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Abstract

A fluid-structure model describing the equilibrium state of a flexible blade rotor with its own wake is
derived for various external axial flow conditions. The model is based on three building blocks. The two-
dimensional lifting-line theory is first used to compute the local aerodynamic loads and the blade circulation
profile. The blade deformation is then obtained by solving the nonlinear equations for bending and twisting
angles deduced from a one-dimensional beam model. Finally, the wake is obtained using a Joukowsky
model. In this wake model, the wake of each blade is modelled by two small-core-size counter-rotating
vortices emitted from the rotor axis and blade tip. The velocity field induced by these vortices is computed
using the Biot-Savart law. We show that, in the rotor frame, we can obtain a stationary vortex structure for
almost any vertical flight regimes. This wake solution can then be used to compute the induced velocity in
the rotor plane and apply the two-dimensional lifting-line theory again. By iterating a few times this loop,
we converge toward a nonlinear solution of the problem for which the aerodynamics loads, blade deformation
and wake structure are compatible.

As illustration, this newly-developed model is applied to two rotors. We analyse the effects of the
external wind conditions, geometry and material properties of the blades on the blade deformation and wake
characteristics. We show that we can describe slow descending regimes for which the classical momentum
theory does not apply.
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1. Introduction

Rotors have been widely studied, often empirically, with practical applications in mind. Many models
have also been proposed to estimate rotor performance in different operational conditions. General reviews
of these models can be found in Leishman’s book [1] for helicopters and in Hansen’s book [2] for wind
turbines.5

In several applications, rotor blades are long and flexible structures. These characteristics make blades
prone to deformation when subject to aerodynamics loads. For helicopters and large wind turbines, signifi-
cant deformations are indeed observed close to the blade tip, even if the blade material is not particularly
compliant. By contrast, for some drones, the material is so elastic that the blade shape drastically changes
when the rotor is in operation.10

The external flow properties and, specially, the rotation of the blades introduce an heterogeneous airload
distribution on the blades. These heterogeneous loads deform the blades, and consequently change both the
blade position and the induced wake. As the wake also affects the incident velocity seen by the blade, the
fluid-structure problem is always strongly coupled. In this paper, instead of trying to solve this nonlinear
problem by direct numerical simulation [3], our objective is to introduce few simplifications that will allow15

us to perform a parametric analysis at low computation cost.
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The first simplification concerns the blade geometry. Due to the slenderness of the blades, it is natural
to use beam theory [4] that exploits this property. Different one-dimensional equations for the bending and
twisting angles are obtained along the blade centerline depending on the asymptotic limit considered [5].
The most used models are the simple Euler-Bernouilli rod model [6] and the nonlinear ribbon model [7, 8]20

with an intrinsic non-linear coupling between bending and twisting. Several authors have studied the effect
of this coupling on the adaptability of the rotors to non-optimal operational conditions [9, 10, 11]. In the
present work, we shall use the simple rod model.

One of the main difficulties of rotor modelling is to have a good description of the flow that goes through
the rotor plane. The most popular strategy is to use a momentum balance to relate the thrust and torque25

felt by the rotor to changes of axial and angular momentum in the flow [12]. This so-called Blade Element
Momentum Theory is widely used for the design of wind turbines [13]. It has been progressively improved
to account for the vortical wake, multiple blades or three-dimensional effects [14]. However, it assumes a
particular topology of the flow streamlines that is not always satisfied, especially in the context of helicopters.
In particular, in hovering and in weakly descending regimes, Blade Element Momentum theory does not30

apply.
For these cases, a more precise description of the wake based on vortex methods has often been used

[15]. The wake is then composed of vortex elements (such as tubes or sheets) that can have a prescribed
form or move according to the Biot-Savart law [16]. Free-vortex methods can be very precise but they are
unstable and costly when the number of vortex elements is large. A good alternative, that we adopt in this35

work, is to use a reduced vortex model involving only a tip and a hub vortex from each blade [17]. This
so-called Joukowsky model offers a simple but relatively efficient way to describe the wake [15].

