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1 Introduction

The first milestone in modern single-period portfolio selection theory is undoubt-
edly Harry Markowitz’s 1952 seminal paper [101] (for an historic perspective,
see also [122] and surveys [142, 35, 53]), in which the mean-variance portfo-
lio optimization model was proposed for the first time. Although several ideas
and results are already introduced by de Finetti [42] (see [5] for the English
translation of the first chapter “The problem in a single accounting period”),
the of the Italian mathematician was discovered only recently by the finan-
cial international community (see [124, 123, 119]) and was acknowledged by
Harry Markowitz himself [103]. The mean-variance approach is based on the
fundamental observation that, according to what Markowitz states in [101], the
investors should try to increase their portfolio return and contemporaneously to
decrease, as much as possible, its volatility or its risk (see also [102, 106]). As
pointed out by Markowitz in [105, 104], the previous assumptions are sufficient,
but not necessary conditions. However, might be unrealistic: the probability
distribution for expected returns is generally leptokurtic [109].

The resulting mathematical program , but it can be enriched with vari-
ous constraints to model the different characteristics of the modern financial
markets. Moreover, the mean-variance approach considers only the first- and
second-order moments of probability distribution of returns: consequently, in
specific situations, this approach might lead to counterintuitive or even para-
doxical solutions [36].

Kallberg and Ziemba [84] compare the effects of different utility functions
with respect to optimal portfolios , and show empirically that utility functions
with similar absolute risk aversion indices – defined by Arrow [3] and Pratt
[118], but originally introduced by de Finetti [43] (see also [27, 112]) – give rise
to similar optimal portfolios.

The reminder of the paper is organized as follows. In the next Section we give
the mathematical formulation of the portfolio problem according to Markowitz

1LIX CNRS (UMR7161), École Polytechnique, F-91128 Palaiseau, France. email: mencar-
elli@lix.polytechnique.fr
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[101] and we discuss its main drawbacks. . Section 6 describes several equivalent
mathematical reformulations for the . In Section 7 we survey exact methods,
proposed in literature, to solve mean-variance portfolio problems. Conclusions
are finally drawn in Section 8. A summary of the main notation used throughout
the paper is reported in the appendix.

2 Portfolio optimization

We consider r possibly risky assets characterized by a mean return vector µ ∈
Rr. Let x ∈ Rr

+ be the vector whose generic entry represents the fraction of
the portfolio value invested in asset j (j = 1, . . . , r). For the moment, following
Markowitz [101], we assume that the entries of µ and of the covariance return
matrix Σ ∈ Rr×r . In mean-variance approach, we aim to minimize the portfolio
variance xT Σx under the constraint that the portfolio return is at least equal
to a given level R > 0:

min xT Σx (1a)

s.t. µTx ≥ R (1b)

eTx = 1 (1c)

x ≥ 0, (1d)

where e ∈ Rr is the all-one vector. Then, by repeatedly solving problem (1) for
different values of return R, we can compute the efficient frontier, i.e., the set of
the non-dominated portfolios in the sense of Pareto optimality. In several cases
(see, e.g., [22]) an additional non-risky asset with mean µ0 and zero variance
is also considered, in order to algorithmically derive the efficient frontier (see
Section 4.8). Several papers (see, e.g., [40]) consider an equality version for the
return constraint (1b), namely µTx = R.

Constraint (1c) ensures that the whole is invested in the portfolio Con-
straint (1d) short selling, i.e., the possibility for the investor to sell financial
assets in his/her portfolio. This financial operation is generally performed with
speculative intents when the investor expects a bearish trend in the financial .
In case short selling is allowed, (1c) can be replaced by the constraint eTx = 0,
which defines the so-called dollar neutral portfolio, by requiring the exposure on
long part of the portfolio the one on the short part. Several authors consider
the decision variables x represent the absolute amount invested per asset so that
the inequality (1c) becomes eTx ≤ B, where B is the investor’s .

In [25], Buchheim et al. introduce the budget constraint:

vTx ≤ B, (2)

where the decision variables x are the units of financial asset held in the in-
vestor’s portfolio and is the vector of the costs per unit of corresponding asset.

Problem (1) is a convex continuous linearly constrained quadratic program,
because, by definition, matrix Σ is symmetric and positive semidefinite; hence,
we have a computationally tractable problem. However, the main drawback of
this model consists in the sensitivity of the optimal solutions with respect to
(expected returns and covariance matrix), which are clearly unknown in real-
world applications . Furthermore, when Σ is estimated starting from empirical
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measurements, it might happen that semidefiniteness is not directly satisfied
and some ad-hoc procedures are required (see [39, 75, 128]).

