
HAL Id: hal-02321992
https://hal.science/hal-02321992

Submitted on 21 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visible light assisted oxidative coupling of benzylamines
using heterostructured nanocomposite photocatalyst

Anurag Kumar, Abderrahmane Hamdi, Yannick Coffinier, Ahmed Addad,
Pascal Roussel, Rabah Boukherroub, Suman L Jain

To cite this version:
Anurag Kumar, Abderrahmane Hamdi, Yannick Coffinier, Ahmed Addad, Pascal Roussel, et al..
Visible light assisted oxidative coupling of benzylamines using heterostructured nanocomposite pho-
tocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, pp.457-463.
�10.1016/j.jphotochem.2018.01.033�. �hal-02321992�

https://hal.science/hal-02321992
https://hal.archives-ouvertes.fr


Accepted Manuscript

Title: Visible light assisted oxidative coupling of benzylamines
using heterostructured nanocomposite photocatalyst

Authors: Anurag Kumar, Abderrahmane Hamdi, Yannick
Coffinier, Ahmed Addad, Pascal Roussel, Rabah
Boukherroub, Suman L. Jain

PII: S1010-6030(17)31742-2
DOI: https://doi.org/10.1016/j.jphotochem.2018.01.033
Reference: JPC 11121

To appear in: Journal of Photochemistry and Photobiology A: Chemistry

Received date: 27-11-2017
Revised date: 6-1-2018
Accepted date: 22-1-2018

Please cite this article as: Anurag Kumar, Abderrahmane Hamdi, Yannick
Coffinier, Ahmed Addad, Pascal Roussel, Rabah Boukherroub, Suman L.Jain,
Visible light assisted oxidative coupling of benzylamines using heterostructured
nanocomposite photocatalyst, Journal of Photochemistry and Photobiology A:
Chemistry https://doi.org/10.1016/j.jphotochem.2018.01.033

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

https://doi.org/10.1016/j.jphotochem.2018.01.033
https://doi.org/10.1016/j.jphotochem.2018.01.033


1 

 

Visible light assisted oxidative coupling of benzylamines using 

heterostructured nanocomposite photocatalyst 

Anurag Kumar,1,2 Abderrahmane Hamdi,3 Yannick Coffinier,3 Ahmed Addad,4 Pascal Roussel,5 Rabah 

Boukherroub3* , Suman L. Jain1* 

1Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun India 248005 

2Academy of Scientific and Industrial Research (AcSIR), New Delhi India 110001 

3Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France 

4Univ. Lille, CNRS, UMR 8207 – UMET, F-59000 Lille, France 

5Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et 

Chimie du Solide, F-59000 Lille, France 

 

*E-mail: suman@iip.res.in; rabah.boukherroub@iri.univ-lille1.fr 

 

 

Graphical Abstract 
 

 

 

 

 

 

 

ACCEPTED M
ANUSCRIP

T

mailto:suman@iip.res.in


2 

 

Highlights of the research 

 Facile synthesis of hybrid nanocomposite consisting of copper (I) oxide and carbon 

quantum dots. 

 Heterogeneous photocatalyst for organic transformation 

 Visible light assisted oxidative coupling of benzyl amine 

 A green, economical and efficient photochemical approach 

 Higher activity and robustness of hybrid photocatalyst than neat Cu2O and CQDs.  

 Facile recovery and efficient recycling of the photocatalyst. 

 

Abstract 

The present paper describes a simple and direct synthesis of heterostructured nanocomposite 

consisting of copper(I) oxide and carbon quantum dots (Cu2O/CQD). The structure and 

composition of the photocatalyst were determined by X-ray diffraction (XRD), X-ray 

photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), UV–Vis diffuse reflectance spectroscopy and Raman spectroscopy. The 

synthesized photocatalyst was used for coupling of benzylamines using molecular oxygen as 

oxidant and house hold white LED as light emitting source under mild reaction conditions. The 

developed photocatalyst exhibited excellent activity, robustness and efficient recycling without 

any significant loss in activity for several runs. 