The paper is organized as follows. In section 2 we present the model, introducing all its building blocks.
The model is then applied to two different flexible rotors in section 3. The effects of blade flexibility and
external flow conditions on the blade deformation and wake properties are then analysed. Finally, some40

conclusions are drawn in section 5.

2. The model

In this section, we provide a description of the model. The model can be divided into five parts: the
calculation of the aerodynamic loads, a model for the deformation of the blades, a model for the near wake,
the calculation of the wake structure and the fluid-structure coupling.45

2.1. Aerodynamic loads

The aerodynamic forces acting on the blade are calculated using the two-dimensional lifting-line theory
[18]. The effective velocity felt by a blade element at the radial coordinate rb, when the rotor is rotating at
the angular velocity Ω in an external axial flow V∞, is given by

U =

√(
V∞ + V̄ ind

z

)2
+
(
Ω + Ω̄ind

)2
r2b , (1)

where V̄ indz and Ω̄ind are the axial and angular velocities induced by the wake. The inflow angle with respect
to the rotor plane is given by

ϕ = arctan

(
V∞ + V̄ ind

z

Ωrb + Ω̄indrb

)
. (2)

If the pitch angle of the blade element is β (figure 1), we can then define the angle of attack by

α = β − ϕ. (3)

The aerodynamic lift fL and drag fD forces per unit length on the blade element are given by

fL =
1

2
ρU2c CL(α), fD =

1

2
ρU2c CD(α). (4)
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(a) (b)

Figure 1: Blade element airfoil in generic climbing (a) and descending (b) flight cases.

where CL(α) and CD(α) are the lift and drag coefficients, ρ is the density of the fluid and c is the chord of
the element. The dependence of CL and CD on the Reynolds number is neglected, as well as any hysteretic
behavior. The forces fL and fD are exerted perpendicularly and parallel to the velocity direction (figure50

1). The aerodynamic force components perpendicular and parallel to the blade element direction are then
given by

f⊥ = fL cosα+ fD sinα, f‖ = fD cosα− fL sinα. (5)

In the present model, we shall consider azimuthally averaged quantities for the induced velocities. This
averaging procedure is necessary to smooth out the strong velocity variations that are artificially introduced
by our wake model (see §2.3).55

2.2. Deformation model

The blade deformation is obtained using a beam model for the blade. Such a 1D model provides a simple
way to compute bending and torsion from the forces exerted on the blade. We are looking for equilibrium
configurations. These configurations satisfy the Kirchhoff equations [8], expressing the balance of forces and
moments on the blade element located at the curvilinear coordinate s60

∂T

∂s
+ f = 0, (6)

∂M

∂s
+ d3 × T +m = 0. (7)

where f and m are the external forces and moments per unit length, T and M the internal forces and
moments and d3 the vector tangent to the blade centerline. These equations are conveniently written in the
local orthonormal frame (d1,d2,d3) (figure 2a). These vectors di, i = 1, 2, 3 satisfy

∂di
∂s

= ω(s)× di(s), (8)

where the Darboux vector ω(s) is defined by

ω = κ1(s)d1(s) + κ2(s)d2(s) + τ(s)d3(s). (9)

The components of ω in the local frame are the normal curvature κ1(s), the geodesic curvature κ2(s) and
the torsion τ(s). The normal curvature κ1 and the torsion τ can also be defined in terms of a bending angle
θ and a torsion angle γ (figure 2b)

∂θ

∂s
= κ1 ,

∂γ

∂s
= τ. (10)
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Equations (6) and (7) have to be completed by the beam constitutive law

M = EIκ1d1 +
EJ

2(1 + ν)
τd3, (11)

where ν is the Poisson ratio, E the Young modulus, I and J the second moments of area in the direction d1
and d3 respectively. We have assumed uniform elastic properties of the blades and neglected deformations65

in the direction d2 (κ2 = 0).
Moreover, in the following, we assume that the airfoil profile is the same all along the blade, meaning

that we can write I = I∗c4 and J = J∗c4, where I∗ and J∗ are dimensionless quantities. The cross section
area of the airfoil can also be written as A = A∗c2 where A∗ is a dimensionless quantity.

