analogue-

climate problem, when there is no modern analogue for a climate in the past, such as the 

particular combination of seasonal insolation during the last Interglacial, or the low CO2 

concentration during the LGM. It should be noted that the problem of human action on 

vegetation is often the inverse of how it is popularly conceived, since most transfer functions 

are assessed and calibrated for the present day when human action has probably been at its 

highest. It is in fact a lack of human action in the past that can create a no-modern-analogue 

problem for the transfer function. 

Since the first pollen-climate transfer function over 70 years ago, there has been a large 

number of different methods developed, largely motivated by the problems that we have 

already outlined. These methods can be grouped into four main groups:  

1) The first and generally the most popular group of methods is based on matching an 

assemblage of taxa present in a fossil pollen sample with unknown climate, with the same 

assemblage in a modern pollen sample whose climate is known. This includes the classic 

modern analogue technique (MAT), but also variants such as response surfaces (Brewer et al., 

2007). Advantages include simplicity and an ability to incorporate non-linear responses to 

climate, while disadvantages include the need for a large calibration dataset of modern pollen 

samples and poor statistical treatment of uncertainties. 

2) The second group of methods builds a regression model for each taxon based on the 

relationship between modern pollen samples and known modern climate, which is then used 

to deduct the past climate from the taxa in a fossil pollen sample assemblage. This includes 
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the popular Weighted Averaging – Partial Least Squares (WA-PLS) method (Birks et al. 

2010). The advantage of this method includes better statistical treatment of uncertainties and 

elimination of problems such as spatial auto-correlation that are common to MAT. However 

disadvantages include heavy reliance on capturing the correct climate response within the 

calibration dataset and poor performance at the edges of the response envelope.  

3) Both the previous two groups of methods require an extensive and representative modern 

pollen surface sample dataset for calibration of the transfer function, and also rely on the 

relative proportions of the taxa in the pollen assemblage. The third group of methods instead 

uses modern vegetation distribution rather than modern pollen samples as the basis for 

calibrating the transfer function, and generally uses presence and absence of taxa rather than 

its proportional occurrence in the assemblage. This includes classic methods such as mutual 

climatic range, as well as the more recent probability density function approach (Chevalier et 

al., 2014). These methods work by establishing the climate envelope for each taxon based on 

its modern vegetation distribution, and then combining the envelopes of the taxa found in the 

fossil pollen assemblage to deduce the most likely climate where all the taxa are able to exist 

together. This group of methods does not require a calibration dataset of modern pollen 

samples. They are especially good in areas where these datasets are limited such as in Africa 

(Chevalier et al., 2014), as well as being able to perform in no-analogue situations where taxa 

are found combined in assemblages that are not found today. The disadvantages of this type 

of model is that pollen may be found in areas beyond the geographical range of its source 

vegetation, while the use of geographical range alone to define the optimum climate for a taxa 

(rather than abundance) leads to large envelopes and consequently large uncertainties in 

reconstructions. 

4) The final fourth group of methods uses a process based vegetation model to determine the 

climate of a fossil pollen assemblage. Normally vegetation models use climate data as input to 
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arrive at a vegetation, but in this ‘inverse’ method, the vegetation model is used in inverse 

mode where the vegetation is already known (the fossil pollen assemblage) and the most 

likely climate to result in that vegetation is the output. This method does not require any 

modern calibration data (although in reality vegetation models are largely parameterized 

based on what we know of modern vegetation), and since it is process based, it can provide 

reconstructions in no-analogue situations such as low CO2 climates (Wu et al., 2007).  

The importance of pollen-based climate reconstructions are likely to increase in future as 

more climate models simulations are made in transient mode and at increasing spatial 

resolutions. At the same time, more fossil and modern calibration pollen data becomes 

available in public relational databases. Improvements in transfer function performance can 

also be expected, particularly through the application of Bayesian approaches that include 

multi-sample and multi-site analysis. 

 

4.2 Information from microcharcoal 

 

Vegetation fires produce different sizes of particles of which the smallest, classified as fine 

particles, are deposited far from the source (Patterson et al., 1987). Aeolian and fluvial 

processes are the main agent responsible for the transport of microcharcoal from the 

combustion site to the sedimentation basin where they are preserved. These microcharcoal 

particles remain in the atmosphere and are transported over long distances (Clark, 1988) by 

low atmospheric winds (<10 km) and deposited a few days or weeks after their formation 

(Clark and Hussey, 1996; Palmer and Northcutt, 1975). In water, after a short period of 

bedload transport, charred fragments break down into relatively resistant, somewhat rounded 

pieces, and thereafter remain stable. They exhibit the same behaviour as fragments of highly 

vesiculated pumice, which initially floats and then sinks as it becomes waterlogged (Nichols 
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et al., 2000). Whitlock and Millspaugh (1996) have reported charcoal introduced into deep 

lake sedimentary record within a few years after a fire event. Suspended fine material 

(including microcharcoal) fluvially supplied to the ocean can be transported to the deep ocean 

through canyons (Jouanneau et al., 1998). Microcharcoal sedimentation, which may be 

comparable to pollen sedimentation behaviour, can lead to deposition within several weeks on 

the ocean floor as a part of the marine snow (Chmura et al., 1999; Hooghiemstra et al., 1992). 

It is assumed that microcharcoal mostly reflects regional fire history. 

Microcharcoal accumulations (concentrations and influx) are used therefore to reconstruct 

changes in biomass burning at regional scale. The chronology of the record, through the 

development of age models, is used to calculate the sediment accumulation rate (sediment 

accumulation thickness per unit time, cm/yr). Microcharcoal influx (also called microcharcoal 

accumulation rate) is expressed as number of fragments per unit area per unit time (#/cm2/yr) 

or total areas of microcharcoal per unit area per unit time (µm
2
/cm

2
/yr). It is calculated by 

multiplying the concentration of microcharcoal per volume by the sediment accumulation 

rates, or by multiplying the concentration of microcharcoal per weight by the density of the 

sediment samples and by the sediment accumulation rates. 

Influx accounts for variations in the sedimentation rate over time which can vary widely 

(Adolf et al., 2018b; Marlon et al., 2016). When the sediments are varved, it is possible to 

obtain an accurate estimation of the sediment accumulation rate and to calculate 

microcharcoal influx for each sample (Maher, 1981). In this case, assuming that the full 

production of microcharcoal is transported to the sediment deposition site, microcharcoal 

influx may be interpreted directly in terms of charcoal production. 

However, varved-sediments are rare and the age-depth model of sedimentary sequence 

commonly derives from discrete dated levels (radiometric dating, or use of “tie-points” based 

on events stratigraphy). Several studies then present calculated values of microcharcoal influx 
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for each sample of the dated sequence. However, an average sedimentation rate over several 

meters of core lacks information about the rate in a sample taken from a centimeter interval 

within the dated sequence (Maher, 1981). Because of this uncertainty in the sedimentation 

rate, a rigorous solution is not possible for a single sample: interpreting long term trends in 

microcharcoal influx is preferred rather than interpreting single microcharcoal influx 

variation. Maher (1981) suggested using in this case an averaged influx between two dates, 

calculated by the average concentration multiplied by the average sedimentation rate. More 

recently, the 
230

Th normalization method provides a means of achieving more accurate 

interpretations of sedimentary fluxes in marine realm (Francois et al., 2004). 

In addition, calculation of microcharcoal influxes for some marine sediment sequences 

obtained by piston coring may be prevented. The piston coring process sometimes elongates 

parts of the core, and this elongation is not constant over the sequence. It can increase 

virtually the sedimentation rate and so the derived influx. The coring artefacts should be 

corrected before influx calculation, if physical parameters of the coring are recorded during 

the core collection (Toucanne et al., 2009). For some cores collected in the past decades, some 

missing parameters avoid this correction. The equipment of the upgraded R/V Marion 

Dufresne for example now prevents or minimizes elastic stretching of the sediment and allows 

physical parameters to be recorded (http://www.insu.cnrs.fr/en/node/5762). 

In a few cases, some “apparent” sediment hiatuses of tens of centimeters in the core are 

observed. In the absence of changes in lithology, those apparent sediment hiatuses may 

happen because of the splitting of the sediment due to stretching strength during core 

collection. The original depths therefore need to be corrected before the calculation of the 

depth-age model and of the influx (see for example core MD04-2845 in Sánchez Goñi et al., 

2017). In addition, the lack of information about the density of the sediment may also prevent 

http://www.insu.cnrs.fr/en/node/5762
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influx calculation from microcharcoal concentration per weight. However, it is possible to use 

an estimated marine sediment density (Tenzer and Gladkikh, 2014). 

The deep ocean (in the absence of turbidite deposits) receives plant microfossils and 

terrigenous sediments coming from the adjacent continent and material derived from in situ 

biological surface productivity. Those materials are part of the hemipelagic sedimentation. 

Quick events of high sediment accumulation of material produced outside of the adjacent 

continent or outside of the depositional basin may happen, such as Ice Rafted Debris (IRD) 

deposits (due to the melting of icebergs during abrupt ice sheet-calving) in the marine realm, 

or volcanic ash deposits. The sedimentation rate increases sharply and so the calculated 

microfossil influx. However, this influx increase informs on the modification of the sediment 

source arearather than  an increasing amount of microfossils reaching the depositional basin. 

For example, core MD04-2845, located on a seamount, receives hemipelagic sediment 

including allochthonous terrigenous material, i.e. eolian and fluvial particles coming from the 

adjacent continent, including plant microfossils (Daniau et al., 2009). During the last glacial 

period, several events of high sedimentation rate are associated with the Heinrich layers, i.e. a 

huge amount of IRD released during the melting of icebergs in the North Atlantic. To 

estimate plant microfossil influx, biogenic and glacial terrigenous influx (IRD) should be 

removed from the total sediment influx. Caution is therefore needed in interpreting influx 

when the source area of the sediments is modified. 