Chopra [33] empirically analyzes the effects of slight differences in the esti-
mate. Best and Grauer [15] conduct a analysis with computational results about
the sensitivity of mean-variance efficient portfolios changes in asset means. the
instability and of problem (1): for instance, Kallberg and Ziemba [85] consider
estimation errors in the investor’s utility function and the mean vector and co-
variance matrix of the for normally distributed portfolio selection problems and
observe that errors in mean vector give rise to significant problems. Chopra and
Ziemba [34] show that the estimating errors the expected is generally one order
of magnitude than the one corresponding to estimating errors in asset variances
or covariances, assuming negative exponential utility function with joint normal
distribution of returns.

3 Robust and Approaches

3.1 Robust approaches

The robust version of the mean-variance problem (1) has been considered in
quite recent works (see the surveys [54, 66]). It consists in assuming that the
expected returns are uncertain and their expected values and variances belong
to a given set. By input parameters belong to a given uncertainty set (see
[10, 11, 50, 52]), it is possible to show some theoretical results.

Goldfarb and Iyengar [68]
Under the assumption that the return mean belongs to a convex polytope,

whose vertices are known, Costa and Paiva [37] prove that program (1) Lin-
ear Matrix Inequalities (LMI) problem (see [23, 115]). El Ghaoui et al. [51]
show that, when the mean and the covariance are unknown, but bounded, a
Semidefinite Program (SDP) (see [12, 115, 126, 140]).

Ye et al. [144] introduce uncertain sets both for the mean vector and the
second moment matrix of the returns, showing the connection between the fully
robust portfolio selection problem with box uncertain set for the mean and
ellipsoid uncertain set for the second moment of returns and SOCP, SDP, and
Programming (see [145]).

3.2

Bonami and Lejeune [22] take into account the uncertainty in the expected assets
returns a probabilistic constraint, which imposes that the expected return of
the optimal portfolio should be not less than a given return level R with a high
probability p > 0.

Let ξ be the random vector representing the expected returns of the r risky
assets. We assume that the random vector ξ admits a probability density func-
tion and the density function of ξTx is strictly positive. Moreover, let µ ∈ Rr

with µ = E [ξ] and Σ = E
[
(ξ − µ)(ξ − µ)T

]
be the mean and the covariance

matrix for the r-variate distribution of ξ, respectively. Let ψ = (ξTx− µTx)/√
xT Σx be the standardized random variable representing the normalized port-
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folio return. (??) can be equivalently rewritten, as follows:

P
(
ξTx ≥ R

)
= P

(
ψ ≥ R− µTx√

xT Σx

)
= 1− F(x)

(
R− µTx√
xT Σx

)
, (3)

where F(x) (·) is the cumulative distribution of the standardized portfolio return.
We assume that F(x) (·) is a continue strictly increasing function. Moreover, we
point out that the analytic form of the probability distribution F depends on
the portfolio weights x. It follows that the probabilistic constraint (3) becomes

1− F(x)

(
R− µTx√
xT Σx

)
≥ p⇐⇒ 1− p ≥ F(x)

(
R− µTx√
xT Σx

)
⇐⇒ µTx+ F−1(x) (1− p)

√
xT Σx ≥ R,

(4)

where F−1(x) (·) is the inverse of the cumulative distribution F(x) (·) and F−1(x) (1− p)
is the (1− p)-quantile of F(x) (·). Therefore, the deterministic equivalent of op-
timization problem (??) corresponds to the following NLP [87]:

min xT Σx (5a)

s.t. µTx+ F−1(x) (1− p)
√
xT Σx ≥ R (5b)

eTx = 1 (5c)

x ≥ 0. (5d)

In the following, we survey for which the problem SOCP (see, e.g., [1, 12,
24]). We thus recall the definition of centrally distributed random variable.

Definition 1. (Serfling [131]) Let ξ ∈ Rr be a random variable, whose prob-
ability density function is f : Rr → R. If f(ξ − θ) = f(θ − ξ), then ξ has a
symmetric about θ ∈ Rr.

Theorem 1. (Bonami and Lejeune [22]) the deterministic constraint (5b),
equivalent to (3), is a Second-Order Cone Constraint (SOCC).