The blade deformation problem is then defined by the parameters linked to the blade profile (CL, CD, I∗,
J∗ and A∗), one parameter characterizing the blade aspect ratio c∗ = c/Rb and three parameters associated
with the blade material

ν, E∗ =
E

ρbgRb
, ρ∗b =

ρb
ρ
, (12)

where Rb is the length of the blade, ρb and ρ the density of the blade and of the fluid respectively, and g
the gravitational acceleration. The parameter E∗ compares the elastic forces with gravity. It is also useful
to introduce the Froude number Fr that compares gravitational forces with centrifugal forces:

Fr2 =
RbΩ

2

g
. (13)

In order to obtain two differential equations for θ and γ, we manipulate equations (6)-(11). For the
equation on θ, we differentiate equation (7) with respect to s and we take its projection on the local
direction d1. After imposing κ2 = 0, we obtain for the first term:

d1 ·
∂2M

∂s2
=

∂2

∂s2
(M · d1) + τ2 (M · d1) ' ∂2

∂s2
(M · d1) , (14)

where we neglect the term implying τ2, as the torsion curvature is small compared to the deflection, which
will be verified a posteriori. So the final expression will be:

∂2(M · d1)

∂s2
+
∂T

∂s
· d2 = 0, (15)

where κ2 = 0 has been used again to obtain the second term and neglect the term coming from the external70

moments.
From the constitutive law (11) and using the definition (10), the first term of equation (15) can be written

as
∂2(M · d1)

∂s2
= E

(
I
∂3θ

∂s3
+ 2

∂I

∂s

∂2θ

∂s2
+
∂2I

∂s2
∂θ

∂s

)
. (16)

The second term of (15) is the projection on the direction d2 of the forces exerted on the blade (see equation
(6)). They include the aerodynamic force perpendicular to the blade, f⊥, the centrifugal force and the
weight of the blade per unit length. In the following, the rotor axis will be assumed to be aligned with the
direction of gravity, as for a helicopter in vertical flight. The projection on d2 of the centrifugal force and
weight can then be written:

fcent · d2 = Aρbrb(s)er · d2 = AρbΩ rb(s) sin θ = AρbΩ

[
Rb

∫ s

0

cos θds

]
sin θ, (17)

fw · d2 = Aρbgez · d2 = Aρbg cos θ sin(β + γ). (18)

Developing equation (15) with (5), (16)-(18) we obtain the final equation for θ. The equation for γ is
obtained by projecting equation (7) on d3 with (10) and (11). Finally, the two dimensionless differential
equations for the bending and torsion angles θ and γ are:
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(a) (b)

Figure 2: Blade schemes showing the local orthonormal frame (a) and bending and torsion angles (b).

ρ∗bE
∗I∗

Fr2

[
c∗4θ′′′ + 8c∗′c∗3θ′′ + 4(3c∗′c∗2 + c∗′′c∗3)θ′

]
− 1

2
c∗U∗2(CL(α) cosα+ CD(α) sinα)

+ρ∗bA
∗c∗2

[∫ s

0

cos θds

]
sin θ +

ρ∗bA
∗c∗2

Fr2
cos θ sin(β + γ) = 0,

(19)

ρ∗bE
∗J∗0

2(1 + ν)Fr2

[
c∗4γ′′ + 4c∗3c∗′γ′

]
− 1

2
c∗2U∗2 [(CL(α) cosα+ CD(α) sinα)δaccm + Cm,ac(α)] = 0, (20)

where the prime denotes differentiation with respect to s. The last two terms of the bending equation (19)
correspond to the centrifugal force and the weight of the blade. The second term of the torsion equation
(20) corresponds to the aerodynamic moment. The quantity δaccm is the distance (non-dimensionalized by c)
from the center of mass to the aerodynamic center of the airfoil, typically located at a distance of c/4 from
the leading edge for subsonic flows. The coefficient Cm,ac is the pitching moment coefficient of the airfoil,
which is in general constant for small angles of attack and equal to zero for symmetric airfoils. The angle
of attack α(s) and the normalized incident velocity U∗(s) = U(s)/(ΩRb) are obtained from the wake model
discussed in the next two subsections. These equations have to be integrated with the following boundary
conditions