Rare calibration studies, performed in varved sediment lakes and oceanic basin, suggest that 

microcharcoal accumulation is strongly linked to “burnt area” (Mensing et al., 1999; Tinner et 

al., 1998) but further investigations are required (Adolf et al., 2018b). 

In addition to microcharcoal concentration or influx, the morphology of charcoal including 

the elongation ratio may provide information about the type of burnt vegetation in 

palaeoecological and palaeoenvironmental studies (Aleman et al., 2013a; Courtney Mustaphi 
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and Pisaric, 2014; Daniau et al., 2013; Daniau et al., 2007). Charcoal fragmentation occurs 

along axes derived from the anatomical structure of plant species and the elongation degree is 

preserved even when the particle is broken (Clark, 1984; Umbanhowar and McGrath, 1998). 

Experimental studies show that the dominance of elongated particles (high elongation ratio) in 

a sample characterizes herbaceous vegetation burning while a near-squared morphology (low 

ratio) indicates forest burning (Crawford and Belcher, 2014; Umbanhowar and McGrath, 

1998). 

 

4.3 Information from phytoliths 

 

Phytolith deposition and accumulation are associated with the decomposition of local 

vegetation (Piperno, 2006). Phytolith studies can provide valuable complementary 

information to the analysis of pollen grains that have a larger source area. However, since 

grasses produce much more phytoliths than any other plant types, the direct environment of 

the sedimentary archive needs to be carefully described and studied. For example, it has been 

shown in some African studies that a lake surrounded by a grass-marsh will record a ‘super’ 

local signal, i.e. the signal from the marsh overrides the signal from the surrounding landscape 

(Aleman et al., 2014). In this case, the source area is very local and the main transportation 

mode is by run-off. Conversely, a lake surrounded by a riparian forest faithfully records the 

landscape surrounding the lake (Aleman et al., 2014). The source area is wider and the main 

transportation mode is wind-blown (Aleman et al., 2014; Alexandre et al., 1997; Bremond et 

al., 2005b). Knowing the taphonomic processes is therefore of particular importance when 

interpreting a microfossil assemblage and the derived indices (see Strömberg et al., 2018).  

 

4.3.1 Land cover reconstructions from phytoliths 
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The phytolith tree cover index or D/P which is the ratio of woody dicotyledons to Poaceae 

phytoliths is commonly used to characterize the openness of an environment (Alexandre et al., 

1997). It has been quantitatively calibrated against the Leaf Area Index (LAI) in two studies 

from Africa (Aleman et al., 2012; Bremond et al., 2005a). Recently, the D/P index was 

slightly changed from the original calibration publication to avoid infinite values of ratio. The 

ratio used is D/(D+P), with D corresponding only to the globular granulate and P only to the 

GSSC (Aleman et al., 2014; Bremond et al., 2017). This new index is thus bounded between 0 

and 1 making it easier to interpret (Bremond et al., 2017). 

This proxy, however, can only be used in tropical environments where D phytoliths are 

produced. As such, other studies have calibrated LAI against phytoliths derived from leaf 

epidermal cells for which morphology is light-dependent (Dunn et al., 2015). Indeed, there are 

large differences between sun leaves and shade leaves: shade leaves have larger and more 

undulated epidermal cells than sun leaves. Using this proxy, the authors were able to 

reconstruct LAI for the Cenozoic (49 to 11 Ma) in middle-latitudes of Patagonia (Dunn et al., 

2015). 

 

4.3.2 Phytolith indices, grassland ecosystems and climate 

 

Several GSSC indices exist and enable characterization of the grassland or grass-dominated 

type of ecosystem. First, the Iph or humidity-aridity index compares the number of saddle 

short cell phytoliths against the number of lobate short cell phytoliths observed in a 

soil/sediment assemblage [Iph (%)= saddle vs. cross + dumbbell + saddle]. Calibrated for 

western Africa, the Iph index accurately characterizes the grass cover, allowing the 

discrimination of Sahelian grass communities from Sudanian ones (Bremond et al., 2005b) 
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and the dominance of short-grass or tall-grass savannas (using a boundary of ~20%). The Fs 

or water stress index is computed as the ratio of bulliform phytoliths over the sum of 

characteristic phytoliths [fan-shaped index (Fs) (%) = fan-shaped vs. sum of characteristic 

phytoliths]. It was calibrated over the same area as the Iph index by using modern soil 

assemblages and climate data (Bremond et al., 2005a) and was proven successful to record the 

water stress and transpiration experienced by the grass cover. While the calibration is relevant 

for this part of Africa, care must be used when applied in other bio-climatic zones.   

The Iaq index refers to the percentage of grass short cell morphotypes present in a 

soil/sediment assemblage that are mostly produced by hydro-/helophytic (=aquatic) grass 

species (Novello et al., 2012). It was calibrated for Chad (central Africa), where the Iaq index 

was shown to display high values for samples from the vegetated marshes of the current Lake 

Chad where aquatic grass communities are largely represented (Novello et al., 2012; Novello 

et al., 2015; Novello et al., 2016). Additionally, recent studies (Novello et al., 2015; Novello 

et al., 2016) have demonstrated that an Iaq value of 34.5% or more is estimated to represent 

the signal of aquatic grass communities in a fossil assemblage.  

Combining indices can improve the interpretation of past grass-dominated communities 

(Strömberg, 2004). For example, the combination of the Iaq and Iph indices, calculated for 

each of the fossil assemblages, may allow differentiation of the signal of the dry-loving grass 

communities (mostly observed in arid domain), from the signal of the humidity-loving grass 

communities associated with regional high precipitation (mostly observed in wetter domain) 

or else with local aquatic conditions (Novello et al., 2012). 

 

4.4. Online data sharing for regional and global environmental data syntheses using 

plant microfossil data 

 



43 
 

Terrestrial plant microfossil data from a sedimentary archive are slow to generate but rich in 

information on past local to sub-regional changes in vegetation and fire dynamics, 

paleoclimates and paleoecology. It is therefore important to continue the training of the next 

generation of scientists on terrestrial plant microfossils. Data needs to be carefully archived 

for long-term storage. Data from a specific site or a dataset can be archived easily (for 

instance, the NOAA, http://www.noaa.gov/ and Pangaea, https://www.pangaea.de/, offer this 

service to the palaeo scientific community). 

Over the past 15 years, the increasing amount of plant microfossil data and the establishment 

of data sharing in the scientific culture (although some barriers still exist, hampering data 

sharing and good management practice, Neylon, 2017), and the development of large dataset 

analysis skills has opened the possibility to tackle new questions at regional and global scales. 

Databases including plant microfossils are useful tools for comparing different records, for 

reconstructing past regional dynamics of vegetation, fire and climate, and for examining their 

feedbacks to climate. Those databases are also key for evaluating modeling results of past 

climate, vegetation and fire. For example, the analysis of the European Pollen Database 

allowed re-examination of the mean annual temperature trend over the Holocene (Marsicek et 

al., 2018). Databases will make it possible also to tackle questions arising from global 

environmental change such as acclimation, adaptation, migration, risk and safe-operating 

space ecosystems. 

Some databases can be focused on one proxy, on one continent or on a specific time period of 

interest. The structure of the existing palaeo databases is generally similar and includes key 

metadata as geospatial and dating (chronological) information as well as data in the form of 

pollen and charcoal counts. The main structure includes sites, samples, pollen or charcoal 

data, and dating tables. 

http://www.noaa.gov/
https://www.pangaea.de/
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The Global Pollen Database (GPD) has now been replaced by the new Neotoma multi-proxy 

palaeoecological database. The North American Pollen Database is already included in 

Neotoma. The other regional constituent databases of the GPD, such as the European Pollen 

Database, the Latin American Pollen Database and the African Pollen Database, are in the 

process of being absorbed into the new structure as quickly as resources permit it (largely 

through voluntary efforts). It is hoped that regional pollen databases presently outside of the 

public domain such as the Chinese and Indo-Pacific Pollen Databases will ultimately be made 

available through Neotoma over the next few years. It should be noted that all of these 

databases are relational databases composed of interlinked tables, together with a harmonized 

and standardized taxonomy, and including additional information on related aspects such as 

chronologies. In this way, they differ markedly from simple data archives such as NOAA 

palaeoclimate and Pangaea, which only provide file storage. By creating a global interlinked 

database, Neotoma is providing the scientific community with a powerful new analysis tool, 

and one that will allow analysis of not just pollen data but all kinds of palaeocological 

information. 

The Global Charcoal Database (GCD) holds hundreds of fire history records from six 

continents mostly based on the analyses of macro and micro-charcoal particles in terrestrial 

and marine sediments. Successive global syntheses based on increasing number of 

quantitative data demonstrated a strong relationship between fire and climate over the past 

21,000 years (Daniau et al., 2012; Marlon et al., 2016; Power et al., 2008). As charcoal values 

vary by orders of magnitude between and within sites the data have to be standardised to 

facilitate comparisons between sites and through time. A full description of the procedure and 

details about the contents of the database can be found in Marlon et al. (2008) and Power et 

al. (2010b). The current version of the database is now stored under the MySQL environment 

at gpwg.paleofire.org. The paleofire R package (Blarquez et al., 2014) allows easy access to 
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the GCD data and manipulation of its contents to produce biomass burning reconstructions for 

subsets of records. 

The ACER (Abrupt Climate Changes and Environmental Responses) global pollen and 

charcoal database (Sánchez Goñi et al., 2017) aims to examine changes in vegetation and fire 

during the last glacial period (73–15 ka), a period of rapid climate changes marked by the so-

called Dansgaard–Oeschger (D–O) cycles. The database includes 93 pollen records with a 

temporal resolution better than 1000 years, 32 of these sites also provide charcoal records. In 

order to compare patterns of change from different regions, harmonized and consistent 

chronology based mostly on radiometric dating and few additional tie points based on event 

stratigraphy below 
14

C dating limit or below 
14

C levels has been constructed for ninety six of 

these records.  

