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Abstract: Artemisinin and its derivatives are peroxide-containing compounds targeting P. falciparum. We review here 

structural analogues of bicyclic peroxides belonging to the G factors family presenting antimalarial properties. They were 
synthesised under Mannich type conditions, followed by an autoxidation step resulting exclusively in the peroxide. As the 
electron transfer from haem or free iron to the peroxide is the first step in the mode of action of artemisinin-like compounds, the 
redox properties of some endoperoxides were studied by electrochemistry allowing the evaluation of the reduction standard 
potentials. The Fe(II) induced reduction was also investigated and the reactivity of the C-centered radical intermediate formed 
was linked to the antimalarial activity. These bicyclic peroxides both with various hybrid molecules containing the endoperoxide 
framework were evaluated in vitro against Plasmodium falciparum. They exhibited moderate to good activities.  
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1. Introduction 

Malaria caused by protozoan parasites of the genus Plasmodium is the most prevalent parasitic disease with approximately 50% 

of the world’s population at risk, mainly in many tropical and subtropical regions, with an estimate of 216 million cases of 

malaria and 655,000 deaths worldwide annually[1]. Four species of Plasmodium, P. falciparum, P. vivax, P. ovale and P. 

malariae commonly infect humans, and a fifth, P. knowlesi, has recently been identified as being responsible for a significant 

number of human cases in South-East Asia. [2]  

Malaria remains a major world health problem following the emergence and spread of P. falciparum, the most dangerous of the 

Plasmodium parasites that infect and is resistant to the majority of antimalarial drugs.[3] The discovery of the sesquiterpene 

lactone artemisinin (known as Qing hao su) in 1972 by Chinese scientists and the subsequent development of potent derivatives 

have been a key event in the malaria treatment because the artemisinins rapidly kill all the blood stages of the parasite, resulting 

in the shortest fever clearances times of all antimalarials. Artemisinin-based combination therapies (ACTs) which combine a 

potent but short-lived artemisinin derivative such as artesunate, artemether or dihydroartemisinin with a longer-lasting partner 

drug are now the first-line recommendation for P. falciparum malaria in most endemic areas and are increasingly used against the 

chloroquine-resistant P. vivax malaria problem [4].  

 

Since the discovery of artemisinin, the search for new generation of artemisinin-based therapeutics has been intensively 

pursued resulting in new classes of peroxide-containing compounds such as 1,2,4-trioxane,[5-9] 1,2,4-trioxolanes[10,11], 

1,2,4,5-teraoxanes[12], cyclic peroxyketal[13] and endoperoxides[14-16] targeting P. falciparum. 

 

For the chemical synthesis of these peroxide-containing compounds, several oxygen sources were used in order to introduce 

the O-O bond such as: hydrogen peroxide, ozone, singlet oxygen, and to a less extent molecular oxygen. 

 

Hydrogen peroxide was thus added to carbonyl compounds or to epoxide leading respectively to gem-dihydroperoxides or 

to hydroperoxyhemiketals[17] and to -hydroxy-hydroperoxides[18] which were precursors of several cyclic peroxides 

such as 1,2,4,5-tetraoxanes,[19,20] 1,2-dioxolanes,[21] 1,2,4-trioxanes[22] or 1,2-dioxanes.[23,24]  

 

In a same way, ozone was reacted with alkenes or more generally enol ethers and oxime ethers leading to peroxycarbenium ion 

species[25] which in turn were the reactive intermediates in peroxide formation as described for the synthesis of the natural 

compound Yingzhaosu,[26]
 
plakinic acid A analogues[27] or various 1,2,4-trioxanes.[28,29] In addition, Vennerstrom has shown 

that ozone treatment of oxime ethers and addition of the peroxycarbenium ion on ketones, led to 1,2,4-trioxolanes which revealed 

to be promising antimalarial candidates.[30] The fully synthetic 1,2,4-trioxolane peroxide OZ439, appears as an exciting prospect 

demonstrating high potency and longer plasma exposure compared to artemisinin [31]. This compound offers new hope for a 

single-dose cure of uncomplicated malaria and is currently into phase 2 trials supported by medicine for Malaria Venture [32].  

 

Singlet oxygen was also used as a source of oxygen to access peroxide derivatives via the Schenck reaction or [4+2] or 

[2+2] cycloadditions. Arteflene[9] was synthesized using the Schenck reaction. Singh[33] and Bloodworth[34,35] 

independently synthesized trioxanes by photooxygenation of allylic alcohols or olefins followed by acid -catalyzed 

condensation of carbonyl compounds on hydroperoxides. Singlet oxygen [4+2] cycloaddition on cyclopentadiene was 

developed by Jefford[36] during Fenozan
 
(BO7) synthesis. This methodology was reinvestigated by Meunier in the 

synthesis of trioxaquines.[37] Jefford et al.[38] have also shown that singlet oxygen reacts through a [2+2] cycloaddition on 

enol ethers yielding the 1,2-dioxetane intermediates, which, at low temperature and acid catalysis react on ketones to give 

the desired 1,2,4-trioxanes. Posner[39] modified this method, by using thio enol ethers instead of enol ethers to prepare 

sulfone trioxanes. 

 

Molecular oxygen was scarcely used as its reactivity is low. Interestingly however, it could be used in the preparation of 3-

hydroxy-1,2-dioxanes. O’Neill et al.[40]
 
optimized a route to spirotrioxanes via the Co(II) catalyzed preparation of 

triethylsilyl peroxides. Posner and Bachi[41] perfected a radical process called TOCO (Thiol-Olefine Co-Oxygenation) 

giving access to dioxanes or trioxanes via formation of a peroxyl radical intermediate. O’Neill reinvestigated this 

process[42]
 
by describing a 1,2,4-trioxane synthesis. Posner et al.[43] synthesized cyclic peroxyketals by using the Snider 

and Shi protocol,[44] e.g. photoenolisation followed by oxygenation. Blaumstark et al.[45] described the synthesis of 

pentasubstituted 3-hydroxy-1,2-dioxolanes via O2 trapping of intermediates generated during the thermolysis of cyclic -

azo hydroperoxides. 