θ(0) = θ′(1) = θ′′(1) = 0 , γ(0) = γ′(1) = 0, (21)

that correspond to a “clamped” condition at the blade root, and a “free” condition at the blade tip.75

In order to analyze the blade deformations in a more intuitive way, we also introduce the bending
deflection function fθ(s) that measures the distance of each blade element from its original undeformed
position.

2.3. Joukowski model

To describe the wake, we use a Joukowski model [17]. In this model, the wake of each blade is composed
of a bound vortex on the blade and two free vortices of opposite circulation Γ, emitted from two positions
rt and rh close to the tip and hub of the blade. The points of emission and the vortex circulation Γ are
computed from the circulation profile Γ̄(s) of the blade which is obtained from the local 2D Kutta-Joukowski
formula

Γ̄(s) =
1

2
U(s)c(s)CL(α(s)). (22)

The vortex circulation Γ is defined as the maximum value of Γ̄(s), while rtipb and rhubb are the centers of80

mass on either side of the point of maximum of Γ̄(s) of the quantity ∂Γ/∂s. For the point of emission close
to the hub, we shall assume rhubb = 0, i.e. the emission is on the rotor axis. This hypothesis is justified if
we consider that the hub vortices emitted by all the blades are expected to merge away from the rotor on
the rotation axis. It actually corresponds to the initial model introduced by Joukowski [17]. For the other
point of emission, it corresponds to the tip if the circulation reaches its maximum at this point. In general,85

we shall be in this situation, which is illustrated in figure 3(a).
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(a) (b)

Figure 3: (a) The Joukowski model. (b) Illustration of the discretization into straight segments of the tip vortex.

2.4. Wake structure

The wake structure is computed using a free-vortex method [1]. Each vortex is discretized in small
segments of vorticity that move as material lines in the fluid according to

dξ

dt
= U(ξ) = U∞ +U ind(ξ), (23)

where ξ is the position vector of the vortex filament, U the velocity field, composed of the external velocity
U∞ and the induced velocity U ind(ξ) generated by the vortex filaments. When the rotor has N blades, the
induced velocity deduced from the Biot-Savart law [19] is given by

U ind(ξ) =
Γ

4π

N∑
j=1

∫
(ξj − ξ)× dτj
|ξj − ξ|2

, (24)

where the integrals cover each vortex filament defined by its position vector ξj and tangent vector τj .
This expression is also used to obtain the mean induced velocity on the blade defined in equation (1). On
the vortex filament, the Biot-Savart integral is singular, the self-induced velocity diverges. To avoid this90

singularity, a small but finite core size a is introduced. This allows us to obtain the self-induced velocity by
the so-called cut-off method [19]. In the present study, we assume an identical and constant core size for all
the vortices.

In the present work, we do not consider any temporal evolution of the rotor system. We focus on
regimes where the rotor is equilibrium with its wake. We therefore look for helical wake structures that are
stationary in the rotor frame. This means that the vortices should be steady in the frame rotating at the
angular velocity Ω of the rotor. This condition of steadiness implies a condition for the velocity field with
respect to the vortex structures: it should everywhere be tangent to the structure. This condition reads(

U∞(ξmj ) +U ind(ξmj )
)
× τmj = 0, (25)

where the external field U∞ is the sum of the external axial velocity V∞ez and the azimuthal velocity
−rΩeψ. This condition can also be written for each vortex filament as95

drw
dψ

=
V ind
r

Ωind − Ω
,

dzw
dψ

=
V ind
z + V∞
Ωind − Ω

(26)

where rw(ψ) and zw(ψ) are the radial and axial positions of the filament. Concerning the boundary con-
ditions, it is imposed that the free vortices are attached to their point of emission (the axis center and in