The ACER synthesis emphasized the scarcity of palaeoclimatic records from the tropical 

regions with enough resolution to investigate millennial-scale climate events (Harrison and 

Goñi, 2010; Sánchez Goñi et al., 2017). The Latin American ACER (LaACER) project was 

conceived to fill this gap by compiling and synthesizing data from the American tropics and 

subtropics. Palaeoclimate records of these regions may help understanding globally-important 

oceanic and atmospheric systems in the climate variability since these regions are influenced 

by the Pacific and Atlantic oceans, and by large-scale atmospheric features including the 

Intertropical convergence Zone (ITCZ), El Niño-Southern Oscillation (ENSO), the North 

American Monsoon (NAM) and the South American Summer Monsoon (SASM) (Garreaud et 

al., 2009). LaACER sits within the Palaeoclimate commission of INQUA, and was co-

sponsored by PAGES (Urrego et al., 2014). 

 

Acrony Full name Status Website link proxy Key 
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m references 

APD African Pollen 

Database 

archive  pollen Vincens et 

al. (2007) 

EPD European Pollen 

Database 

Active http://www.e

uropeanpolle

ndatabase.net

/data/ 

pollen Giesecke et 

al. (2014) 

GCD Global Charcoal 

Database 

Active, 

MySQL 

https://paleof

ire.org/ 

charcoal V1: Power et 

al. (2008) 

V2: Daniau 

et al. (2012) 

V3: Marlon 

et al. (2016) 

V4: in 

progress 

ACER 

and 

LaACER 

 archived in 

Microsoft 

AccessTM at 

https://doi.or

g/10.1594/P

ANGAEA.8

70867. 

 

 Pollen and 

charcoal - 

focus on the 

last glacial 

period 

Sánchez 

Goñi et al. 

(2017) 

https://doi.org/10.1594/PANGAEA.870867
https://doi.org/10.1594/PANGAEA.870867
https://doi.org/10.1594/PANGAEA.870867
https://doi.org/10.1594/PANGAEA.870867
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Neotoma Neotoma 

Paleoecology 

Database 

Active http://www.n

eotomadb.or

g 

Various 

palaeoecolog

ical data 

including 

pollen 

(Williams et 

al., 2018) 

 

Table 3: List of databases including pollen and microcharcoal sedimentary records 

 

5. Glacial-interglacials cycles of the 100-ky world and the climatic shift of the Mid-

Bruhnes event during the Middle Pleistocene 

 

5.1 Vegetation 

 

For the last climatic cycle, vegetation reconstructions and simulations suggest that temperate 

forests dominated the mid-latitude landscape during the last interglacial while steppe and 

tundra largely expanded, south of a large area covered by ice-sheets, during the last glacial 

period (e.g. Harrison et al., 1995; Harrison and Prentice, 2003; Hoogakker et al., 2016). The 

interglacial-glacial cooling generated a fragmentation of the boreal and temperate forests. 

Their area of extent during the LGM was greatly reduced in Eurasia while they migrated 

southward in eastern North America. Temperature variations as well as the low CO2 

concentrations, which have a direct physiological effect on plants, strongly influenced the 

vegetation worldwide during the last glacial period (e.g. Bennett and Willis, 2000; Harrison 

and Prentice, 2003). For further details, the reader is directed to a set of review papers 

providing state of the art knowledge on vegetation changes on each continent based on Late 

Pleistocene pollen records (Bigelow, 2013; de Beaulieu et al., 2013; Hooghiemstra and 
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Berrio, 2013; Kershaw and van der Kaars, 2013; Lozhkin and Anderson, 2013; Meadows and 

Chase, 2013; Thompson, 2013; Urrego et al., 2016). Hereafter, we will focus on vegetation 

changes during the Middle Pleistocene, from 781 to 126 kyr ago.  

Several terrestrial and marine continuous pollen records covering only part of the Middle 

Pleistocene exist. Here we review the long pollen sequences covering continuously the full 

Middle Pleistocene. The most well-known terrestrial long pollen sequences were recovered in 

the sixties and seventies in southern Europe and South America: Tenaghi Philippon and Funza 

(Fig. 5 and 6). They yield a 1.35 Ma continuous history of the vegetation and climate in the 

Philippi plain from Greece (Tzedakis et al., 2006; Van Der Wiel and Wijmstra, 1987a, b; 

Wijmstra, 1969; Wijmstra and Smit, 1976) and a 2.25 Ma history of the tropical Andean 

vegetation in the Bogotá high plain from Colombia (Hooghiemstra, 1989; Torres et al., 2013), 

respectively. Over the past two decades, a huge effort was made in the frame of the ICDP 

(International Continental scientific Drilling Program) to drill ancient lakes and recover long 

terrestrial sedimentary archives. In particular, the Heqing lake drilling yielded an outstanding 

pollen sequence recording the vegetation and Asian monsoon variability in southwestern 

China over the last 2.6 Ma (Xiao et al., 2007; Xiao et al., 2010; Zhisheng et al., 2011). 

Sedimentary archives going back to 1.8 and 1.2 Ma were also collected from the tropical 

African lakes Bosumtwi and Malawi and pollen records were generated for the last 540 and 

600 kyr, respectively (Ivory et al., 2016; Ivory et al., 2018; Miller and Gosling, 2014). In 

Brazil, a 50 m deep borehole drilled in 2017 at Lake Colônia will allow the study of the 

response of the Atlantic rainforest and fire to the South American subtropical monsoon 

variability during the last 1.6 Myr (Ledru et al., 2015; Ledru, pers. comm.). At higher 

latitudes, pollen data from the famous Siberian drill sites Lake El’gygytgyn, Lake Baikal and 

Lake Hovsgol are also available. However, pollen data from Lake El’gygytgyn are so far 

available for selected periods only, mostly interglacial periods (Melles et al., 2012; Wenwei et 
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al., 2018). In the Baikal region, although both sedimentary archives are continuous, pollen 

records are not because of low pollen concentrations in glacial sediments (Prokopenko et al., 

2010; Prokopenko et al., 2009). A global synthesis of the available marine pollen records 

(Sánchez Goñi et al., 2018) reveals that among the 129 sites listed, 19 cover several climatic 

cycles, eight go beyond the Mid-Brunhes event with only three sites covering entirely the 

Middle Pleistocene. These sites are the ODP site 1144 from the South China Sea (Sun et al., 

2003), the ODP Site 646 off Greenland (de Vernal and Hillaire-Marcel, 2008) and the IODP 

site U1385 from the SW Iberian margin although pollen data are mostly available for 

interglacial periods, so far (Sánchez Goñi et al., 2018). One additional site, the ODP site 1075 

from the Congo fan, contains pollen data for the interval 600-1050 kyr (Dupont et al., 2001). 

The Middle Pleistocene sequences reveal that like the last climatic cycle, the past glacial-

interglacial cycles forced repeated large biome shifts.  

In southern Europe, the 100-kyr cycles are marked by the alternation of interglacial temperate 

forest and glacial open vegetation as shown by the Tenaghi Philippon and the IODP site 

U1385 pollen sequences but also in other southern European pollen sequences covering 

several climatic cycles such as Ioannina and Kopais in Greece (Okuda et al., 2001; Tzedakis, 

1993; Tzedakis et al., 1997; Tzedakis et al., 2006), Praclaux in France (de Beaulieu et al., 

2001; Reille et al., 2000), Lake Ohrid in Albania (Sadori et al., 2016), Valle di Castiglione in 

Italy (Follieri et al., 1988) and cores MD99-2331/MD03-2697/MD01-2447 from the NW 

Iberian margin and MD95-2042/MD01-2443 from the SW Iberian margin (e.g. Desprat et al., 

2017; Sánchez Goñi et al., 2018). During all interglacial Marine Isotopic Stages (MIS), two to 

three major phases of forest expansion occurred, related with low ice volume (warm MIS 

substages) and boreal summer insolation peaks. Despite small ice volume fluctuations during 

the interglacial MIS, the temperate tree variations in the Mediterranean region are of high 

amplitude due to the strong influence of precession on the Mediterranean vegetation (Sánchez 
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Goñi et al., 2018; Tzedakis, 2007). However, the most important forest phase often occurs at 

the beginning of the MIS during the substage with the largest ice volume minimum, 

corresponding to the interglacial sensu stricto (e.g. Desprat et al., 2017; Tzedakis, 2005). In 

addition, emblematic constituents of ancient European forests, the so-called “Tertiary relicts”, 

such as Eucomia, Carya, Pterocarya, Cedrus and Tsuga, became extirpated over Europe 

during the Middle Pleistocene. Most of them disappeared from the Philippi plain during the 

MIS 16 glacial period, setting the point from which less diverse interglacial forests, similar to 

the modern one, established in southern Europe (Tzedakis et al., 2006). 

In south America, glacial-interglacial temperature changes forced cyclical altitudinal 

migration of the montane forest and páramo, the open equatorial alpine vegetation, as shown 

by the Funza sequence and the 280 kyr-long pollen record Fuquene (Groot et al., 2011; 

Hooghiemstra and Sarmiento, 2001). However, the composition of interglacial Andean forest 

changed over the last one million years. Quercus immigrated into the Bogota area at ~430 kyr 

ago, during MIS 12, becoming a major constituent of the Andean forest since MIS 7, 

competing at high altitudes with Weinmannia and Podocarpus and replacing Polylepis near 

the upper forest limit (Torres et al., 2013). 

In Africa, marine pollen records such as the IODP site 1075 and the 700 kyr-long records 

M16415-2 and GIK16867-3 located off tropical Africa, indicate that the extent of the major 

vegetation formations also varies with the 100 kyr glacial-interglacial cycles although 

migrations of the southern Saharan desert limit appear to be paced by obliquity. In addition, in 

the tropics the rain forest fluctuated with summer insolation and precession, likely related 

with the orbital forcing of the monsoon variability (Dupont, 2011; Dupont and Agwu, 1992; 

Dupont et al., 2001). At the orbital-scale, tropical lowland ecosystems drastically shifted from 

woodland to savannah in the western Africa and from tropical forest to desert, steppe and 
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grassland vegetation in the eastern Africa in response to strong regional hydroclimatic 

changes (Ivory et al., 2018; Miller et al., 2016). 