 

The mode of action of those antimalarial peroxides prodrugs is based on Fe(II) activation causing oxygen-oxygen bond breaking; 

the oxy radical intermediate undergoes rearrangement furnishing primary or secondary carbon-centered radical. These highly 

reactive intermediates are thought to cause irreversible damage to certain parasite’s biomolecules.[46] They trigger damage to 
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cellular lipids and digestive vacuole membranes, inactivation of Plasmodium proteins, alkylation of haem and interference with 

haem sequestration into crystals and finally parasite death. The effect on intraerythrocytic stages is broad, including strong action 

on rings stages as well as trophozoits and early schizonts. 

 

Our lab is interested in new types of antimalarial agents potentially acting as artemisinin. We focused our efforts on the syntheses 

of new endoperoxides, related to the phytohormones known as G factors (G1, G2, G3) which are natural compounds extracted 

from leaves of Eucalyptus grandis (Figure 1). These factors act as growth regulators and are abundant in leaves after a frost 

period or hydric stress. They cannot be present in their physiological forms, but rather in some inactive form, and are readily 

released in response to damage to the plant or to a biological stimulus.[47] They constitute a family of six-membered unsaturated 

cyclic endoperoxides fused to another six-carbon ring derived from syncarpic acid.  

 

The present work reviews our synthetic program on the construction of bicyclic endoperoxides belonging to the G-factor family 

and our mechanistic studies which aimed at elucidating their mode of action. On the basis of this analysis, new structures and 

hybrid molecules are presented in order to pave the way for new type of antimalarial endoperoxides. 

 

2. Synthesis of endoperoxides via spontaneous oxygen uptake 

 

First, we developed a straightforward synthesis of endoperoxides belonging to the G-factor series. This synthesis is based on 

two key-steps: formation of a Mannich base as described by Bolte [48] followed by autoxidation (Scheme 1). Mannich bases 

were formed from reaction between syncarpic acid and an iminium issued from the reaction of different aldehydes with piperidine. 

Preparation of Mannich bases intermediates allows minimizing or avoiding the formation of Michael bis-adduct. Ethylenic 

ketones were then easily released under acidic conditions. Depending on the substituents, equilibrium between enone and dienol 

can take place. [49] 

 

The addition of the molecular dioxygen occured more or less rapidly, depending on the substituents of the dienols, affording the 

corresponding endoperoxides.  

 

This quite surprising autoxidation operates in absence of any sensitizer, even in the dark and without solvent or any solvent 

excepted hydroxylated ones. Molecular dioxygen, in its fundamental triplet state has been shown to be trapped by the dienol 

system, singlet dioxygen being not implied. In fact, the presence of DABCO, a well-known singlet quencher, didn’t inhibit the 

autoxidation. 

On the contrary, as tert-butyl mercaptan in catalytic amount was found to inhibit the reaction, we investigated this autoxidation by 

spin trapping / EPR technique. 

 

 

Figure 1 Natural G-Factors : G1, G2, G3. 

 

 

 
Scheme 1: Synthesis of the endoperoxide frame. 
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two POBN adducts 
showing the same EPR 
spectrum 

 

Scheme 2: Experimental EPR signals (black full lines) and superimposed simulations (red dotted lines) obtained in deoxygenated benzene after 1 h of 

reaction between molecular oxygen and (a) 1a or 1b (0.2 mol dm-3) in the presence of POBN (0.2 mol dm-3), and (b) 1c (0.2 mol dm-3) in the presence of 

TN (0.1 mol dm-3). The simulations led to the following hyperfine coupling constant values: a) aN = 1.64 mT, aH = 0.16 mT ; b) aN = 1.55 mT, aH = 0.19 

mT, aP = 4.26 mT and a13C = 1.14 mT). 

The spontaneous addition of dioxygen on 1a was followed by spin trapping (ST) combined with EPR spectroscopy and mass 

spectrometry (MS).[50] Two different nitrones, i.e. the commercially available 4-{(E)-[tert-butyl(oxido)imino]methyl}pyridine 1-

oxide (POBN), and the 
31

P-labelled trinitrone diethyl {1-[(Z)-(3,5-bis{(E)-[1 (diethoxyphosphoryl)-1-methylethyl] (oxido) imino] 

methyl}-benzylidene)(oxido)amino]-1-methylethyl}phosphonate (TN), were used to trap the radical intermediates formed during 

the autoxidation. The EPR spectra of TN-spin adducts provide more information about the addend structure because the strong 

hyperfine coupling constant with the phosphorus nucleus (aP) is usually very sensitive to the nature of the radical trapped. 

Whatever the nitrone, a single mono-radical nitroxide, i.e. a carbon-centered radical spin adduct, was EPR detected. Similar 

experiments were performed with two 
13

C-labelled precursors 1b and 1c, obtained from labelled syncarpic acid on two different 

and crucial positions, which allowed us to identify precisely the radical center in the addend. Actually, identical EPR spectra were 

obtained for 1a and 1b, while an extra coupling with the 
13

C nucleus was EPR-observed in the case of 1c (a13C = 1.14 mT), as 

shown in Scheme 2. The hyperfine coupling constants obtained for the POBN-C spin adduct with 1a and 1b were aN = 1.64 mT, 

aH = 0.16 mT and with 1c aN = 1.64 mT, aH = 0.16 mT and a13C = 1.14 mT. Similarly, the hyperfine coupling constants obtained 

for the TN-C spin adduct with 1a and 1b were aN = 1.55 mT, aH = 0.19 mT and with 1c aN = 1.55 mT, aH = 0.19 mT and a13C = 

1.14 mT. 