6



Figure 4: Fluid-structure loop scheme.

general the blade tip). If the azimuthal origin is fixed at the point of tip emission, the condition of attache-
ment reads rw(0) = rtipb and zw(0) = ztipb , where rtipb and ztipb are the radial and axial coordinates of the
tip emission point. Far from the rotor, the wake is assumed to become homogeneous. In other words, we100

assume that each filament becomes a uniform helix after a certain number of turns, typically of order 15.
The impact of this far wake is then computed by considering 8 additional turns of perfect helices. As shown
by Ali & Abid [20], this is sufficient to have a good approximation of the effect of infinite helices.

It is worth mentioning that the wake structure deduced from the Joukowski model only depends on the
number of blades N and three dimensionless parameters:

λ =
rtipb Ω

V∞
, η =

Γ

(rtipb )2 Ω
, ε =

a

rtipb
, (27)

where λ is known as the tip-speed-ratio and η and ε represent the vortex strength and the vortex core size
respectively.105

2.5. Fluid-structure interaction

To obtain the circulation profile of the blade, we must determine the flow in the rotor plane. But this
flow, especially the induced flow, also depends on the circulation and emission point of the vortices. The
wake/rotor problem is thus always strongly coupled. The solution to this problem is here obtained through
an iterative procedure following a fluid-structure interaction loop (see figure 4).110

In practice, the problem is first solved for a rigid rotor. The first loop is performed by neglecting the
induced velocity, so that first estimates for the circulation profile and the resulting wake can be computed
from the external velocity only. This first loop also gives an estimate of the induced velocity, so that a
second loop can be performed with the full velocity field. The process is repeated until convergence.

The flexible case is treated by considering the rigid rotor configuration as guess value. The difference115

with the respect to the rigid case is that the circulation profile is now obtained after having computed the
new position of each blade element using the beam model (section 2.2). As for the rigid case, the process is
repeated until convergence.

For both rigid and flexible rotors, convergence is typically obtained in 5 or 6 loops.

3. Applications120

3.1. Description of the rotors

In this section, we apply the model to two different two-bladed rotors, named here rotor A and rotor
B. For both rotors, we consider a same NACA0012 profile for the blade cross-section. The characteristic
constants for this profile are I∗ = 0.0033, J∗ = 3.28 and A∗ = 0.0822. For the aerodynamic coefficients CL
and CD, we assume the functions given in [21] and shown in figure 5(b) and, for the aerodynamic moment, we125

use Cm,ac = 0 and δaccm = 0.15. The blades of rotor A have a simple geometry with a uniform dimensionless
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Figure 5: (a) Blade geometry of rotor A (upper plot) and rotor B (lower plot). (b) Lift coefficient CL (dashed line) and drag
coefficient CD (solid line) with respect to the angle of attack α for a NACA0012 profile, from [21]. (c) Chord c∗ and twist
angle β (in degree) along the rotor B blade. Adapted from [22].

chord c∗ = 0.1 and a uniform twist angle β. We shall vary this angle β. Rotor B is inspired by the rotor
used in the experiments by Quaranta et al. (2015) [22], which was designed to have a constant circulation
profile. The original geometry has been slightly modified to operate in a larger range of tip-speed ratio λ.
The distributions of chord and twist angles are shown in figure 5(c). The geometry of the blades of each130

rotor is illustrated in figure 5(a).
In the following section, we shall vary the operational conditions of the rotors (i.e. the angular rotation Ω

and the external wind speed V∞) that affect the tip speed ratio λ and the Froude number Fr. The material
properties of the blade will also be varied such that the effect of the dimensionless parameters ρ∗b and E∗

will be considered. However, the Poisson ratio will be kept fixed and equal to ν = 0.5.135

Except for the twist angle of the rotor A blade, the geometry of the two rotors without external forces
will not be varied. We shall also not analyse the effect of the vortex core size that is fixed to ε = 0.01.