While the MBE is clearly recorded by marine and ice archives, this event is not a clear feature 

of pollen records. The amplitude of forest expansion does not appear higher during the post-

MBE interglacials in southern Europe pollen sequences (i.e. Lake Ohrid, Sadori et al., 2016; 

IODP site U1385, Sánchez Goñi et al., 2018; Tenaghi Philippon, Tzedakis et al., 2006) nor in 

northern high latitudes (ODP 646, de Vernal and Hillaire-Marcel, 2008) and tropical Africa 

and South America (Dupont, 2011; Funza, Torres et al., 2013) records (Fig. 6). In the Heqing 

basin, Tsuga percentages, an indicator of winter temperature and annual temperature range, 

also do not display the MBE, although the XRF data show reduced strength of the summer 

monsoon rainfall during the interglacial peaks of the last 400 kyr likely related to strong inter-

hemispheric interaction (Zhisheng et al., 2011). Simulations with the LOVECLIM model 

showed that in comparison with pre-MBE interglacials, the post-MBE interglacials are 

globally warmer mainly during boreal winter in response to both higher atmospheric 

greenhouse-gas concentrations and increased insolation during this season, in particular in the 

southern hemisphere (Yin and Berger, 2010). However, this simulated warming differences 

exhibit a strong regional and seasonal pattern supporting that some regions such as western 

Europe or tropical South America, were likely not affected by the MBE or as strongly as the 

southern high latitudes where the largest difference is displayed.  

Long pollen sequences also contribute to show that interglacial periods of the past one million 

years are diverse in terms of intensity, temporal trend, duration as well as spatial variability 

(Past Interglacials Working Group of PAGES, 2016; Tzedakis et al., 2017). For instance, 

records from northern high latitudes clearly display this diversity in warming strength, 

suggesting that some interglacial periods were particularly warm, such as the “super-

interglacial” MIS 11 (Melles et al., 2012). During this stage, the southern Greenland ice-sheet 
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collapsed (Reyes et al., 2014) allowing the expansion of the boreal conifer Picea in a region 

usually devoid of trees (de Vernal and Hillaire-Marcel, 2008). In contrast, in the mid-

latitudes, the difference in warming intensity between interglacials appears tenuous as shown 

by weak differences in temperate tree percentages in the European pollen records from the 

NW Iberian margin and the Massif Central (de Beaulieu et al., 2001; Desprat et al., 2017) 

Pollen records from the southern Iberian margin show that the magnitude of Mediterranean 

forest development in the Iberian Peninsula substantially differed from one interglacial to 

another suggesting that the amount of winter precipitation was quite variable (Desprat et al., 

2017; Sánchez Goñi et al., 2018). The interglacial hydroclimate variations observed in SW 

Iberia do not, however, parallel with the high latitude warming strength. The regional 

variability of the magnitude of temperature and hydroclimate change on land is a strong 

feature given by the few available Pleistocene sequences. However, an accurate view and 

understanding of the regional impact of climate changes during warm periods require suitable 

sedimentary archives to be recovered and analysed in the future. 

 

Figure 5 

Figure 6 

 

5.2 Fire 

 

The different syntheses of the Global Charcoal Database (Daniau et al., 2012; Marlon et al., 

2016; Power et al., 2008) showed that biomass burning varies closely with climate changes. 

For example, biomass burning increased globally from the Last Glacial Maximum to the 

Holocene (Fig 6d). Daniau et al. (2012) demonstrated this global increase in biomass burning 
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is controlled by rising mean annual temperature and moisture, with temperature being the 

primary control. 

Few biomass burning records document older glacial/interglacial transition. The synthesis of 

twenty long records of charcoal, registering not only the Holocene but also the Eemian and 

part of the last glacial period, suggested that biomass burning is generally high during 

interglacials and low during glacials (Daniau et al., 2010). Similar results were observed more 

recently from microcharcoal records in Anatolia (Pickarski et al., 2015) and Greece (Lawson 

et al., 2013), and from a macroscopic charcoal record covering the last ca. 370 kyr in the 

Andes (Gosling William et al., 2009; Hanselman et al., 2011). Increases of biomass burning 

during interglacials in the Andes appeared to be associated with increased fuel load from the 

Polylepis woodlands expansion. 

However, other regions in the tropics and the subtropics illustrate the opposite trend in 

biomass burning, i.e. high level of biomass burning during glacials or during the LGM 

(Daniau et al., 2013; Inoue et al., 2018; Nelson et al., 2012). A clear cyclic pattern is observed 

in southern Africa by a marine long microcharcoal record covering several glacial/interglacial 

cycles over the last 180,000 - 30,000 years (Fig. 7c). Peaks in biomass burning occur during 

each precession and local summer insolation maxima (Fig. 7b) (Daniau et al., 2013). Under 

reduced monsoonal activity, dry and fuel-limited interglacials would have reduced fire 

activity compared to glacials characterized by enhanced precipitation supporting grass-fueled 

fires. This hypothesis was confirmed by modeling (Woillez et al., 2014) and by vegetation 

observation (Urrego et al., 2015). Grass-fueled fires were also suggested to be higher under 

colder climates in China based on the analysis of the black carbon content, another fire proxy, 

from loess sequences (Wang et al., 2005). 

Two long terrestrial charcoal records older than the MBE exist yet. One is from tropical 

woodland (lake Malawi, eastern Africa) and covers the last 1.2 million years (Ivory et al., 
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2016). The charcoal record was only interpreted for the last 600,000 years and the study 

suggested that fire activity was a component of the ecosystem since the beginning of MIS 7 

and a driver of the decline in species richness at 80,000 years (Ivory et al., 2018). Presence of 

charcoal is also reported in the lake Bosumtwi sequence covering the last 540,000 years, 

located in the tropical rainforest region of West Africa (Miller et al., 2016) but no charcoal 

time series were presented in this paper. 

The longest published record of fire covering the last one million years is from Bird and Cali 

(1998) but is a measure of organic resistant elemental carbon (OREC). Originally, they 

reported peaks in fire activity at the transitions from interglacial to glacial modes since MIS 

13. The only peak during a full interglacial occurred at MIS 1 and was interpreted as of 

anthropogenic origin because no peak in fire was observed during other past interglacials. 

They later published a revised chronology of the record (Bird and Cali, 2002) showing that 

fire also peaked during the interglacial MIS 7, their anthropogenic influence hypothesis from 

their original paper being then challenged. The microcharcoal analyses (Daniau A-L, work in 

progress) on the IODP site U1385 from the SW Iberian margin (Sánchez Goñi et al., 2018) 

covering the last one million years will allow exploration of patterns of fire at orbital-scale in 

relation to changes in vegetation and hydrology in a region considered highly vulnerable to 

future fires (Settele et al., 2014). 

 

6. Millennial-scale changes during the last glacial period  

 

6.1 Vegetation 

 

About 200 pollen records cover the last glacial period worldwide, but only half have sufficient 

resolution and dating control to show millennial-scale variability (Harrison and Goñi, 2010). 
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Here we illustrate patterns of vegetation in response to Dansgaard-Oeschger events (D-O) 

focusing on Europe, North America, Africa and South America obtained from the synthesis of 

the ACER International Focus group in 2010 (Fletcher et al., 2010; Hessler et al., 2010b; 

Jimenez-Moreno et al., 2010; Sanchez Goñi and Harrison, 2010). Those patterns are based on 

changes in biomes, defined by original authors as pollen percentages of certain taxa. The 

recent published harmonised chronology (Sánchez Goñi et al., 2017) and the application of 

biomisation on those records should allow a deeper analysis of the impact of rapid climate 

change on the land biosphere (Harrison S, pers. comm). 

In Europe, high temporal resolution terrestrial records, such as Lago Grande di Monticchio in 

Italy (Allen et al., 1999) or Tenaghi Philippon in Greece (Müller et al., 2011), and marine 

pollen records (for instance MD95-2042, Fig 6h, Sánchez Goñi et al., 2000b) reveal changes 

in vegetation cover and composition on millennial timescales during the last glacial period. 

Continuous records spanning the entire last glacial are concentrated in the Mediterranean 

region and southern Europe, while records from central and northern Europe tend to be 

fragmentary (Feurdean et al., 2014; Fletcher et al., 2010). Greenland Interstadials (GI) were 

associated with relatively warm and humid conditions over Europe, promoting the 

establishment of grassland and shrub tundra in northwestern Europe, shrub-and forest-tundra 

in northeastern Europe, open boreal forest in central western Europe and the Alpine region, 

and open temperate forest in southern Europe (Duprat-Oualid et al., 2017; Fletcher et al., 

2010). Greenland Stadials (GS) or Heinrich Stadials (HS) were marked by cool and dry 

climatic conditions over Europe and by the expansion of xerophytic and steppe taxa (Fletcher 

et al., 2010). Marine pollen records from the Atlantic and Mediterranean furthermore play a 

vital role in demonstrating the effective synchrony of atmospheric and oceanic signals of D-O 

variability (Naughton et al., 2009; Roucoux et al., 2005; Sánchez Goñi et al., 2002; Sánchez 

Goñi et al., 2000b), since vegetation changes typically display a one-to-one match with 
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millennial-scale changes in marine palaeoclimate tracers such as foraminiferal assemblages, 

organic biomarkers or ice-rafted detritus (in the Atlantic) (Sánchez Goñi et al., 2018). In 

addition, high temporal resolution records from the Iberian margin show that 

vegetation/climate response to HS is even more complex, marked by two or three phases 

(Fletcher and Sanchez Goñi, 2008; Naughton et al., 2007; Naughton et al., 2009; Naughton et 

al., 2016). In particular the last HS (HS1) (Oldest Dryas on the continent, Naughton et al., 

2007) is marked by three synchronous main phases in regions directly influenced by the North 

Atlantic: a first phase with extremely cold/relatively wet conditions, a second phase 

characterized by cool/dry conditions, and a last phase with relatively warmer/increasing 

moisture availability. Both the Atlantic Meridional Oceanic Circulation slowdown and 

changes in the strength and position of North Atlantic westerlies could explain the 

temperature and moisture variability within HS 1 in western Iberia (Naughton et al., 2009; 

Naughton et al., 2016). 