In order to define more precisely the spin adduct structures, the ST/MS technique was then employed without preliminary 

chromatographic separation. The diamagnetic hydroxylamine derivatives of the spin adduct were detected by electrospray 

ionization mass spectrometry (ESI-MS), in both positive and negative modes, and their structures were elucidated by tandem 

mass spectrometry (MS/MS).  

 
 

 

Following this ST/EPR/MS study, the mechanism pathway presented in Scheme 3 was proposed for this oxidation. The results 

obtained are consistent with the pathway B but this does not mean that the pathway A could not occur simultaneously. Under the 

experimental conditions considered here, the biradical formed from 1a in pathway B was unambiguously identified. However, the 

ring closure into the biradical formed in pathway A could be much faster than the trapping reaction. Thus, pathway A could not 

be dismissed as an alternative or even as a main process. Whatever it may be, this ST/EPR/MS study clearly demonstrates that the 

autoxidation corresponds to a radical process. 
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Scheme 3: Proposal for triplet biradical intermediates formation during the autoxidation step. 

 

 

3. Crucial role of the peroxyhemiketal function 

 

Based on the synthetic methodology described above, several compounds were prepared by varying the aldehyde used in the 

Mannich based preparation. After elimination of the piperidine and oxygen uptake, several endoperoxides were alkylated or 

benzylated on the peroxyhemiketal position in order to mimic trioxane. The compounds were evaluated against both chloroquine 

susceptible (Nigerian and 3D7) and resistant (FcM29 and W2) P. falciparum strains, the results are presented in Table 1.[51-53] 

The natural compound G3 (R=OH) (2) possess a mild activity (36 μM) on Nigerian P. falciparum strain and appears similarly 

active against resistant strains. Remarkably, methylation of the peroxyhemiketal function yielded G3Me (R=OMe) (3) derivative 

which appears 100 fold more active on the same strain with IC50 of 0.28 μM. Fluorination of this position gave an inactive 

compound (4). The extension of the alkyl chain did not change the activity as compounds 5, 6 and 7, showed similar activities to 

G3Me. Finally, the benzylation yielded endoperoxide 8 which exhibited among the highest activities (IC50= 0.37 and 0.10 M on 

chloroquine sensitive and resistant strains of Plasmodium falciparum, respectively). The enantiomers were separated by chiral 

column chromatography, both enantiomers displayed similar activity. This last result is a clue to rule out the hypothesis of an 

enzymatic target in the mode of action. 

 

This work demonstrates that alkylation of the peroxyhemiketal function is crucial for antiplasmodial activity and that antimalarial 

activity of this type of endoperoxide is quite substantial with IC50 below 1 M.  

Table 1 In vitro antimalarial activity on different strains. Antiplasmodial 
activity was evaluated after contact with the different strains of P. 
falciparum for 48 h (duration of the erythrocyte cycle), and is expressed 
as IC50 which is the concentration that inhibit by 50 % the growth of the 
parasite. 

 

 

 

 

R 

 IC50(μM) a for the various strains 
  

Nigerian 

 

3D7 

 

FcM29 

 

W2 

OH 2 36 62 41 38.5 

OCH3 3 0.28 0.40 0.23 0.14 

F 4 >100 - - - 

O(CH2)2CH3 5 0.16 - - - 

O(CH2)3CH3 6 0.76 1.04 0.19 0.44 

O(CH2)7CH3 7 0.18 - - - 

OCH2C6H5 8 0.21 0.37 0.10 0.20 

(+) OCH2C6H5 (+) 8 0.36 - - - 

(-) OCH2C6H5 (-) 8 0.34 - - - 

O-CH2C5H4N 9 0.28 0.82 0.12 0.33 
Artemisinin  0.008 0.019 0.004 0.004 

Chloroquin  0.03 0.019 0.155 0.125 

      
 

a IC50 values are duplicated and were considered acceptable when values 
did not vary by more than a factor of 2.5 to3. 
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Activities of endoperoxides are always related to O-O bond cleavage induced by iron(II) activation. In this context we decided to 

study and compare the reduction of the G3 and G3Me both by electrochemistry and by iron(II) induced degradation. 

 

4. Dissociative electron transfer studies 

 

As the first step in the mode of action of artemisinin-like compounds has been shown to be a dissociative electron transfer 

from the iron(II) of the haem to the peroxidic bond,[54-56] we focused our efforts in determining the reductions potentials of our 

endoperoxides G3 (2) and G3Me (3) in the aim to compare them to each other and to artemisinin.  

The reduction was thus studied by cyclic voltammetry and convolution analysis.[57] One electron was detected during the 

reduction of both compounds and a slow and irreversible system was observed. Electron transfer led to irreversible cleavage of 

the O-O bond. Detailed analysis of the voltammetry curves using Marcus theory, revealed a non-linear dependence on the transfer 

coefficient indicating a change from a stepwise mechanism to one with more concerted character with increasing potential (Figure 

2). In the concerted mechanism, the electron is accepted into the * orbital, largely associated with the O-O bond, resulting in 

simultaneous cleavage to generate a distonic radical anion 
.
ORRO

-
. There is also the possibility of a stepwise dissociative 

mechanism when there is an energetically accessible * orbital within the molecule. In the stepwise mechanism, the initial 

electron transfer results in the formation of an intermediate radical anion, followed in a second step, by cleavage of the O-O bond 

(kfrag), giving then the radical anion. 