3.2. Results

In this section, we first analyse the effect of the tip-speed ratio λ on the wake characteristics and blade
shape of rotor A. We fix the Young modulus E∗, the density ratio ρ∗b , the Froude number Fr, and vary λ by140

changing the external fluid velocity.
In figure 6, we have illustrated the radial trajectories of the vortices in the wake when λ is varied. In

the rotor frame, the external wind is going downwards when λ is negative and upwards when it is positive.
For a helicopter, this means that negative values of λ correspond to climbing flight, and positive values of λ
to descending flight. Hover is associated with an infinite value of λ. Normal flight situations of a helicopter145

are shown in figure 6(a). For this case, the wake is contracting and moves downwards. The contraction
increases when λ becomes more negative, that is when the climbing speed decreases. This contraction
process continues when the climbing speed vanishes and changes sign, i.e. when we move to a slow descent
flight regime corresponding to large positive values of λ. However, for this regime, the vortices are emitted
upwards and therefore cross the rotor plane before going downwards. For smaller values of λ, a downward150

wake ceases to exist, and we jump to another type of solution shown in figure 6(b): the wake expands and
goes upwards. This situation corresponds to the so-called windmill brake regime of helicopters. If gravity
was not aligned with the rotor axis, it would correspond to the wind turbine regime. As expected, the
stronger the external wind (i.e. the smaller λ), the less expanding is the wake.

The intervals of λ where downward and upward wakes exist do not seem to overlap. For all the parameters155

that we have considered, we have found an interval of λ where both solutions cease to exist. The limits of
this interval are different for each case. We suspect that this is reminiscent of the Vortex Ring State (VRS)
[23].
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Figure 6: Radial position of the wake in the axial direction for different tip-speed-ratio values of rotor A. (a) Helicopter regimes
for β = 40◦. Climbing flight (λ = −10, λ = −20), hover (λ = ∞), and weakly descending flight (λ = 15). (b) Wind turbine
(or windmill brake) regimes for β = 15◦. Other parameters are E∗ = 107, ρ∗b = 100, Fr2 = 1000.

0.2 0.4 0.6 0.8 1

s/Rb

0

0.01

0.02

0.03

0.04

0.05

0.06

Γ̄
/
Ω
R

2 b

λ = -10

λ = -20

λ = -∞

λ = 15

0.2 0.4 0.6 0.8 1

s/Rb

0.01

0.02

0.03

0.04

0.05

0.06

Γ̄
/
Ω
R

2 b

λ = 3

λ = 4.2

λ = 5.7

(a) (b)

Figure 7: Circulation profile obtained along the blade of rotor A for different tip-speed-ratio values. (a) Helicopter regimes
(β = 40◦); (b) Wind turbine regimes ( β = 15◦). Other parameters are the same as in figure 6.

In figure 7, we have plotted the circulation profile obtained on the blade for the configurations shown
in figure 6. For normal flight conditions (figure 7(a)), the circulation profile is found not to vary much. It160

is mainly associated with the blade rotation that prescribes a linear dependence of the circulation on the
radial coordinate. The small bump observed for small values of s/Rb is associated with the lift coefficient
crisis obtained for small angles of attack [see figure 5(b)]. The small overshoot of circulation observed when
λ = 15 corresponds to an induction effect of the vortices that are above the rotor plane for s/Rb > 0.7.
In the windmill brake regimes (figure 7(b)), a larger effect of variation is observed, with an increase of 40165

% of the total circulation when λ changes from 3 to 5.7. This can be understood by the larger relative
contribution of the axial wind in the total velocity for these cases.