In North America, vegetation responded rapidly also to millennial-scale variability but the 

absolute phasing of this response to Greenland atmospheric surface temperatures remains 

uncertain. Altitudinal movements of climate-sensitive plant species occurred in the western 

part characterised by more mountainous regions while the southeast showed latitudinal shifts 

in vegetation (Jimenez-Moreno et al., 2010). The YD signature is spatially variable. It is 

clearly marked by a cold reversal in pollen records from the northwest and northeastern North 

America(Peteet, 1995; Shuman et al., 2002b; Whitlock and Brunelle, 2007). Toward the 

continental interior, in the Midwest, pollen records do not display vegetation reversal during 

the YD but distinct plant associations from earlier and later time periods suggesting warmer 

than before summers and colder than before winters. This vegetation patterns is likely related 

to the unique combination of forcings (Shuman et al., 2002a). In contrast, warmer and wetter 

conditions during the YD and the HS are recorded in Florida at Lake Tulane (Grimm, 2006). 
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The YD atypical warming is even detected up to the Virginia Appalachians, at Browns Pond, 

although at the same latitude, the Chesapeake Bay pollen record indicates cooler and drier 

conditions close to the coast (Kneller and Peteet, 1999; Willard, 2013). 

Tropical Africa and South America present few high resolution records covering the full 

glacial period. The compilation of Hessler et al. (2010a) based on about 16 pollen records 

showed that the vegetation signature of HS and GI can be opposite between the northern and 

southern parts of the region influenced by the ITCZ. The ITCZ influence is particularly well 

evidenced in northeastern Brazil where rainforest development during the HS 1 is related to 

its southward shift (Ledru et al., 2006). Furthermore, concomitant lowland vegetation changes 

between this region and western Patagonia reveal that the ITCZ and the southern westerlies 

shifted together through an atmospheric teleconnection regulated by the Atlantic meridional 

oceanic circulation variations (Montade et al., 2015). The recent study of Urrego et al. (2016) 

identified rapid responses of the tropical vegetation to millennial-scale climate variability in 

the Andean tropics. They found that Andean forest migrations as far as 16.5° south of the 

Equator displayed millennial-scale climate oscillations closely linked to the Greenland ice 

core (Wolff et al., 2010) and North-Atlantic records (Martrat et al., 2007). The signature of 

HS and the Younger Dryas were generally recorded as downslope migrations of Andean 

forest and likely linked to air temperature cooling. The GI-1 signal is overall comparable 

between northern and southern records and indicates upslope Andean forest migrations and 

warming in the tropical Andes. Cooling during northern hemisphere stadials and warming 

during interstadials recorded by Andean vegetation was consistent with millennial-scale 

fluctuations of δ
18

O in the Sajama ice cap and Uk’37-derived sea surface temperature (SST) 

changes in the western tropical Atlantic. However, differences in amplitude between SST 

changes and forest migrations suggested a potential difference between the magnitude of 

temperature change in the ocean and the atmosphere that could be related to the thermal 
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inertia of the oceans. Together these findings suggest that the precipitation signature of 

millennial-scale events follows the predicted migration of major atmospheric systems and 

circulation cells, but the temperature signature is driven by northern hemisphere fluctuations. 

 

6.2 Fire 

 

Sixty seven sedimentary charcoal records (30 sites with better than millennial resolution) 

which have records for some part of the last glacial period were compiled to examine changes 

in global biomass burning to rapid climate changes associated with Dansgaard–Oeschger (D-

O) cycles (Daniau et al., 2010). This synthesis indicated that biomass burning increased 

during D-O warming events and decreased during intervals of cooling, including the Heinrich 

stadials. In addition, this analysis showed that biomass burning responded extremely quickly 

to rapid climate changes, within a few hundred years. At the global scale, a vegetation 

productivity forcing was speculated to explain increases (decreases) in fire during D-O 

warming (cooling) because vegetation itself responds to rapid millennial-scale changes 

(Daniau et al., 2010). At regional scales, this vegetation productivity hypothesis is clearly 

supported by a marine record documenting south-western Iberian Peninsula vegetation (Fig. 

7h, Sánchez Goñi et al., 2000b) and fire (Fig. 7g, Daniau et al., 2007). Variations in fire 

dynamics are related to changes in fuel type and quantity due to shifts between semi-desert 

vegetation during D-O stadials and Heinrich stadials and Mediterranean forest during D-O 

interstadial (Daniau et al., 2007). 

Other proxies like ammonium from Greenland ice cores also exhibit D-O cycles, with 

increases in fire in North America during GI (Fig 7e, Fischer et al., 2015). A pattern of D-O 

cycles is also observed in the Australasian region (Mooney et al., 2011). 
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The Younger Dryas (~12.9 – 11.6 thousand years ago) was the last of a series of abrupt 

deglacial climate events and its end marks the beginning of the Holocene. Charcoal records 

across North America were synthesized for the YD interval in part to address a hypothesis 

that a large comet impact caused the climate change and set of continent-wide wildfires. The 

fire synthesis from Marlon et al. (2009) provided no evidence for this, but did indicate 

widespread fire activity at both the beginning and end of the YD interval, suggesting that fire 

increases with large and rapid climate changes and associated ecosystem reorganizations. 

In the central American lowlands, fire activity increased during Greenland stadials and 

decreased during interstadials (Correa-Metrio et al., 2012) although the direction of this 

relationship is heavily dependent on record chronology. 

 

Figure 7 

 

7. Post-glacial vegetation and fire changes 

 

7.1 Europe 

 

At the beginning of the Holocene, the higher summer insolation, rising greenhouse gas levels 

and retreating residual LGM ice-sheets caused a general warming of the climate that 

encouraged the spread of early-successional trees such as birch (Betula) and pine (Pinus) 

across Europe and the arrival of other arboreal taxa from their glacial refugia. This post 

glacial development led to a rapid change in the abundance and composition of plant taxa 

(Birks and Birks, 2008; Marquer et al., 2014). The mid-Holocene represented the warmest 

period of the Holocene over higher latitudes of the northern hemisphere, and in Europe was 

characterized by the spread northward of temperate deciduous trees, e.g. hazel (Corylus), elm 
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(Ulmus), lime (Tilia), oak (Quercus) and alder (Alnus) (Birks, 1986). Over southern Europe, 

temperate deciduous vegetation also expanded during the mid-Holocene (Brewer et al., 2017; 

Collins et al., 2012; Davis et al., 2015; Prentice et al., 1996), indicative of cooler and wetter 

summers at this time over most (Davis and Brewer, 2009; Davis et al., 2003a; Hessler et al., 

2014; Huntley and Prentice, 1988; Mauri et al., 2015; Wu et al., 2007), but not all of the 

region (Samartin et al., 2017). From the mid-Holocene, the climate cooled over northern 

Europe and generally warmed over southern Europe, following a decline in summer insolation 

(Imbrie et al., 1992) and weakening of the Earth’s latitudinal temperature and insolation 

gradient (Davis and Brewer, 2009). In the circum-Mediterranean lands, forest expansion was 

not limited by distance to glacial refugia and where moisture levels permitted, forests 

developed rapidly in the early Holocene, or indeed had already developed during the Late 

Glacial (e.g. Allen et al., 2002; Fletcher and Sanchez Goñi, 2008). In drier settings, including 

Mediterranean North Africa, steppic, scrub and open woodland landscapes often persisted into 

the Early Holocene (Campbell et al., 2017), delaying the maximum development of mixed 

Mediterranean and temperate forest cover until the later Early Holocene and Mid-Holocene. 

During the Mid-Holocene (typically from ca. 5 ka), forests declined in the Western 

Mediterranean associated with a gradual aridification trend (Carrión et al., 2010; Chabaud et 

al., 2014; Fletcher and Sanchez Goñi, 2008), while in the central Mediterranean 

compositional changes including increase in Mediterranean elements is recorded (Allen et al., 

2002; Desprat et al., 2013). 

The development of pollen records at high sampling resolution, with strong dating control and 

often in a multiproxy investigative framework has also yielded a major contribution to the 

understanding of Holocene vegetation responses to climate on short timescales. Pollen records 

have played an important role in evaluating the speed of ecosystem response to global climate 

change at the onset of the Holocene. They reveal that vegetation responses to major climatic 
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perturbation initiated within a few decades, on timescales similar to those observed in fast-

reacting tracers such as the Greenland ice cores (Birks and Ammann, 2000). High-resolution 

pollen records also reveal vegetation responses to rapid climate changes during the Holocene. 

The 8.2 ka abrupt cooling event has been widely detected (see for example Ghilardi and 

O’Connell, 2013; Pross et al., 2009; Tinner and Lotter, 2001). Numerous pollen records also 

reveal that the 8.2 ka event is not unique, but rather one of several recurrent Holocene cooling 

events which impacted on vegetation development. For example, the Western Mediterranean 

pollen records reveal multiple early Holocene climatic perturbations, as well as pervasive 

variability associated with the North Atlantic Bond Events (Burjachs et al., 2016; Pèlachs et 

al., 2011; Pérez-Sanz et al., 2013; Ramos-Román et al., 2018). More widely, especially 

sensitive dynamics can be observed at ecological margins, and pollen records are valuable for 

reconstructing climate impacts at mountain timberlines (Feurdean et al., 2016; Haas et al., 

1998). At the sub-continental spatial scale, pollen records furthermore support the 

identification of oscillating behaviour in atmospheric circulation systems, thus contributing to 

the understanding of past dynamics of important modes of variability such as the North 

Atlantic Oscillation (Di Rita et al., 2018; Fletcher et al., 2013). Against the wealth of pollen 

evidence for sensitive and rapid vegetation response to Holocene climate variability can also 

be set important examples of resilience and inertia (Aranbarri et al., 2014) which can 

ultimately help to refine the understanding of the vegetation-climate interactions at the 

regional to global scale. 