 

The O-O bond dissociation energies, estimated by quantum calculations using density functional theory (DFT), from the 

difference between the total energy of the most stable form for each molecule in its singlet and triplet state at the B3LYP 6-31G* 

level, were taken into account in the experimental data when evaluating the standard reduction potentials and other pertinent 

thermochemical informations such as reorganization energy and activation energy. The values of the standard reduction potentials 

of the stepwise mechanism (E°st) for both G3 and G3Me were estimated at respectively -1.70 and -1.64 V, very close to the 

values of the peak potentials (-1.67 and -1.61 V at the rate of 2 V/s ). The values of the standard reduction potentials of the 

concerted mechanism (E°c) were about -0.82 and -0.84 V close to the value of artemisinin standard reduction potential (-0.89 V) 

for which only a purely concerted mechanism is present.  

Using density functional theory (DFT) with B3LYP hybrid functional and 6-311+G(d,p) basis set, [58] the reaction pathway of 

the electron transfer was also carried out. The stationary points and related energy differences were determined. Both for G3 and 

G3Me, the formation of two intermediate radical anions (A and B, Figure 2 a) resulting from the electron transfer, were found 

and characterized, along with the localization of the transition states associated with the reaction pathway. The fact that two 

intermediate radical anions may be characterized is proper to a stepwise reduction mechanism.  

When G3 receives an electron, it goes in the LUMO orbital (π* character of the conjugated double bond C=C-C=O). The spin 

densities on the radical anion A show that the unpaired electron is delocalized on the C=C-C=O group and the SOMO of 

conformation A is on these atoms. Conformation B is 1.38 eV (31.8 kcal/mol) lower in energy. It is the thermodynamic product. 

There is an extra electron on the energy levels, and the associated orbital has a σ* character on the O-O bond. The spin 

densities show that the unpaired electron is located on this O-O bond. 

 

 

We calculated that the neutral/anion energy gap was 1.06 and 2.44 eV for respectively radical anion A and radical anion B 

resulting of the reduction of G3. The transition state between those two states is situated at 0.15 eV (3.46 kcal/mol) above A. 

Values were found to be quite similar for G3Me, with the neutral/anion energy gap of respectively 1.04 and 2.34 eV for A and B.  

a)        b)  
 

Figure 2: a) Competition between concerted and stepwise mechanism of the dissociative electron transfer, and b) LUMO of the G3.  
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The occurrence of the stepwise mechanism for the electron transfer, can be explained by the presence of the more accessible 

LUMO of the G3 with a π* character (Figure 2b). Then the electron is transferred into the LUMO+1 which is situated on the O-O 

bond and has a * character, leading to the breaking O-O bond and furnishing the second stable radical anion. The reorganization 

energy upon electron transfer in relation to the Marcus theory and the intrinsic activation energy were also calculated using the 

DFT method. The calculated values are in good agreement with their available experimental counterparts obtained from analysis 

of the voltammetry curves.  

 

This interesting result does not explain the differences encountered in the biological activity of the two compounds. Indeed, they 

present quite similar standard potentials as artemisinin and their O-O bond dissociation energies (BDE) are in the same range. 

Nevertheless, this mechanism allows understanding the reason why these endoperoxides (especially G3Me) can exhibit 

antimalarial properties even if they present a steric hindrance of the O-O bond, hampering the approach of the haem, as the 

electron will first go into the π* orbital of the conjugated double bond. 

 

5. Fe(II)-induced Reduction 

 

A chemical approach to the reduction process was then undertaken.[59] We studied the Fe(II)-induced reduction of G3 

(R=OH), G3Me (R=OMe) and G3F (R=F) and then characterized the degradation products. The conditions (FeSO4; CH3CN / 

H2O : 1/1) were chosen to be closer to biological conditions than the THF-based system. In that case pH medium is acidic (pH 5) 

mimicking the pH of the parasite food vacuole (pH 4.5-5.0).[60]  

 

 

A major product 10 (Scheme 4) was obtained in 82% yield from G3, whereas under the same conditions, three major compounds, 

11, 12, and 13 (respectively, 23%, 24%, and 24%), were isolated from G3Me. In both cases starting material was still present 

(about 5%). One major compound 14 (60%) was generated by reduction of the fluoroendoperoxide G3F.  

 

In order to get insight in the mechanisms involved in each reduction, 
13

C-labelled derivatives for G3 and G3Me were synthesized 

from 
13

C-labelled syncarpic acid on two crucial positions 
13

C1 and 
13

C2. In this way, two series of endoperoxides were obtained. 

The first one labelled on 
13

C6 was issued from 
13

C1 syncarpic acid whereas the second one was issued from 
13

C2 syncarpic acid 

and consisted in mixture 1/1 of compounds labelled on 
13

C1 or 
13

C7. The analysis of the 
13

C-labelled distribution and studies of 

multiplicity obtained with coupling of 
1
H- and 

13
C allowed elucidation of the mechanisms involved (Schemes 5 and 6). 

 
 

Scheme 4 : End-products issued from the Fe(II) induced reduction of 

G3, G3Me and G3F. 
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In the case of the G3, transfer of a single electron from Fe(II) to the O-O bond is followed by the homolytic cleavage of the 

peroxidic linkage affording only products issued from the O
1
-centered radical. Thus, the O

1
 centered radical quickly evolves to 

tertiary gem dimethyl C-centered radical (Scheme 5). This tertiary radical rearranged within 5-exo-trig cyclisation, and after ring 

expansion and loss of acetone and iron(II), acid 10 is obtained. 