The effect of λ on the blade deformation is shown in figure 8. The material chosen for the blade
is weakly flexible so the deformation in terms of torsion angles (left plots) and bending angles (central
plots) remains small. For normal flight conditions (upper plots), the deformation increases as the climbing170
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Figure 8: Blade deformation of rotor A for the helicopter regimes with β = 40◦ (upper plots) and for the wind turbine regimes
with β = 15◦ (lower plots). Left: Torsion angle γ; Center: Bending angle θ; Right: Bending deflection function fθ. The other
parameters are the same as in figure 6.

velocity decreases. The largest deformation is reached for the slow descending regime. In the windmill
brake regime (lower plots), the opposite behavior is observed : the deformation diminishes when the descent
speed decreases. Both behaviors are in agreement with the variation of circulation with respect to λ. Larger
circulation leads to larger deformation. Note however that the variations of γ and θ along the blade are
much smoother and do not exhibit the bumps and jumps observed in the circulation profile.175

The effect of the other parameters on blade deformation for a typical climbing regime of rotor A (λ = −20)
is analyzed in figure 9. The torsion angle γ remains always much smaller than the deflection angle θ. However,
both are similarly affected by variations of E∗ (upper plots), ρ∗b (central plots) and Fr (lower plots): twisting
and bending increase when E∗ or ρ∗b decreases or when Fr increases. These similarities can be understood
by going back to equation (19). For the parameters of figure 9, weight and centrifugal forces remains small.180

If the corresponding terms (third and fourth terms in equation (19)) are neglected, the equations for θ
and γ become dependent on the parameters E∗, ρ∗b and Fr2 through the combination ρ∗bE

∗/Fr2 only. It is
then obvious that decreasing ρb by a factor of 10 is equivalent to decreasing E∗ by the same factor, or to
increasing Fr2 by a factor of 10.

In figure 9, the deformation is relatively small. Highly deformed cases can nevertheless be calculated in185

the same way. In figure 10 we illustrate such a configuration by considering a very compliant material for
rotor A. We observe in figure 10(c), that the deflection reaches 50% of the blade length when we consider the
flow conditions λ = −10, ρ∗b = 1 and Fr2 = 100. The same rotor at rest is however almost undeformed as seen
on this figure. We see also that, even for this very deformed case, the torsion remains very small compared
to the deflection. This agrees with the assumption made in equation (14), where the terms involving τ2190

were neglected.
So far, we have considered the simple geometry of rotor A. There is no difficulty to consider the more

complex geometry of rotor B. In figure 11, we compare the circulation profile and blade deformation of both
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Figure 9: Effect of the other parameters on blade deformation of rotor A for β = 30◦ and λ = −20. The default parameters
are E∗ = 106, ρ∗b = 100 and Fr2 = 100 Left column: Twist angle γ; Central column: Bending angle θ; Right column: Bending
deflection function fθ. Upper line: Young Modulus effect. Middle line: Blade density effect. Lower line: Froude number effect.
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rotors for the same flow conditions, and the same material. We have chosen a value of λ close to conditions
for which the rotor B has been designed. In figure 11(a), we observe that the circulation profile associated195

with rotor B is almost constant for s/Rb > 0.4 in agreement with the design properties [22]. The circulation
profile obtained by rotor A is completely different. It gives a smaller vortex circulation but it gets more
deformed by the flow (see figure 11(b-d)).
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Figure 11: Effect of the blade geometry. Solid lines: rotor A with β = 20◦; Dashed lines: rotor B. (a) Circulation Γ̄ along
the blade; (b) Torsion angle γ; (c) Bending angle θ; (d) Bending deflection function fθ. The other parameters are λ = 3.5,
E∗ = 107, ρb = 100, Fr2 = 100.

4. Comparison with experimental data

In this section, we compare our model with experimental data for a wind turbine rotor and a helicopter200

rotor in hover. For both cases, the blades are rigid.
The data for the wind turbine rotor are taken from the MEXICO project [24]. This rotor has variable

chord and pitch angle and resembles rotor B. In the left column of figure 12, we have plotted the wake
geometry, the lift force along the blade, and the predicted circulation profile for a tip-speed ratio λ = 6.67.
The experimental data are indicated by symbols. We observe that there is a very good agreement for both205

the wake geometry and the lift force. This is not surprising as the circulation profile is mainly flat (lower left
plot). The Joukowski model is expected to work for such a case. The good agreement therefore validates
the numerical procedure.