Pollen-based land cover reconstructions (REVEALS approach) show a decline in forest cover 

from ca. 6 cal kyr BP in temperate and northern Europe, while arable land indicators (such as 

cereals) become recurrent through time (e.g. Fyfe et al., 2015; Marquer et al., 2017; Marquer 

et al., 2014; Roberts et al., 2018) (Fig. 8). This landscape openness at a sub-continental scale 

is caused by intense Neolithic land clearance for agriculture practices. The impact of land-use 
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is gradually increasing from the early farming (ca. 7.4 cal ka BP in Central Germany, 

Shennan et al., 2013) to the last century. During the second half of the Holocene, human 

pressure increases and results in a spread of arable land, pastures and intensification of 

deforestation in most of Europe (e.g. Fyfe et al., 2015; Marquer et al., 2017; Ruddiman et al., 

2016; Zanon et al., 2018). Land use is then regarded as the primary driver of this decline in 

forest cover although the role of climate should not be dismissed (Marquer et al., 2017). 

Identifying the relative role of climatic and anthropogenic forcing of vegetation changes on 

different temporal and spatial scales is actually a great challenge based on pollen data 

(Kuosmanen et al., 2018; Marquer et al., 2018; Marquer et al., 2017; Reitalu et al., 2013). The 

major anthropogenic impacts occur during the last century, although vegetation still remains 

climatically sensitive (Marquer et al., 2017). In addition, pollen-based REVEALS modelling 

(Marquer et al., 2014) indicates an underestimation of grassland cover and later timing of 

landscape openness during the Bronze Age in temperate and northern Europe compared to the 

use of untransformed pollen data (pollen proportion). Deforestation was therefore more 

important and started earlier than previously thought. The use of the REVEALS model also 

provides a deeper understanding of the vegetation rate of changes and the changes in 

vegetation composition and diversity over time and space. 

 

Figure 8 

 

Over the past 30 years, charcoal-based palaeofire studies have largely developed in Europe 

because of raising awareness about the importance of fire as both a tool for human-driven 

landscape transformation and a major ecological factor closely linked to climate and 

vegetation. This research provided crucial methodological advances like the calibration of the 

sedimentary charcoal records (Adolf et al., 2018a; Tinner et al., 1998; Tinner et al., 2006), but 
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above all a more comprehensive understanding of human-driven fires imprints on forested 

ecosystems (Tinner et al., 2005), of the mechanisms causing the decline of certain key species 

(Morales-Molino et al., 2017b; Tinner et al., 1999), and of the connections between climate 

variability and fire regimes in previously assumed low flammability temperate areas (Clark et 

al., 1989). 

Charcoal-based studies have made a major contribution to the assessment of the chronology 

and relevance of fire use as a landscape management tool. The first evidence of forest 

clearance by fire is usually related to the timing of agriculture arrival to the different 

European regions: e.g. ca. 8 cal kyr BP at the Mesolithic-Neolithic transition in Italy 

(Vannière et al., 2008), 6.5 cal kyr BP in southwestern France (Rius et al., 2009), 5.7 cal kyr 

BP in southern Germany (Clark et al., 1989) and ca. 4 cal kyr BP in southern Sweden (Olsson 

et al., 2010). Significant vegetation changes such as the decline of several keystone tree 

species like holm oak (Quercus ilex) (Colombaroli et al 2009) and silver fir (Abies alba) in 

the southern Alps and Tuscany were attributed to the early human use of fire (Colombaroli et 

al., 2007; Henne et al., 2013; Tinner et al., 1999). Climate remains however the main driver of 

fire regimes at regional to continental scales until the last millennia (Marlon et al., 2013). For 

instance, increased fire activity between 11.7 and 6 cal kyr BP was related to stronger boreal 

summer insolation and/or summer drought (Power et al., 2008) while the decreasing fire 

activity/frequency recorded since the mid-Holocene is attributed to decreasing seasonality 

and/or wetter summers (Rius et al., 2011; Vannière et al., 2011). The role of fire, of either 

anthropogenic or natural origin, in the expansion of some emblematic tree species such as 

Fagus sylvatica (e.g. Giesecke et al., 2007; Tinner and Lotter, 2006; Valsecchi et al., 2008), 

on forest composition (Carrión, 2002; Carrión et al., 2003; Gil-Romera et al., 2010), and on 

the historical vegetation dynamics of currently protected areas (Morales-Molino et al., 2017a; 

Morales-Molino et al., 2017b) remains matter of debate. 
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The palaeofire research has made available a large dataset of individual charcoal and fire 

frequency records that has enabled a more comprehensive assessment of fire-vegetation-

climate-human activities linkages at the continental scale. Recently, a synthesis of around 20 

high-resolution charcoal records from Portugal to Romania (Vannière et al., 2016) highlighted 

that European fire regimes strongly depend on elevation, which underlines the crucial role of 

vegetation productivity (biomass availability) of temperate and Mediterranean biomes on fire 

activity at millennial timescales. This work also showed that fire frequency peaked at ca. 7-6 

cal kyr BP at the European scale, and remained stable at high level from 4 kyr BP onwards, 

while burned biomass followed an inverse pattern. The decrease in southern European 

biomass burning since 7 ka is in line with both orbitally-induced climate cooling and 

reduction in biomass availability because of land use. 

 

7.2 North America 

 

Due to a long history in palynological research in North America, more than 1 300 pollen 

sequences are included in the Neotoma paleoecology database (Williams et al., 2018) 

covering entirely or part of the last 20 kyr, although most of them only contain the Holocene 

period. Several state of the art papers aim at retracing the North American postglacial 

vegetation history, such as Gavin and Hu (2013), Wigand (2013), Whitlock and Brunelle 

(2007) and Whitlock (1992) for the western part of the sub-continent, Williams and Shuman 

(2013), Willard (2013), Grimm and Jacobson Jr (2004), Webb et al. (2003), Davis (2015), 

Davis (1984), Naughton et al. (2015) and Blarquez and Aleman (2016) for the eastern part 

and Bigelow (2013) for regions above 60°N. In North America, the deglacial warming (19-11 

ka) along with the retreat North American ice-sheets resulted in large range shifts of terrestrial 

ecosystems. Pollen records reveal a northward and east-west expansion of arboreal taxa in NE 
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North America. For instance, northern pines and spruce began their northward migration 

while mesic and cool-temperate deciduous tree taxa expanded in the southeastern United 

States after 17 cal ka BP (Willard, 2013). These cold-tolerant conifers expanded with Betula 

and Alnus in regions formerly occupied by the Laurentide ice-sheet in the NE North America 

while Pinus, Artemisia and Ambrosia migrated eastward. In the northwestern, high-elevation 

mesophytic forest taxa expanded to the west of the Cascade Range and Sub-Alpine parkland 

to the east when warmth and humidity increased and the Cordilleran ice-sheet retreated (at 

~16 cal ka BP), while temperate arboreal taxa only appeared at ~14.5 cal ka BP associated 

with Sub-Alpine species (Whitlock and Brunelle, 2007). This plant association no longer 

exists today in North America. No-analog pollen assemblages characterized by high 

abundances of the conifers Picea and Larix, the hardwoods Ulmus, Ostrya/ Carpinus, 

Fraxinus and Quercus, and sedges are widely recorded in the Midwest during the late glacial 

(17-12 ka BP). This unusual taxa combination is known as mixed parkland or spruce parkland 

resulting from the individualistic plant response to the no-analog climate conditions 

characterizing the last deglaciation and helped, at least in some areas, by megafaunal 

population decline (Jackson and Overpeck, 2000; Williams and Shuman, 2013; Williams et 

al., 2001). 

In eastern North America, the pollen records reveal vegetation shifts in response to the 

Younger Dryas-Holocene transition warming. Quercus became the dominant forest element in 

the oak-pine association developing in the southeast due to warmer but persistent dry 

conditions while in the northeast, white pine, oak and hemlock expanded in areas formerly 

occupied by cold-tolerant taxa in response to increased warmth and moisture availability (e.g. 

Naughton et al., 2015; Willard, 2013). In the northeast, temperature and humidity continues to 

increase in the northern areas to reach a maximum during the Mid-Holocene as suggested by 

the expansion of pine in New England and oak with some mesic tree taxa toward the south 
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during the Early Holocene followed by hemlock (Tsuga) and beech (Fagus) during the Mid-

Holocene (Naughton et al., 2015; Williams and Shuman, 2013). In the southeast, the increase 

in humidity only occurred in the Mid-Holocene as indicated by the widespread oak-dominated 

forest decline and pine expansion. Pollen based reconstructions support stronger than present 

annual precipitation at 6 ka for most of the eastern North America (Bartlein et al., 2011). The 

Mid-Holocene wet conditions were interrupted a few millennia later, which resulted in the 

replacement of pine by oak in the south and likely the well-known hemlock sudden decline 

widely recorded at 5.5 ka in the northeastern North America, although a pest outbreak cannot 

be discarded (Williams and Shuman, 2013 and references therein). Eastern North American 

pollen records indicate that dry conditions persisted into the Late Holocene. The Late 

Holocene increased humidity suggested by vegetation changes in Northeast North America 

(e.g. Naughton et al., 2015) is supported by tree ring, varve thickness and lake level data 

(Marlon et al., 2017). A cooling trend in this region over the last 2.5 millennia is also shown 

by pollen-based summer and annual temperature reconstructions (Marlon et al., 2017 and 

reference therein). Noticeable human impact on vegetation began with the European 

colonization 500 years ago, through land clearance practices as shown the large reduction in 

tree cover and expansion of Ambrosia recorded in eastern North America.  