 

In the case of G3Me, the tertiary radical evolves following two different pathways (Scheme 6). In pathway (a) a mechanism 

analogue to the one involved in G3 reduction was observed leading to the methyl ester 11 whereas in pathway (b) 

disproportionation and lactonisation with concomitant elimination of Fe(III), occurred affording compounds 12 and 13. 

 

 

In the case of G3F, only the lactone 14 was obtained (Scheme 7); its formation is likely due to the formation of the tertiary gem 

dimethyl C-centered radical which quickly rearranges (5-exo-trig cyclisation, addition on the carbonyl and ring expansion) and 

then to the loss of Fe(II) and HF. 

 

 
Scheme 6: Proposal of mechanism of Fe(II) induced reduction of 13C labelled G3Me. 

 
 

 

Scheme 5 : a) 13C labelled syncarpic acid on position 1 and 2.  b) Proposal for the Fe(II)-induced reduction of labelled G3. 

 

 

 

Scheme 3: Mechanism of Fe(II) induced reduction of G3-type endoperoxide. 
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In comparing the reduction of the three endoperoxides, we suggest a preponderant role of the tertiary C-centred radicals. The 5 

exo-trig cyclisation will be more or less rapid depending on the substituent of the double bond (COOMe, COOH or COF). In the 

case of the endoperoxide G3Me (3), the C-centered radical could last long enough to combine with haem (or to act on proteins), a 

reaction which is impeded when the intramolecular 5-exo-trig cyclisation occurs rapidly. This could explain why G3F (4) does 

not possess significant antiplasmodial activity and G3Me (3) is far more potent than G3 (2).  

 

A relationship between antiplasmodial activity and a good balance between reactivity and stability of the C-centered radical is 

thus suggested. This C-centered radical could then alkylate haem or parasitic vital proteins. On this basis we could explain why 

alkylation of the peroxyhemiketal function is crucial for antimalarial activity and how to design new compounds. 

 

 

6. Structural variations of the G-factors. 

 

Our synthetic strategy allows easy modifications of the endoperoxides by variation of the aldehydes (R
1
R

2
CHCHO) involved in 

the Mannich-type reaction. The use of various aldehydes permits the introduction of : 

i) a lateral chain comprising a hydroxyl group for further functionalization 

ii) -spiro-alkyl moieties. 

 

6.1 Modifications on the lateral chain 

 

The use of aldehydes (R
1
R

2
CHCHO) with R

1
 or R

2
 bearing a hydroxyl group (R

1 
or R

2 
equals to CH2OH or CH2CH2OH, and 

CH3) allows the obtention of endoperoxides with a functionalized lateral chain which are presented in Table 2 together with their 

antiplasmodial activities. In all cases, this hydroxyl group was protected as a tert-butyldiphenyl silyl (TBDPS) [51, 61] or a para-

methoxybenzyl (PMB) group.[62] 

 

Methylation of the peroxyhemiketal moiety, cleavage of the protective group, and terminal hydroxyl transformation afforded 

mono and difluoro-endoperoxides 25, 26 with interesting antiplasmodial activities (lower than 1 . From this study, we can 

notice that methylation of the hydroxyl of the peroxo-hemiketal led to compounds with significant more powerful antiplasmodial 

activities in most cases excepted when TBDPS was introduced (19, 21 versus 20, 22 and 27, 29 versus 28, 30). Lipophilicity was 

also of great importance as the deprotection of the hydroxyl group on the lateral chain led to less active compounds. 

Endoperoxides 28 and 32 are 115- and 52- times more potent than 35. This is even more striking with the endoperoxide 19 (0.62 

M) which can be compared to the bis hydroxylated endoperoxide 23 which does not present antimalarial activity anymore 

(>100 M). Hydroxylated compounds 19, 21 and 27, 29 are the most potent of this series with R=OH. The lipophilicity afforded 

by the presence of the TBDPS group could explain the gain in activity. No increase in activity was observed on their methylated 

analogues 20, 22 and 28, 30. This observation let us think that the mechanism of the Fe(II)-induced reduction may be different 

than the one observed in the case of the G3 and G3Me. 

 

 

 

 

 

 

 

 

 

 
 
Scheme 5: Mechanism of Fe(II) induced reduction of G3Me endoperoxide. 

 

 
 

Scheme 7: Proposal of mechanism of Fe(II) induced reduction of G3F. endoperoxide. 
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Table 2 In vitro antimalarial activity on Nigerian P. falciparum strains. 

 

compound R R1 R2 IC50(μM) a   compound R R1 R2 IC50(μM) a 

2 OH CH3
 CH3

 36 
 3 OCH3 CH3

 CH3
 0.28 

15 OH CH3 Ph 25  16 OCH3 CH3 Ph 2.00 

17 OH Ph CH3 27  18 OCH3 Ph CH3 0.70 

19 OH CH3 CH2OTBDPS 0.62  20 OCH3 CH3 CH2OTBDPS 1.45 

21 OH CH2OTBDPS CH3 0.45  22 OCH3 CH2OTBDPS CH3 1.00 

23 OH CH3 CH2OH >100  24 OCH3 CH3 CH2OH 1.4 

      25 OCH3 CH3 CH2F 0.69 

      26 OCH3 CH3 CHF2 0.74 

27 OH CH3 (CH2)2OTBDPS 0.74  28 OCH3 CH3 (CH2)2OTBDPS 1.4 

29 OH (CH2)2OTBDPS CH3 0.73  30 OCH3 (CH2)2OTBDPS CH3 1.6 

31 OH CH3 (CH2)2OPMB 10  32 OCH3 CH3 (CH2)2OPMB 0.67 

33 OH (CH2)2OPMB CH3 9.9  34 OCH3 (CH2)2OPMB CH3 0.47 

      35 OCH3 CH3 (CH2)2OH 73 
 

aIC50 values are duplicated and were considered acceptable when values did not vary by more than a factor of 2.5 to 3. 