Therefore, optimization problem (??) is a SOCP because its objective func-
tion is convex quadratic and its feasible region is described by the intersec-
tion of a second-order cone and several linear constraints. Constraint µTx ≥
R − F−1(x) (1− p)

√
xT Σx ensures that the expected portfolio return is greater

than the given return plus a penalty term, which is function of the portfolio
variance and is increasing the confidence level p [60].

We recall also the definition of the skewness of a multi-variate distribution
of a real-valued random variable ξ with mean µ and standard deviation σ [4]:

skew(ξ) =
E [ξ − µ]

3

σ3
, (6)

The skewness is basically an asymmetry index of the distribution: perfectly
symmetric distributions have zero skewness.

Theorem 2. (Bonami and Lejeune [22]) the deterministic constraint (5b),
equivalent to (3), is a SOCC.
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The exact value of the (1 − p)-quantile, F(x) (1− p), is known probability
distributions. If we assume, for example, the distribution of expected returns is
Gaussian, which is a restrictive assumption (see, for example, [56, 57, 98, 120]),
but rather common in several theoretical frameworks (see [72, 84, 112]), then
the numerical values of quantiles F−1(x) (1− p) of the normalized portfolio return

ψ are computationally known.

4

Beyond the of problem (1), the other serious drawback of Markowitz’s original
proposal is represented by (see, e.g., [39, 135]). to problems (1) or (??),
which describe the most common restrictions observed in real-world financial
markets (see [55, 89, 93, 96, 99]). However, this kind of constraints could make
the efficient frontier discontinuous and more challenging to compute [81].

4.1 Buy-in thresholds

Generally, investors , because, on one side, they have a limited impact on the
return value of the portfolio and, on the other side, they could be quite expensive
finance fees and monitoring costs [129].

xj ≤ xj ≤ xj , j = 1, . . . , r. (7)

Several authors (see, [31, 32, 63, 81]) require x to be a semi-continuous
variable [137], i.e., they require xj ∈ [xj , xj ] ∪ {0} for all j = 1, . . . , r: they
introduce extra binary variables δ ∈ {0, 1}r such that, for all j = 1, . . . , r,
δj = 1 if the investor holds the asset j, i.e. if xj > 0, and add the following
constraints avoiding too small or huge holding positions:

xjδj ≤ xj ≤ xjδj , j = 1, . . . , r. (8)

Note that constraints (8) directly 0 ≤ xj ≤ δj

4.2 Round lot purchasing

Usually, investors manage only given lots of shares and other financial agree-
ments, because of facility in monitoring and operations. Furthermore, for small
, splitting a large lot , that has to be paid to the broker. . Round lot purchasing
constraints , for the risky asset j (j = 1, . . . , r), batches or lots of Sj stocks.

Let us define γ ∈ Zr
+ a vector of general integer variables. that the number

of the shares of asset j (j = 1, . . . , r), namely ηj ∈ Z+, is an integer multiple of
the lot-size Sj :

ηj = γjSj , j = 1, . . . , r. (9)

Let qj be the of asset j (j = 1, . . . , r) held in portfolio, then we have
ηj = xjB/qj and constraint (10) can be equivalently rewritten as follows,

xj =
qjγjSj

B
, j = 1, . . . , r. (10)

The reader is referred to [22] for further discussion.
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Mansini and Speranza [100] have shown that finding a feasible solution of
problem (1) with round lot constraints (9), upper bound on γj , i.e., the number
(j = 1, . . . , r) of minimum lots, and bound constraints with respect to the total
portfolio expenditure is .

4.3 Sector diversification

Generally, either there exist law limitations about the risk exposure (this is
the case, for instance, of ) or investors try to hold a representative portion of
their portfolio in a prescribed number of asset categories or industrial sectors.
However, in general, optimal portfolios for problem (1) are not well-diversified
[70]. Usually, given are lower bound on the fraction of portfolio value held in
specific sets of shares. For classical empirical analysis about of a well-diversified
portfolio, we refer the reader to [36, 58, 134].