In the western North America, the Holocene vegetation changes present a complex pattern 

due to the heterogeneity of landscape and climatic influences. A main feature revealed by 

pollen records is that Early Holocene contrasting hydrological changes between the northern 

and southern regions. Drier (and warmer) than present summers are recorded in the Pacific 

Northwest to southeastern Alaska and over much of the Northern Rocky Mountains and 

wetter than present conditions in the American Southwest and the summer-wet regions of the 

Rocky Mountains in response to stronger summer monsoons (Whitlock and Brunelle, 2007). 

In the Great Basin, drought-tolerant shrub communities established in the Early Holocene 
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associated to drier conditions than today (Jimenez-Moreno et al., 2010; Wigand, 2013). 

Pollen-based quantitative reconstructions show lower temperatures at 6 ka than at present and 

the anomaly also appears stronger in the southwest likely related to the cloud cover generated 

by the monsoonal circulation (Bartlein et al., 2011). From the middle to late Holocene, 

western North American pollen records indicate cooler conditions along with increased 

humidity in the north and dryness in the south likely related to a weakening of the summer 

monsoon (Whitlock and Brunelle, 2007). 

The North American vegetation also responded to higher frequency climatic changes during 

the Holocene. For instance, the 8.2 ka abrupt cooling event is clearly detected in NE pollen 

North America (Shuman et al., 2002a). Pollen based temperatures reconstructions show 

warmer conditions during the Medieval Climate Anomaly than during the Little Ice Age 

across North America (Viau et al., 2012). Even though differences are subtle, both events are 

also detected in other proxy-derived reconstructions (Marlon et al., 2017). 

Reconstructions of biomass burning from charcoal-based syntheses in four broad regions of 

North America are generally marked by a gradual and persistent increase in biomass burning 

during the Holocene except for the northeastern boreal forest (Blarquez et al., 2015). There 

were large deviations from this general trend in the early Holocene, however, with millennial-

scale intervals of high fire activity that often started and ended very abruptly (Marlon et al., 

2013). For example, in the northwestern boreal forests, there was relatively high fire activity 

from 12-10 ka, and in the northeast, there was widespread, intensive fire activity from about 

10-8 ka as compared with later intervals. In contrast, fire activity was very low in the west at 

the same time as compared with late-Holocene fire activity. All regions showed gradual 

increases during the middle Holocene up to 2 ka. Only the continental interior grasslands and 

woodlands show maximum Holocene burning at 4 ka and subsequently declined. 

Anthropogenic effects on fire are obvious in the biomass burning records during the past 
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century, but the 4-ka peak in burning in the central region likely reflects anthropogenic 

activity as well. 

 

7.3 South America 

 

Evidence of Holocene environmental change from tropical South America showed that the 

continent was impacted by significant changes in precipitation and intensified human 

occupation (Prado et al., 2013; Smith and Mayle, 2018; Urrego et al., 2009). A mid-Holocene 

drought (MHD) is recorded in the Andes, the savannas and Amazonia (Baker et al., 2001; 

Berrío et al., 2002; Bush et al., 2007; Mayle et al., 2000; Paduano et al., 2003; Rowe et al., 

2002; Urrego et al., 2013b) and had a significant impact in the climate and fire regimes of the 

region. Multiple records indicate lowering of lake levels and reductions in sediment 

accumulation or sedimentary hiatuses (Bush et al., 2007). However, mesic forest prevailed 

around sites located in the core of Amazonia and the eastern flank of the Andes (e.g. Bush et 

al., 2007; Urrego et al., 2010; Urrego et al., 2013a) while savanna vegetation and dry forest 

expanded in seasonal parts of South America or nearby ecotones (e.g. Berrio et al., 2002; 

Berrío et al., 2002; Mayle et al., 2000). The MHD is also reported in subtropical South 

America by palaeodata syntheses predominantly based on pollen records (Prado et al., 2013; 

Smith and Mayle, 2018). In particular, the replacement of wet forests by shrubs and 

grasslands are frequently observed in southeastern Brazil during the mid-Holocene (e.g. 

Behling and Safford, 2010). Only in Northeast Brazil an opposite trend is evidenced, with 

more humid conditions during the mid-Holocene than during the late Holocene (Smith and 

Mayle, 2018). Precipitation generally increased during the late Holocene and multiple studies 

have revealed the interplay between changing climate conditions and human occupation. 
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Southward, in temperate regions, records of past vegetation mainly from western Patagonia 

generally begin after the retreat of the Patagonian Ice Sheet fully extended over the lands 

during the Last Glacial Maximum (Abarzúa et al., 2004; Bennett et al., 2000; Fontana and 

Bennett, 2012; Haberle and Bennett, 2004; Heusser, 1995; Markgraf and Huber, 2010; 

Moreno et al., 1999; Villa-Martínez and Moreno, 2007). At these southern latitudes, 

vegetation changes followed the same climate trends evidenced by Antarctic ice core records. 

In particular, the development of Nothofagus forest during the warming of the last 

deglaciation is interrupted by a cold and wet event contemporaneous with the Atlantic Cold 

Reversal before to reach Holocene climate conditions (Montade, 2011; Moreno and Videla, 

2016). Starting from ca. 11.5 ka, the early Holocene is marked by a development of 

thermophilous tree taxa characterizing a warm and dry phase in northwest Patagonia 

(Montade et al., 2012; Moreno, 2004). A subsequent expansion of the cold-resistant conifers 

from 7.5 ka indicate more variable climate conditions superimposed on a cooling trend 

associated with an increase in precipitation during the mid-Holocene that has persisted until 

the present (Henríquez et al., 2015). Further south, in southwest Patagonia (>50°S), the forest-

steppe ecotone shifts in lowlands show also a precipitation decrease during the early Holocene 

followed by a precipitation increase (Fletcher and Moreno, 2011; Moreno et al., 2010). This 

pattern suggests a co-variability of moisture changes through western Patagonia related to 

reduced intensity of the southern westerlies during the early Holocene and a sustained 

increase afterward. However several palaeoenvironmental records from southwestern 

Patagonia indicate a different pattern characterized by wetter/windier conditions at the 

beginning of the Holocene followed by intermediate conditions to reduced precipitation from 

the mid- to late Holocene (Kilian and Lamy, 2012; Lamy et al., 2010). Resolving these 

inconsistencies in southwest Patagonia still needs more high-resolution records of past 

vegetation and climate dynamics. 
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Synthesis of fire records in South America since the LGM (Power et al., 2010a) shows that 

fire regimes increased during the late glacial and towards the Holocene. Such an increase in 

continental-scale fire activity was linked to precipitation seasonality and suggests that fires 

were mostly likely natural (Power et al., 2010a). However, precipitation seasonality explains 

only part of the observed variability highlighting the importance of taking fuel availability 

into account.  

The MHD also had a significant impact in fire regimes in tropical South America. Urrego et 

al. (2013a) compiled fire records from forest, savanna and ecotone sites in western Amazonia. 

This regional synthesis showed increased fire activity in forest sites at around 9, 6 and 3 ka 

(Urrego et al., 2013a). The 6-ka fire peak seems the most consistent amongst sites and largely 

coincides with the MHD. Regional drought during mid-Holocene resulted in increased fire 

activity in sites where fuel was available. Increased fire activity was also observed in savanna 

sites during the late Holocene and was probably associated with human occupation (Maezumi 

et al., 2018; Urrego et al., 2013a; Watling et al., 2017). Finally, multiple fire records in 

lowland Amazonia consistently show a signal of fire suppression around 1500 AD when pre-

columbian populations decreased due to the arrival of European colonizers (Burbridge et al., 

2004; Bush et al., 2000; Bush et al., 2007; Mourguiart and Ledru, 2003; Urrego et al., 2013a).  

 

7.3 Central and West Africa 

 

The distribution of current forests and savannas in West and Central Africa is thought to be 

the legacy of the long-term history of climate and human impacts. Indeed, palaeo-

environmental reconstructions suggest that West and Central African forests have experienced 

a succession of contraction and extension (Maley, 1991; Vincens et al., 1999) in response to 

dry and humid periods since the Last Glacial Maximum (LGM, ~21 cal ka BP).  
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The LGM was a period of very low precipitation and temperature (Maley, 1991; Shanahan et 

al., 2016), and some studies suggest that during this period tropical forests were reduced to 

only few refugia in Central Africa (Maley, 1991; 1996). After the Younger Dryas (from ~12.9 

to ~11.7 ka BP), which was a short but intense dry period (Shanahan et al., 2016), rainfall 

started to increase at the beginning of the Holocene. During this period, also known as the 

African Humid Period (deMenocal et al., 2000; Shanahan et al., 2015), rainfall was apparently 

higher than present-day. The tropical forest was more widespread across West and Central 

Africa than it currently is. Pollen data suggest that tropical forest was present in the Adamawa 

Plateau of Cameroon (Lézine et al., 2013; Vincens et al., 2010) and the Niari Valley of the 

Republic of Congo (Vincens et al., 1994; Vincens et al., 1998). The African Humid Period 

ended abruptly ~4 ka BP, but sequentially in latitude (Shanahan et al., 2015), with a period of 

reduced precipitation and major droughts that lasted until 1.2 ka BP (Vincens et al., 1999). 

This period, called the ‘third millennium rainforest crisis’, is divided into two major phases 

(Maley, 2002; Maley et al., 2018; Vincens et al., 1999). The first phase (~4 ka BP) is 

associated with an abrupt decrease in rainfall (Maley et al., 2018), that impacted areas in 

periphery of the Congo Basin and was responsible for the opening of coastal savannas in 

Central Africa (Elenga et al., 1994; Ngomanda et al., 2005) and of the Dahomey Gap in West 

Africa (Salzmann and Hoelzmann, 2005). During the same period, savanna vegetation was 

also heavily modified, with gradual (during the AHP termination) and abrupt (3 ka BP crisis) 

floristic shifts from Guinean to Sudan-Guinean savanna (Salzmann et al., 2002). 