 

Introduction of mono or diamine frames, known to improve antiplasmodial activities by accumulation in the digestive vacuole of 

the parasite [63] and thereby increasing its acidic pH, was also accomplished (Scheme 8). Substitution of the chloromethyl 

sulfonyl group by substituted piperazines or mopholine allowed obtention of amino-endoperoxides 36a-36d in moderate to good 

yields (58-70%). However, these endoperoxides (36a-d) have significant lower antiplasmodial activities with values ranging from 

7.7 to 54 M.[62] Presumably, these compounds did not reach the digestive vacuole of the parasite as they were too polar. 

 

 

Scheme 8: Synthesis and in vitro antiplasmodial activities on Nigerian P. falciparum strains of amino-endoperoxides 36a-36d. 

 

6.2 -Spiro-endoperoxides synthesis 

 

The preparation of -spiro-endoperoxides was carried out in order to explore the possibility that the Fe(II)-induced reduction 

leads to homolytic cleavage of the peroxo linkage following the competitive route b) in Scheme 9. The O
2
-centered radical may 

then be formed and rearranged to the primary C-centered radical, either via -scission or via a secondary C-centered radical 

followed by a 1,5-H shift. Primary and secondary C-centered radical are indeed produced after Fe(II) activation of artemisinin or 

artemisinin-like analogues with antiplasmodial activities. 
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Scheme 9: Hypothesis of mechanism of Fe(II)-induced reduction of -spiro-endoperoxides. 

In regard to that, the synthesis of an α-cyclopropyl endoperoxide derivative which should provide a primary C-centered radical 
after Fe(II) induced reduction was first considered. However, the endoperoxide could not be obtained since the precursor exists 
only in the enone form and could not be enolized, whatever photo-activation, acidic or basic treatment. Consequently, neither 
autoxidation nor photo-oxygenation (via singlet oxygen) could lead to the desired endoperoxide. 

Variation of the ring size and use of more elaborated aldehydes, such as norbornene-carboxaldehyde (40, 45), or protected 
glyceraldehyde (41, 46), were then investigated. The latter might be precursor to epoxide.  

The endoperoxides obtained along with their methylated analogs are presented in Figure 3.  

 

 

They were prepared following the previously described methodology,
 
and were evaluated for their antimalarial activities 

against a chloroquine sensitive Nigerian P. falciparum strains.[64] Methylation of the peroxyhemiketal of 37, 38, 39 very 

substantially increases their antimalarial activity from ten to thirty fold. In order to understand their mode of action, Fe(II) 

induced reduction was performed on cyclohexyl and cyclopentyl endoperoxides 37 and 38. The main products of the reaction 

were cyclopentyl (or cyclohexyl) ketone and the acid previously obtained during Fe(II) reduction of G3 (Scheme 5). As in the 

case of G3 reduction, only route a) is involved and the same Fe(II) induced degradation mechanism can be invoked. Norbornene 

(40) and acetonide (41) endoperoxides along with their methylated analogues (45, 46) exhibited very low antimalarial activities 

with values of the same range for both hydroxylated and methylated compounds which is a clue for probably another type of 

Fe(II) degradation mechanism. 

In conclusion, considering all endoperoxidic analogues of the G-factor family studied, G3Me (3) remains the lead compound 

with its potent in vitro antimalarial activity in the submicromolar range. 

 

6.3 Hybrid molecules 

 

 
 

Figure 3: Antiplasmodial activities on Nigerian P. falciparum strains of -spiro endoperoxides. 
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A recent rational approach involving “covalent bitherapy” is based on the use of hybrid molecules with a dual mode of 

action.[7] The two active entities are covalently linked. These drugs allow bypassing the development of resistance, enhancing 

patient compliance and reducing drug–drug interactions. The synthesis of hybrid molecules containing an endoperoxide moiety 

linked to a second pharmacophore, e.g. a streptocyanine, a fluoroquinolone or a 4-amino-7-chloroquinoline, mimicking 

chloroquine was thus undertaken.  

The reaction sequence to the amino-endoperoxide 47 capable of tighting a second pharmacophore is described in Scheme 10. The 

piperidine moiety in spiro position of the cyclic peroxide was chosen in order to avoid the introduction of a second asymmetric 

center and obtention of diastereoisomeric mixture. Following the methodology previously described, methylation of the peroxy-

hemiketalic hydroxyl group, and subsequent tert-butyl-oxy-carbonyl (BOC) cleavage, amino-endoperoxide 47 was obtained. As 

expected, as 47 is more polar than G3Me, its antimalarial activity against Nigerian P. falciparum strain (5.7 M) was less potent 

than the G3Me (0.28 M).  

 

 

 

Scheme 10 : Synthesis of the amino-endoperoxide 47. a) piperidine, dichloromethane, RT, 95%. b) NH4Cl/HCl 1N, 95%. c) O2, EtOAc, 68%. d) BuLi/MeOTf, 

THF, -78°C, 62%. e) TFA, CH2Cl2, 95%. 