Let us assume that every asset can be allocated to a specific financial cat-
egory and let Ck (k = 1, . . . , n) be the index set of all risky assets connected
with the category k. Moreover, we suppose that sets Ck define a partition of
{1, . . . , r}. We introduce a binary variable ζk ∈ {0, 1} for each financial cat-
egory, such that ζk = 1 if and only if the investment in financial category k
(k = 1, . . . , n) is above a prescribed minimum level s:

sζk ≤
∑
j∈Ck

xj ≤ s+ (1− s)ζk. (11)

Moreover, we have to consider an additional constraint in order to satisfy
the diversification prescription [22], which requires to hold portions of assets in
at least n > 0 categories:

n∑
k=1

ζk ≥ n. (12)

4.4 Cardinality constraints

Beyond diversification requirements, asset managers (for instance in index track-
ing ) wish to replicate as accurately as possible a market index with a limited
number of financial agreements, namely K > 0. This can be modeled through
the following cardinality constraint:

‖x‖0 =

r∑
j=1

sign(|xj |) ≤ K. (13)

By introducing additional decision variables , already presented for con-
straints (8), we can straightforwardly reformulate the previous constraint in the
following equivalent form [93]:

r∑
j=1

δj ≤ K. (14)

Bienstock [16] (see also [132]) shows that problem (1) with cardinality con-
straint (14) is , even when r = 3. Several authors (see, e.g., [32, 44, 59, 133, 143])
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consider an equality version for cardinality constraint (14) and propose mainly
heuristic methods to solve the corresponding problem:

r∑
j=1

δj = K. (15)

Using the theoretical results in [130, 139] and extending [28, 29, 30], Cesarone
et al. [31] have shown that problem (1) with cardinality constraints (14) has the
same optimal solution of problem (1) with equality cardinality constraints (15)
and reduce this kind of programs to Standard Quadratic Programming Problem
(see [18, 19]), avoiding to explicitly introduce binary variables and considering
an exact tailored solving procedure, called Increasing Set Algorithm. and is
an problem when the Hessian matrix of the objective function is indefinite, i.e.,
if the Hessian matrix of the objective function is neither positive nor negative
semidefinite [18].

Di Gaspero et al. [45] consider an “interval” version for the cardinality con-
straint (14): K ≤

∑r
j=1 δj ≤ K, where K and K are such that 1 ≤ K ≤ K ≤ r.

Cardinality constraints are closely related to buy-in threshold constraints [81].
Finally, in several papers (see, e.g., [31, 32, 81]) it is observed that problem
(1), with cardinality constraints (14) and with minimum and maximum buy-in
thresholds (8) can be straightforwardly reformulated as a convex mixed-integer
quadratic problem .

4.5 Sector capitalization

Sector capitalization constraints are introduced by Soleimani et al. [133], in
order to mathematically formulate the behavior of investors generally inclined
to hold assets in with higher capitalization value to reduce the total portfolio
risk.

Let ` be the number of economic sectors and suppose, without loss of gener-
ality, that they are sorted in non-increasing way according to their capitalization
value. Define Ll as the set of assets for economic sector l (l ∈ {1, . . . , `}). We
introduce additional binary variables yl such that

1

M

∑
j∈Ll

δj ≤ yl ≤M
∑
j∈Ll

δj l ∈ {1, . . . , `} (16a)

∑
j∈Ll

µj + (1− yl) ≥
∑

j∈Ll+1

µj , (16b)

where M ∈ R+ is a sufficiently large positive number. The “big-M” constraints
(16) ensure the assets belonging to the sectors with higher capitalization values
have basically higher probability to be in the optimal portfolios than .

4.6 Turnover and trading

Frequently, investors already hold a portfolio x(0) and, because of mutations in
the financial market or others, they want to change their portfolio, by consider-
ing the new financial environment and by limiting, however, the variations the
portfolio already held [117].
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Crama and Schyns [40] propose to introduce restrictions on purchasing and
selling variations. In particular, let P j and Sj be respectively the maximum
purchasing and selling levels for asset j (j = 1, . . . , r), turnover constraints can
be stated as follows,

max
{
xj − x(0)j , 0

}
≤ P j j = 1, . . . , r (17a)

max
{
x
(0)
j − xj , 0

}
≤ Sj j = 1, . . . , r. (17b)

Because of fixed transaction costs (see Section 4.1), additional constraints
are, generally, introduced in order to prevent small variations between portfolios.
Let P j and Sj be respectively the minimum purchasing and selling levels for

asset j, trading disjunctive constraints can be stated as follows,
(
xj = x

(0)
j

)
∨(

xj ≤ x(0)j + P j

)
∨
(
xj ≤ x(0)j − Sj

)
j = 1, . . . , r .