The data for the helicopter rotor are extracted from a two-bladed rotor experiment from NASA technical
rapport TM81232 [25]. The rotor has in this case an untwisted constant-chord blade with a uniform pitch210

angle β = 12◦ as rotor A. Similar quantities as for the wind turbine rotor are plotted in the right column of
figure 12. For this rotor, the agreement with the model is not as good as for the wind turbine case. In the
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Figure 12: Comparison of the model (solid line) with two experimental cases (◦): A wind turbine configuration from MEXICO
project [24] at λ = 6.67 (left column) and and a rotor in hover with an untwisted constant-chord blade at a constant pitch
angle 12◦ from NASA [25] (right column). Upper line: Radial position of the tip vortices in the axial direction. Central line:
Lift force along the blade. Lower line: Circulation profile along the blade.

model, the wake is more contracted and the lift is underestimated in the inner part of the blade and weakly
overestimated near the tip. As in the wind turbine case, a better agreement near the tip would be obtained
if a tip correction was implemented in the model (see Sørensen’s book [14]). The circulation profile obtained215

from the model is shown in figure 12 (lower right plot). It strongly varies with the radial position. Note in
particular that it becomes negative for r/R < 0.4. In principle, with such a circulation profile, we expect,
from Prandtl lifting-line theory, vortex sheet shedding all along the blade, and the formation for each blade
of three vortices: an inner vortex at r/R ≈ 0.2, a tip vortex at r/R ≈ 1 and third opposite sign vortex close
to r/R = 0.6 resulting from the roll-up of the vortex sheet. It is the merging of the root and middle vortices220

of all the blades that is supposed to give the hub vortex of Joukowski model. This complicated roll-up and
merging process is not considered. It may naturally affect the induced flow in the rotor plane. For the rotor
in hover, the induced flow becomes the dominant part of the flow close to the rotor center. It is therefore in
this region that the largest inaccuracy can be expected.

The discrepancy observed in the wake geometry (upper right plot of figure 12) may not be associated225

with the model. Indeed, the experimental rotor is fixed on a big shaft aligned with the wake axis. We
suspect that the shaft limits the contraction of the wake. It is not excluded that it could also influence the
lift forces. For these reasons, it is difficult to have a definite opinion on the errors associated with the model
for this case.
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5. Conclusion230

We have presented a model providing the equilibrium state of a flexible rotor in vertical flight conditions.
The solution is stationary (in the frame rotating at the rotor angular speed), but takes into account the
strong coupling between the rotor geometry and its wake. A simple but complete description of the blade
deformation and of the wake generated by the rotor has been provided. A parametric study has also been
performed for a simple rotor geometry in order to quantify the effect of external flow conditions and material235

properties. We have shown that the model is able to describe rigid as well as very flexible rotors. It also
works in operational conditions where classical momentum theory does not apply. In particular, we have
shown that we can describe rotors in slow descending regimes of helicopter flight, where the vortices created
by the rotor move above the rotor plane before being advected downwards.

We have compared the rigid version of the model to experimental data for two rotors. We have found240

a good agreement for the lift distribution and the wake geometry for a wind turbine rotor exhibiting an
almost constant circulation distribution along its blades. But further comparisons are needed to fully assess
the validity of the model in hover or for other rotors.

It is worth emphasizing that we have only consider steady solutions. Strongly unsteady regimes such
as the Vortex Ring State [26, 27] are outside the scope of the present work. Furthermore, we have no245

information on the stability of the solutions. We know that the wake is a priori unstable with respect to
long-wavelength instability [28, 29, 22]. But other instabilities associated with the blade flexibility, such as
flutter, may also be present [30, 31].
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