 

6.3.1 Streptocyanine-endoperoxide 

 

We previously described the synthesis of streptocyanine dyes as potential new antimalarial drugs.[65]
 
SAR studies have shown 

the influence of the polymethine chain length (5C-, 7C- or 9C-) and also the importance of the structural modifications at the 

nitrogen end groups. The most active compounds displayed sub-micromolar in vitro activities against P. falciparum and the best 

selectivity between activity and cytotoxicity toward mammalian cells was obtained for 5C-streptocyanines with morpholino end 

groups. Streptocyanines are obtained by reaction of carboxonium salts with amines. This methodology was used to design 

peroxo-streptocyanines containing both the endoperoxide moiety related to the G-factor and the streptocyanine. The target dual 

molecules synthesis was carried out either via the hemicarboxonium, or the more reactive but less stable carboxonium (Scheme 

11). Symmetrical (48) and unsymmetrical compounds (49, 50, 51) were obtained using this strategy.[66] Their antiplasmodial 

activities, against chloroquine sensitive (Nigerian) and resistant (FcB1-Columbia and FcM29-Cameroon) strains of P. falciparum 

are presented in Table 3 . All hybrid unsymmetrical molecules 49, 50 and 51 exhibited potent in vitro antiplasmodial activities 

(0.039 to 0.436 M) similar or better than those of their corresponding streptocyanines 52, 53, 54 (0.085 to 5.47 M).[66]  

Antiplasmodial activity is not improved by the introduction of two endoperoxide moieties as the hybrid symmetrical compound 

48 did not display more potent IC50 values than its corresponding hybrid unsymmetrical compound 49 or streptocyanine 52. 

Hybrid peroxo-streptocyanines are thus ten- to one hundred-fold more active than the cyclic peroxide 47 (IC50 5.7 M) which is 

likely too hydrophilic due to the NH group. Interestingly, hybrid 

 unsymmetrical compound 51 showed increased activities with regard to the corresponding symmetrical streptocyanine 53, with 

an IC50 very low: 0.057 and 0.039M against respectively FcB1 and FcM29 P. falciparum strains and nearly 10-fold better than 

our lead actual lead compounds G3Me.  
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Scheme 11: Synthesis of symmetrical and unsymmetrical hybrid streptocyanines. 

 

 
Table 3. In vitro activity of the synthesized compounds against chloroquine susceptible (Nigerian) and chloroquine resistant (FcB1, FcM29) strains of 

Plasmodium falciparum. 

                   
 

 IC50 P. falciparum (M) 

compound NR1R2 NR3R4 R Nigeriana FcB1b FcM29b 

52 NEt2 NEt2 F 0.15 0.248 0.465 

49 NEt2 peroxo F 0.10 0.436 0.422 

48 peroxo peroxo F 0.645 0.294 0.366 

53 NEt2 NEt2 Me 0.13 0.420 0.085 

51 NEt2 peroxo Me - 0.057 0.039 

54 
  

F 0.73 5.47 3.22 

50 
 

peroxo F 0.305 0.427 0.374 

Artemisinin -  - 0.008 - 0.004 

Chloroquine -  - 0.03 0.132 0.26 

 
a Values reflect the mean of two experiments carried out in duplicate. b Values reflect the mean of three independent experiments, as SD was constantly lower than 

15 % they were not indicated in the table.  

 

6.3.2 Ciprofloxacin-endoperoxide 

 

The ciprofloxacin is a second generation of fluoroquinolone antibiotic. Fluoroquinolones affect bacterial DNA by targeting two 

essential enzymes, DNA gyrase and topoisomerase IV that belong to the type II topoisomerase family. Ciprofloxacin acts by 

forming a quaternary drug-topoisomerase-DNA complex involving Mg
2+

 that causes DNA to rewind after being copied, stopping 

thus DNA and protein synthesis resulting in cell death. This antibiotic was also reported to be active against P. falciparum [67] 
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with an IC50 of 50 M against chloroquine sensitive 3D7 strains.[68] Gyrase has moreover been localized in the apicoplast of the 

malarial parasite Plasmodium falciparum.[69]  

To bring together the mode of action of endoperoxide, potentially capable to alkylate haem and the fluoroquinolone capable to 

inhibit DNA replication, the two pharmacophores were covalently linked to furnish a compound acting or in the digestive vacuole 

or in the apicoplast of the Plasmodium. Ciprofloxacine was first added to succinic anhydride leading to the corresponding acid in 

76% yield (Scheme 12). A peptidic coupling using EDCI/HOBt (N-ethyl-N’-dimethylaminopropylcarbodiimide, /1-

hydroxybenzotriazole) was then used involving both entities providing after purification by column chromatography the hybrid 

molecule 55 in 44% yield. [70] 

 

Scheme 12: Synthesis of ciprofloxacine-endoperoxide hybrid molecule 55. 

 

The activity of the hybrid molecule 55 was of 1.2 M against the chloroquine susceptible Nigerian P. falciparum strain. Although 

this compound is slightly more potent than the amino-endoperoxide 47 (IC50 5.7 M), it is 50-fold more active than ciprofloxacin 

against chloroquine susceptible strain. It can also be compared with the new promising prodrugs of ciprofloxacin developed by 

Biot et al. which present activities ten to one hundred better than ciprofloxacin [68]. Their hydrophobic properties lead indeed, to 

a better penetration capacity through the multiple membranes of the apicoplast before targeting DNA gyrase.[71] 

Ciprofloxacin derivatives or hybrid molecules based on fluoroquinolone pharmacophore could represent a new promising class of 

antimalarial drugs, and in a larger context, quinolone family could represent a new antimalarial series as Riscoe’s team identified 

potent and selective quinolone-3-diarylether with good activity against P. falciparum both in vitro and in vivo. [72] 

 

6.3.3 4-Aminoquinoline-endoperoxide 

 

Several strategies were investigated to design hybrids of 4-amino-7-chloroquinoline-endoperoxide, with various cyclic and 

acyclic links. The first one was a peptidic coupling between the amino-endoperoxide 47 and the 4-amino-7-chloroquinoline 

intermediate acids (56, 57). The synthesis of both hybrid compounds is described in Scheme 13. The intermediate acids (56, 57) 

were obtained quantitatively by reaction of the succinic anhydride with the two amino derivatives of the 7-chloroquinoline.[66] 

Then, the coupling was carried out between the amino-endoperoxide 47 and the intermediate acids (56, 57) using the reagent 

HBTU (O-Benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluoro-phosphate) and di-isopropylethylamine.  

http://en.wikipedia.org/wiki/Apicoplast
http://en.wikipedia.org/wiki/Plasmodium_falciparum
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Scheme 13: Synthesis of hybrid 4-amino-7-chloroquinoline-endoperoxides 58, 59 related to G-factors: a) succinic anhydride, DMAP, CH2Cl2, 72% (56) and 

86% (57) b) 47, HBTU, (i-Pr)2EtN, CH2Cl2, 0 to 25°C, 77% (58) and 70% (59). 