4.7 Benchmark constraints

Often, investors want to obtain a portfolio which is as close as possible to a
benchmark (or target) portfolio xB [13]. economic sector diversified invest-
ments, [14] introduce the following additional constraints in order to bound
variances between the optimal and the target portfolios:∣∣∣∣∑

j∈Sl

(xj − xBj )

∣∣∣∣≤ εl l = 1, . . . , `. (18)

4.8 Collateral constraints

Di Gaspero et al. [47] (see also [80]) discuss the following legal constraints for
short selling portfolios imposed by US Regulation T, a set of US laws concerning
the margin requirements for the collateral agreement. In particular, they in-
troduce a free-risk asset with mean µ0 and zero variance, the so-called collateral
agreement, such that

x0 ≥ −a
r∑

j=1

min{0, xj} (19a)

r∑
j=0

|xj | ≤ 2 (19b)

where a ∈ N+ is the security level for the collateral agreement.
In this case the decision variables x are not constrained to be positive, since

short-selling is allowed, variables δj defined in (8) are replaced by ternary
variables z ∈ {−1, 0, 1}r, such that, for each j (j = 1, . . . , r), zj = 1 if the
investor bought the asset j, i.e., if xj > 0, if the investor sold the asset j,
i.e., if xj < 0, and if the investor does not hold asset j. Therefore, cardinality
constraint (14) becomes

∑r
j=1 |zj | ≤ K.

5

Besides (1a), several different objective functions have been proposed in the
literature in order to make problems (1) and (??) simpler with respect to com-
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putational tractability or to better model real behaviors of investors and money
savers. We consider only objective functions involving quadratic risk measure,
namely portfolio variance .

5.1 Penalty functions

In order to define an unconstrained NLP, Bartholomew-Biggs and Kane [6]
introduce the following penalty function for problem (1) with minimum buy-in
threshold constraints (7) with xj := x and xj := 1 for all j ∈ {1, . . . , r},

φ(xj) =
4xj(xj − x)

x2
, j = 1, . . . , r (20)

which is when xj ≤ 0 or xj ≥ x. Moreover, when xj ∈ (0, x), so that (7) can
be replaced by the following continuous one:

φ(xj) ≥ 0, j = 1, . . . , r. (21)

Therefore, an unconstrained NLP can be easily defined, by introducing addi-
tional continuous variables s ∈ Rr, such that xj := s2j for all j = 1, . . . , r and
considering the resulting objective function, adjoint with penalty terms, one
replacing each set of constraints:

xT Σx+ ρ(1− eTx)2 + ρ

(
µTx

R
− 1

)2

+τ

r∑
j=1

κj(xj)
2, (22)

where ρ and τ are suitable positive parameters and κj(xj) := min{0, φ(xj)} for
all j = 1, . . . , r.

A similar approach is stated also for the round lot purchasing constraints
(9) or (10), that can be replaced by the following constraints:

κ′j(xj) =

(
Bxj
qj
−
⌊
Bxj
qj

⌋)(
1−

(
Bxj
qj
−
⌊
Bxj
qj

⌋))
= 0, j = 1, . . . , r

(23)
where bvc denotes the integer part of v ∈ R.

However, round lot purchasing constraints (9) might make impossible satisfy
at the same time request (1c): consequently, the following new quadratic risk
measure [110] is considered:

xT Σx

(eTx)2
, (24)

leading to an alternative definition of (22):

xT Σx

(eTx)2
+ ρ
(

min{0, 1− eTx}
)2

+ ρ

(
µTx

R
− 1

)2

+τ

r∑
j=1

κ′j(xj)
2. (25)

Bartholomew-Biggs and Kane [6] apply a DIRECT (DIviding RECTangles)
type global algorithm (see [61, 64, 65, 82, 83]) to previous unconstrained (22)
and (25).
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5.2 Balanced objective functions

Mean-variance portfolio selection problems (1) and (??) are naturally multi-
objective optimization programs usually investors want to gain the maximum
profit at the minimum risk: these are, of course, conflicting targets, that have
to be considered at the same time.

Several authors (see, e.g., [32]) use standard (linear) scalarization techniques
such as the Weighted Sum approach (see, for example, [49]). Namely, they
consider the “balanced” objective function

λ(xT Σx)− (1− λ)(µTx), (26)

where λ ∈ [0, 1] is a investor’s risk . Let θ1, θ2 ∈ R+ be two parameters, a more
general variant is proposed by Schaerf [127]:

θ1(xT Σx) + θ2 max{0, µTx−R}. (27)

Bertsimas and Shioda [14] (see also [13]) introduce an extended “balanced”
objective function, considering also trading and turnover requirements with re-
spect to a given initial portfolio x(0):

1

2
xT Σx− µTx+

r∑
j=1

ιj
(
xj − x(0)j

)2
, (28)

where ιj > 0 is a coefficient for asset j symmetric purchasing/selling impact
with respect to the stock price. Finally, Tadonki and Vial [138] and Shaw et
al. [132] consider respectively constant and linear transaction costs embedded
in a quadratic “balanced” objective function, namely respectively

λ1(xT Σx)− λ2(µTx) + cT δ (29)

λ1(xT Σx)− λ2(µTx) + cTx, (30)

where λ1 ∈ R+ and λ2 ∈ R+ are two positive scalars, is a vector, whose entries
represent the transaction costs for the portfolio assets and δ ∈ Rr is the binary
vector defined in constraints (8).