The second phase was short and abrupt, between 2.5 and 2 ka BP, and showed strong climate 

seasonality as suggested by sea surface temperature reconstructions and geological limestone 

zones (Maley et al., 2018). Vegetation reconstructions from pollen data showed increasing 

abundance of pioneer and secondary forest trees, and grasses (Vincens et al., 1999) suggesting 

that during this period, forests were highly disturbed. Some authors suggested the opening of 
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a north-south savanna corridor in the Sangha River Interval (Maley and Willis, 2010) which 

would have permitted the migration of Bantu-speaking people, but the existence of this 

corridor is not supported by recent phytolith records in the region (Bremond et al., 2017). 

Interestingly, the relative role of climate and people in the third millennium crisis has been 

debated in the literature. Some authors tend to affirm that the Bantu migrations actively 

participated in the large scale forest disturbance (Bayon et al., 2012; Garcin et al., 2018) while 

others favor the climate hypothesis (Giresse et al., 2018; Lézine et al., 2013; Maley et al., 

2012; Neumann et al., 2012b). This debate is not yet resolved, but it seems that the migration 

of Bantu people from the border of Cameroon and Nigeria, where they originated, was 

concomitant with this abrupt climate change (Maley et al., 2018). Moreover, Bantu people 

were agriculturalists and metallurgists (Bostoen et al., 2015), able to use slash-and-burn and 

needing large quantities of wood for metallurgy. They were farming pearl millet (Neumann et 

al., 2012a) and cattle (Grollemund et al., 2015) within the present-day tropical rainforest of 

western and central Africa. Even if they were not responsible for this large scale event, they 

may have caused more localized perturbations in the forest through canopy opening and wood 

collection (Neumann et al., 2012a; van Gemerden et al., 2003). Additionally, with or without 

the presence of people, even in the deepest part of the forest, charcoal were found in lakes, 

wetlands and soils, suggesting extended forest burning (Biwolé et al., 2015; Hubau et al., 

2015; Morin-Rivat et al., 2016; Tovar et al., 2014). An increase in the occurrence of charcoal 

is registered when seasonality increased drastically ~2.5 ka BP (Hubau et al., 2015), with a 

possible role of people in maintaining newly formed savannas in peripheral areas of the 

Congo forest (Neumann et al., 2012a). After 1.2 ka BP, rainfall started to increase again, and 

forest expanded. This trend of forest transgression is still observed today in some areas 

(Aleman et al., 2018b; Guillet et al., 2001; Youta Happi, 1998). 
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6. Conclusion and perspectives 

 

Terrestrial plant-derived microfossils -- pollen, microcharcoal and phytoliths -- have been 

analysed in both terrestrial and marine sedimentary archives for several decades and 

contributed to the current knowledge of past changes in vegetation and fire dynamics, 

Quaternary palaeoclimates and palaeoecology. While the study of pollen is considered to be a 

“classic” tool in this respect, interest in microcharcoal and phytolith represents a more recent 

area of growth. 

Several different techniques are employed to extract microfossils because of the diversity of 

Quaternary sedimentary contexts, but the main objective is to concentrate microfossils for 

microscopic observations. Identification and counting of pollen, microcharcoal and phytoliths 

require specialist expertise. Terrestrial plant microfossil data from sedimentary archives are 

time-consuming to generate but are rich in information on past local to sub-regional 

paleoenvironments. It is important therefore to continue improving the identification and 

interpretation of these microfossils and to keep training the next generation of scientists. 

The datasets generated also need to be carefully archived and should benefit from long term 

storage. Over the past 15 years, the growing wealth of plant microfossil data, the 

establishment of data sharing protocols in the scientific community and the development of 

large (continental to global) datasets, and the development of new analytical approaches have 

provided the opportunity to tackle new scientific questions. Key topics at regional and global 

scales include the response of vegetation and fire to climate change, as well as feedback 

mechanisms related to both vegetation, such as the vegetation-(snow)-albedo feedback, and 

fire, such as fire feedback on the carbon cycle and on albedo. Those databases are also key for 

developing data-model comparison exercises and evaluating modeling results of past climate, 
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vegetation and fire. Finally, they are also essential for applying lessons from the past to 

respond to current biodiversity, conservation and management issues. 

This review highlights strong regional variability in the response of past vegetation and fire to 

Pleistocene climate changes. The different studies synthesized here nevertheless suggest 

similar patterns: vegetation and fire respond to orbital, millennial and sub-millennial climate 

changes; and their response may be rapid, within a few hundred years. This review also 

highlights that climate is the major driver of vegetation and fire regimes since at least the 

Middle Pleistocene. Human activities impacted on vegetation and fire at local scale mainly 

since the mid-Holocene and most significantly during recent millennia.  

Although terrestrial plant microfossils are well-established tools in Quaternary science, the 

full extent of the information they contain remains to be exploited. Further calibration studies 

are needed, e.g. coupling microfossil accumulation in sediments with remotely sensed 

vegetation and fire. In addition, it is important to keep improving the taxonomic resolution of 

these plant microfossils. For instance, morphometric analyses of pollen grains coupled with 

statistical classification methods can in some cases provide greater taxonomic detail within 

visually similar groups, e.g. Pinus (Desprat et al., 2015; Lindbladh et al., 2002). 

Morphological analyses of microcharcoal may bring also important new information for the 

determination of burnt vegetation type although is not yet a widely used technique 

(Hawthorne et al., 2018). Recent studies employing techniques from organic geochemistry 

also highlight how the chemical composition of the preserved pollen wall may yield valuable 

insights into taxonomy and/or environmental conditions during pollen formation such as past 

solar radiation (e.g. Bell et al., 2017; Julier et al., 2016; Willis et al., 2011). In sum, the 

prospects are great for exciting new insights from the study of terrestrial plant microfossils to 

the understanding of Quaternary environmental and climatic change.  
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Figure captions 

 

Figure 1: Reconstructing vegetation and fire using plant microfossils (pollen, phytoliths and 

microcharcoal) (modified from Patterson et al. (1987)). 

 

Figure 2 : Examples of classical fossil pollen grains and spores presented by grain 

arrangement and pollen apertural type. (a. Pinus; (b) Ericaceae, (c) Cereal type; (d) Poaceae; 

(e) Carpinus betulus; (f) Betula; (g) Amaranthaceae; (h) Cyperaceae; (i) Aspodelus; (j) 

Scabiosa; (k) Acer; (l) Quercus deciduous type; (m) Erodium; (n) Olea; (o) Brassicaceae; (p) 

Aster type; (q) Centaurea scabiosa type; (r) Fagus; (s) Cichorioideae; (t) Ephedra distachya 

type; (u) Ephedra fragilis type; Spores: (v) Isoetes, (w) Polypodium vulgare type. 

 

Figure 3: Examples of microcharcoal preserved in marine deep-sea core sediments. (a) core 

MD95-2042 (Daniau et al., 2007); (b) IOPD Site U1385 (Daniau, work in progress); (c) core 

MD04-2845 (Daniau et al., 2009); (d) core MD96-2098 (Daniau et al., 2013). 
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Figure 4: Examples of classical phytoliths grouped into five large categories. (a-i) Grass silica 

short cells; (i) Bulliform cells; (j-l) Woody dicotyledon; (m-o) Family-specific families 

morphotypes; (p) Non-diagnostic morphotypes. 

 

Figure 5: Location of the terrestrial and marine pollen and microcharcoal records presented in 

Fig. 6 and 7. 1- Funza (Torres et al., 2013), 2-Heqing lake (Zhisheng et al., 2011), 3-MD96-

2098 (Daniau et al., 2013), 4- Tenaghi Philippon (Tzedakis et al., 2006), 5-MD95-2042 

(Chabaud et al., 2014; Daniau et al., 2007; Sánchez Goñi et al., 2000a; Sánchez Goñi et al., 

2008). The background map represents the present-day potential vegetation after 

(Levavasseur et al., 2012). 

 

Figure 6: Response of vegetation to orbital variability. (a) summer insolation at 65°N from 

Laskar et al. (2004), (b) atmospheric CO2 EPICA Dome C (Bereiter et al., 2015; Monnin et 

al., 2001; Petit et al., 1999; Siegenthaler et al., 2005), (c) Antarctic air temperature from 

EPICA-Dome C (Jouzel et al., 2007), (d) LR04 benthic δ
18

O (Lisiecki and Raymo, 2005), (e) 

arboreal pollen percentages data from Tenaghi Philippon record (Tzedakis et al., 2006), (f) 

arboreal pollen from Funza sequence (Torres et al., 2013), (g) Tsuga pollen percentages from 

Heqing lake record (Zhisheng et al., 2011). The grey dashed bar indicates the position of the 

Mid-Brunhes Event (MBE). 

 

Figure 7: Response of fire and vegetation to orbital and millennial variability. (a) Antarctic air 

temperature (Jouzel et al., 2007), (b) summer insolation at 25°S (Berger, 1978), (c) biomass 

burning from southern Africa (microcharcoal record from core MD96-2098) (Daniau et al., 

2013), (d) biomass burning (z-score of transformed charcoal, about 700 sites) (Daniau et al., 

2012), (e) fire peak frequency from Greenland ice core (Fischer et al., 2015), (f) Greenland air 

temperature from NGRIP ice record (Landais et al., 2004; data compiled in Sánchez Goñi et 
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al., 2008), (g) biomass burning from southwestern Iberia (microcharcoal MD95-2042 record) 

(Daniau et al., 2007), (h) Mediterranean forest (pollen percentages from core MD95-2042) 

from southwestern Iberia (Chabaud et al., 2014; Sánchez Goñi et al., 2000a; Sánchez Goñi et 

al., 2008). 

 

Figure 8: Example of pollen-based modelling land cover reconstruction for Central Europe 

(Marquer et al., 2014). 
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