 

The second strategy involved linking the 7-chloroquinoline directly or via an amino ethylene coupling arm to the piperidine-

endoperoxide moiety. As the direct coupling was not successful, the 7-chloroquinoline was attached before the autoxidation step, 

with or without the linker as described in respectively Schemes 14 and 15.  

Starting from the 4,7-dichloroquinoline, aldehyde 60 was obtained after substitution of one chloride by the 4-piperidinyl-

methanol followed by oxidation with 2-iodoxybenzoic acid (IBX) in acetone. The so-obtained aldehyde could react with 

syncarpic acid in previous modified Knoevenagel conditions giving the precursor 61 which after slow oxygen uptake provide the 

expected endoperoxide 62 in 54% on the two last steps. It was then methylated using BuLi/MeOTf, at low temperature giving 63 

in 50% yield. 

 

Scheme 14: Synthesis of hybrid 4-amino 7-chloroquinoline-endoperoxides 62, 63 related to G-factors: a) 4-piperidinyl-methanol, K2CO3, DMF, 170°C, 

91% b) IBX, acetone, 60°C, 99% c) syncarpic acid, piperidine then NH4Cl/HCl 1N d) O2, EtOAc, 54% e) BuLi, MeOTf, -78°C, 50%. 

 

The same strategy was used to prepare endoperoxides 67 and 68. 4-aminoquinoline 64 was firstly prepared by reaction of 

the 4,7-dichloroquinoline with ethanolamine at reflux, followed by tosylation of the hydroxyl in a 90% yield for the two 

steps. After substitution of the tosyl group by 4-piperidinyl-methanol, followed by oxidation with IBX in DMSO, the 

aldehyde 65 was obtained in 45% yield. As previously described, dienol 66 could be obtained within Knoevenagel modified 

conditions between syncarpic acid and aldehyde 65. After a slow oxygen uptake (15 days) in dichloromethane, the 

endoperoxide 67 was obtained in 61% yield as the salt of the trifloroacetic acid. Finally, methylation with BuLi/MeOTf, at 

low temperature furnished the target endoperoxide 68 with 27% yield. 
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These hybrid endoperoxides were evaluated in vitro, on both chloroquine susceptible and resistant strains (3D7 and W2 

respectively). Values of the antiplasmodial activities are presented in Table 4. From these values, it seems that a link is necessary 

between the 4-amino-7-chloroquinoline part and the endoperoxide moiety as hybrid compounds 62 and 63 are the less potent of 

the series. Introduction of the ethylene link within compounds 67, 68 affords an increase in activity with values around 100 nM, 

these compounds being slightly more potent than G3Me. But the best improvements were obtained using a peptidic coupling 

between the amino-endoperoxide and the intermediate acids obtained by reaction of the succinic anhydride with the two cyclic 

and acyclic amino derivatives of the 7-chloroquinoline furnishing the hybrids 58 and 59. The compound 59 is the most potent 

with an IC50 of 31nM on 3D7 and of 13 nM on W2. It is noteworthy that IC50 of endoperoxides are generally lower on 

chloroquine resistant strain than on sensitive strain as it is the case for this compound. It seems that for this compound both the 

peroxide and the 4-amino-7-chloroquinoline moieties afford activity. This compound is indeed more potent than chloroquine 

alone on W2 and in the same range on 3D7. Moreover, it is 10-fold better than G3Me on both strains.  

 

Table 4: In vitro activity of the synthesized compounds against chloroquine susceptible (3D7) and chloroquine resistant (W2) strains of P. falciparum. 

 

  IC50 (nM) 

strains chloroquine artemisinin G3Me 58 59 62 63 67 68 

3D7 24 19 405 130 31 4400 230 90 97 

W2 420 4 137 86 13 870 97 106 160 

 

 

Conclusion 

 

Synthesis of bicyclic peroxides related to the G-factor family was developed based on an autoxidation step to introduce the O-O 

bond. This methodology allows preparation of a large family of endoperoxides. An extensive electrochemical study of the 

dissociative electron transfer allows us to understand the mechanism implied during the electron transfer and then a chemical 

study, the characterization of the radical species obtained after iron(II) induced reduction. The endoperoxide moiety has been 

linked to other active compounds furnishing hybrid molecules. An increase in antiplasmodial activity was observed for some of 

them, especially for two kinds of hybrids: endoperoxide-streptocyanine 53 and endoperoxide-7-chloro-4-aminoquinoline 59 for 

which activities are in the low nanomolar range (10 to 50 nM). 

 

 

Scheme 15 : Synthesis of hybrid 4-ethylamino-7-chloroquinoline-endoperoxides 67, 68 related to G-factors: a) ethanolamine, reflux 95% b) TsCl, 

pyridine, 95% c) 4-piperidinyl-methanol, K2CO3, DMF, 160°C, 85%, d) IBX, TFA, DMSO , 45%, e) syncarpic acid, piperidine then NH4Cl/HCl 1N, 

f) O2, CH2Cl2, TFA (1eq), 61%, g) BuLi, MeOTf, -78°C, 27%. 
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