6 Compact reformulations

In this section we present several different possible reformulations and approxi-
mations for the mean-variance portfolio optimization problem.

6.1 SOCC inner approximations

As observed in Section 3.2, given , it is not always possible to write the problem
(5) in a closed form: the exact value for the quantile F−1(x) (1− p) is known

only for special distributions (e.g., normal distribution, Student distribution,
uniform distribution on an ellipsoid). However, if the probability distribution
of the expected returns is only partially known, the value of its quantiles can
be approximately computed using several probability inequalities [93], e.g.,
Cantelli [22], Chebyshev [22], and Camp-Meidell [92] inequalities (see also [73,
79, 95, 107]).
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Theorem 3. (Bonami and Lejeune [22]) Assume the first and the second mo-
ments of the probability distribution of the portfolio return are finite. The SOCC

µTx−
√

p

1− p
√
xT Σx ≥ R (31)

is an approximation of chance constraint (??).

Theorem 4. (Bonami and Lejeune [22]) Assume the first and the second mo-
ment of the probability distribution of the portfolio return are finite and the
distribution is symmetric. The SOCC

µTx−

√
1

2 (1− p)
√
xT Σx ≥ R (32)

is an approximation of chance constraint (??).

Theorem 5. (Lejeune [92]) Assume the first and the second moment of the
probability distribution of the portfolio return are finite and the distribution is
symmetric and unimodal. The SOCC

µTx−

√
1

9 (1− p)
√
xT Σx ≥ R (33)

is an approximation of chance constraint (??).

We remark that the approximation given by Theorem 4 for a symmetric
probability distribution is tighter than the one given by Theorem 3 and that
the approximation given by Theorem 5 for a symmetric unimodal probability
distribution is tighter than the one given by Theorem 4 (see [22, 92]).

6.2 Variance reformulation

Given the symmetric positive definite matrix Σ, we consider its Cholesky de-
composition Σ = CCT , where C ∈ Rr×r is a lower triangular matrix. From a
computational viewpoint, the Cholesky decomposition is twice faster and more
stable than LU factorization or Gauss elimination method (see [88, 108, 136])
and it is implemented in High Performance Computing numerical software li-
braries (see [2, 17, 48]).

Note that Cholesky decomposition exists and is unique if matrix Σ is posi-
tive definite (see [69, 78]) and this property is verified by matrix, if we exclude
the case of exact collinearity of the random variables, i.e., we assume that none
of the risky asset can be exactly replicated by a linear combination of the other
ones. The hypotheses to apply Cholesky decomposition to positive semidefini-
tive matrices are identified in [74, 78, 111] and error analysis is instead formally
stated in [111] for idempotent matrices and in [74] for the general case.

By assuming positive definiteness for covariance matrix Σ and introducing
non negative decision variable h ∈ R+, we obtain the following problem, equiv-
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alent to (5):

min
x,h
‖CTx‖22 (34a)

s.t. µTx−R ≥ h (34b)

F−1(x) (1− p) ‖CTx‖2 ≥ −h (34c)

eTx = 1 (34d)

x ≥ 0, h ≥ 0. (34e)

Theorem 6. (Filomena and Lejeune [60]) Program (34) is equivalent to the
following NLP:

min
x,h

h

s.t. (34b), (34c), (34d), (34e).
(35)

6.3 Period-separable reformulation

As pointed out by Filomena and Lejeune [60], the variance of the portfolio can
be reformulated as the Euclidean norm of a vector, whose number of components
T corresponds to the number of data points, by using the following preliminary
result:

Theorem 7. (Konno and Suzuki [90]) Let νjt be the (observed) return of asset j
at time t and introduce the extra variables bt =

∑r
j=1(νjt−µj)xj (t = 1, . . . , T ).

The variance of the portfolio return can be rewritten as

xT Σx =
1

T
‖b‖22.

The probabilistic Markowitz portfolio model (??) can be reformulated as the
following convex NLP:

min
x,h,b

1

T
‖b‖22 (36a)

s.t. µTx−R ≥ h (36b)

F−1(x) (1− p)
√
T

‖b‖2 ≥ −h (36c)

bt −
r∑

j=1

(νjt − µj)xj = 0, t = 1, . . . , T (36d)

eTx = 1 (36e)

x ≥ 0, h ≥ 0. (36f)

Furthermore, Filomena and Lejeune [60] observe that mathematically com-
pute the variance in problems (??) and (35) the estimate of only r(r + 1)/2
covariance terms : this situation can to several coherence problems for the
covariance matrix (see Section 1). Moreover, the approach described in this
section does not require any assumption on matrix Σ. Finally, we can consider
the corresponding equivalent epigraph formulation of problem (36):

min
x,h,b

h

s.t. (36b), (36c), (36d), (36e), (36f).
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7 Exact algorithms

Mean-variance portfolio selection problem with gives rise to a convex MIQP,
which is at least as difficult as , because it includes Mixed-Integer Linear Prob-
lem (MILP) as special case [86, 67]. Nowadays, MIQPs can be solved via com-
mercial and open-source solvers (see, e.g., [21, 41, 141]). In this section we
overview specialized and more efficient computational procedures recently pro-
posed in literature.

In [16] Bienstock proposes a tailored Branch-and-Cut (BC) procedure to
solve with the “surrogate” constraint

r∑
j=1

xj
xj
≤ K. (37)

Several types of cutting planes, namely mixed-integer rounding inequalities,
knapsack cuts, intersection cuts, and disjunctive cuts are also considered in the
same paper.

Bertsimas and Shioda [14] develop a BC algorithm [38]. The portfolio prob-
lem with objective function (29) and cardinality (14) and buy-in (8) constraints
was solved by Tadonki and Vial [138] with BB techniques together with a Bender
decomposition approach.

Lee and Mitchell [91] describe a parallel BB framework for cardinality con-
strained portfolio selection problem, in which each node is approximated by
means of Sequential Quadratic Programming (SQP) and each quadratic sub-
problem is solved via interior-point method (see, e.g., [114, 115]).

Frangioni and Gentile [63] solve problem (1) with minimum and maximum
buy-in thresholds additional constraints (8) with a BC method improved by
using Perspective Cuts (see also [62]), a family of valid inequalities, related to
the perspective function (see [76, 77]) and to the convex envelope of the objective
function (see [71]).

Zheng et al. [147] propose a difference of convex functions approach to ,
by replacing cardinality constraint (13) with the following piecewise linear
approximation:

1

ω

(
‖x‖1 −

r∑
j=1

max{xj − ω, 0}+ max{−xj − ω, 0}
)
≤ 0, (38)

where ω > 0 is a given parameter. Non-smooth approximation (1) with con-
straint (38) is solved by means of Successive Convex Approximation method.
This algorithm determines a Karush-Kuhn-Tucker (KKT) point or defines a
sequence of points converging to a KKT point for the ω-parametrized approxi-
mation. Moreover, the authors show that, letting ω → 0+, the optimal value of
the approximate problem approaches the optimal value of the original problem.

Shaw et al. [132] solve cardinality constrained portfolio problem under the
assumption that vector µ of assets returns can be decomposed according to a
multiple factor model [27], i.e., µ = Ξf + u, where r′ represents the number
of different factors, Ξ ∈ Rr×r′ is the sensitivity-factor matrix, f ∈ Rr′ is the
factor-return vector, and u ∈ Rr is the asset-specific (non-factor) returns vector.
A Lagrangian relaxation of the problem is then solved by means of sub-gradient
procedure [121] and embedded in a BB framework.
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In [22] Bonami and Lejeune deal with deterministic equivalent (5) of with
buy-in threshold (8), round lot purchasing (10), and diversification (11)-(12)
constraints, by proposing a Nonlinear BB algorithm [9] with tailored branching
rules.

Buchheim et al. [25] consider portfolio selection problem with objective func-
tion (26), constraints (1d) and (2) and integrality requirement on the decision
variables, i.e.,

x ∈ Zr, (39)

which represents the units of assets held in the investor’s portfolio. They intro-
duce a new BB algorithm

We end this section with Table 1 that summarizes the main characteristics of
the papers described above. In particular, the columns report the authors, the
year of publication of the paper, the objective function and constraints of the
tackled problem, the proposed algorithm, the competitors employed as bench-
marks, and the instances that were used for the computational experiments.

8 Conclusions

in terms of mathematical modeling and robustness. In fact, in practical appli-
cation the return and the variance of the assets are unknown and are estimated
from observed data: the optimal solutions of the original Markowitz model is
not robust variations in estimation of the input parameters. Moreover, the
original Markowitz work

The first limitation is faced via robust and . In the first case, we assume the
assets returns (and eventually their variances) are unknown, but belonging to a
given uncertain set, while in the second one we substitute the return constraint
with , the return of the portfolio above a given level with high probability.
The second limitation , as, for example, buy-in threshold, round lot purchasing,
diversification, and cardinality constraints.

Furthermore, several variants of the original objective function have been
proposed in the literature for computational and algorithmic reasons (for in-
stance, by introducing several penalty terms in the objective to obtain an un-
constrained optimization problem) or for better modeling the real-word finan-
cial markets (for example, by considering constant or linear transaction costs).
Then, we discussed possible exact and (inner) approximate reformulations for
of the mean-variance portfolio problem.

Finally, in the last part of the paper, we have reviewed exact tailored algo-
rithms designed to solve the deterministic and to optimality.
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A Notation

r ∈ N+ number of possibly risky assets
r′ ∈ N+ number of number of different factors
n ∈ N+ number of financial categories
` ∈ N+ number of economic sectors
R ∈ N+ minimum return level for the portfolio
p ∈ N+ confidence level for the probabilistic return constraint
B ∈ N+ total investor initial budget
s ∈ N+ prescribed minimum level per financial category
n ∈ N+ minimum number of categories with positive positions
K,K ∈ N+ minimum and maximum number of assets in the portfolio
P ∈ R+ maximum purchasing level per asset
S ∈ R+ maximum selling level per asset
T ∈ N+ number of time period for observing the returns of quoted assets
m ∈ N+ number of factors in the multiple factor model
µ ∈ Rr mean return vector of the assets
ξ ∈ Rr random vector of expected returns
µ ∈ Rr mean of the r-variate distribution of ξ
ψ ∈ Rr normalized portfolio return
x, x ∈ Rr lower and upper bound for the fraction of the portfolio value
S ∈ Rr size of the batches of the assets
q ∈ Rr

+ market value of the quoted assets
x(0) ∈ Rr fraction of the portfolio value already invested
xB ∈ Rr benchmark (or target) portfolio
c ∈ Rr transaction costs per asset
v ∈ Rr costs per unit of asset
f ∈ Rm factor-return vector
u ∈ Rr asset-specific (non-factor) returns vector

Ξ ∈ Rr×r′ sensitivity-factor matrix
Σ ∈ Rr×r covariance matrix of the r-variate distribution of ξ
Σ ∈ Rr×r covariance return matrix of the assets

Ll ⊆ {1, . . . , r} set of assets for economic sector l (l = 1, . . . , `)
Ck ⊆ {1, . . . , r} set of indexes of all risky assets connected with the category k (k = 1, . . . , n)

Decision Variables:

x ∈ Rr
(fraction of the) portfolio value invested per asset

η ∈ Zr
+ integer multiple of the lot-size S

δ ∈ {0, 1}r additional binary variables such that δj = 1 (j ∈ {1, . . . , r}) iff xj > 0 (j ∈ {1, . . . , r})
γ ∈ Zr

+ additional vector of general integer variables
ζ ∈ {0, 1}n additional binary variables such that ζk = 1 (k ∈ {1, . . . , n}) iff

∑
j∈Ck

xj ≤ s
y ∈ {0, 1}` additional binary variables such that yl = 1 (l ∈ {1, . . . , `}) iff

∑
j∈Ll

δj = 1

z ∈ {−1, 0, 1}r additional ternary variables such that zj = 1 (j ∈ {1, . . . , r}) iff xj > 0 (j ∈ {1, . . . , r})
and zj = −1 (j ∈ {1, . . . , r}) iff xj < 0 (j ∈ {1, . . . , r})

s ∈ Rr additional continuous variables such that sj =
√
xj (j ∈ {1, . . . , r})

b ∈ RT additional continuous variables such that bt =
∑r

j=1(νjt − µj)xj (t ∈ {1, . . . , T})
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Functions:

F(x) : R→ R cumulative distribution of the normalized portfolio return
φ : R→ R penalty function for the minimum buy-in threshold constraint (7)
θ : R→ R penalty function for the round lot purchasing constraints (9)
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