Keywords: Photocatalysis; oxidative coupling; quantum dots; hybrid catalyst; benzylamine. 
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1.0 Introduction 

Sunlight is a unique natural energy source which is inexpensive, nonpolluting and abundantly 

available. Hence, the replacement of high-energy synthetic processes with clean, cost effective 

and green photochemical approaches has become an area of tremendous importance in recent 

decades [1]. So far, many semiconductor photocatalysts have been reported for organic 

transformations [2]; however, less efficiency, limited visible light absorbance and poor 

conversion rates are certain drawbacks associated with these methodologies [3].  Copper(I) oxide 

(Cu2O) is a promising visible light active semiconductor which possesses some unique properties 

such as narrow band gap (2.2 eV), low cost, non-toxicity, better environmental acceptability and 

good adsorption of molecular oxygen [4]. Owing to these physical and chemical properties, 

Cu2O has extensively been investigated in solar conversion processes and catalysis [5]. 

Furthermore, the coupling of Cu2O with other semiconductors to form heterostructured 

composites is a promising approach for enhancing the charge separation as well as photo-activity 

[6]. In this regard, a number of heterostructured composites consisting of Cu2O and 

semiconductors like TiO2, CdS, ZnO and CuO have been reported for numerous photocatalytic 

applications [7].   

 In the recent years, carbon quantum dots (CQD), novel nanosized carbon materials with 

less than 10 nm, have gained significant interest in the area of catalytic and photocatalytic 

applications. Owing to their excellent optical and electronic properties including higher 

absorbance and superior charge transfer, these materials have widely used in photocatalytic 

applications [8]. In addition, low cost, non-toxicity, facile functionalization, good 

biocompatibility and chemical inertness make CQD as the material of choice in place of 

commonly known inorganic semiconductor and organic dye photocatalysts [9].  
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 In recent years, photocatalytic oxidation processes using visible light irradiation are 

gaining considerable interest for the maximum utilization of solar energy as it consists of nearly 

45% of the solar spectrum [10]. In addition, most of the photo-catalytic transformations occur 

under ambient conditions which are advantageous over thermocatalytic processes, which require 

higher reaction temperatures [11]. Among the various oxidation processes, oxidative coupling of 

amines to corresponding imines is an important chemical transformation in organic synthesis.  

These compounds have found wide applications as synthetic intermediates in the preparation of 

bioactive molecules of therapeutic interest [12]. Conventional oxidation methods involve the use 

of stoichiometric oxidants such as 2-iodoxybenzoic acid, N-test-butylphenylsulfinimidoyl 

chloride, which produce copious amounts of undesirable waste and are deterimental to the 

environment. Subsequently, catalytic methods using ruthenium based catalysts such as RuCl3, 

[RuCl2(RCH2NH2)2(PPh3)2], ruthenium (II) porphyrin, ruthenium-hydroxyapatite, Ru2(OAc)4Cl 

and Ru/Al2O3 in conjunction with molecular oxygen as oxidant have been reported for this 

transformation [13]. However, very few reports are known on the photocatalytic oxidation of 

benzylic amines to the corresponding imines using O2 as an oxidant. In this context, Su and co-

workers reported mesoporous graphite carbon nitride (mpg-C3N4) for the oxidation of benzylic 

alcohols and amines with O2 under visible light [14]. Higher pressure (0.5 MPa) and need of 

halogenated solvent (trifluorotoluene) make this methodology of limited applicability. Furukawa 

et al. [15] described niobium oxide/O2 system for the photo-oxidation of amines. Apart from 

these semiconductor photocatalysts, recently, Berlicka et al. [16] investigated porphyrin or 

porphycene-mediated photo-oxidation of primary amines to N-benzylidene benzylamines in 

excellent conversion yields. Despite the excellent activity of these dyes under visible light, 

homogeneous nature and non-recyclability are the obvious drawbacks associated with this 

system. Hence, the development of heterogeneous photocatalyst along with the use of low cost 
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metals under visible light irradiation is highly desired from both environmental and economic 

viewpoints. Raza et al. [17] studied oxidative coupling reactions of amines by photoactive WS2 

nanosheets. More recently, Kumar et al. [18] reported an efficient semiconductor-metal complex 

hybrid photocatalyst, namely, graphitic carbon nitride (g-C3N4) and iron (III) bipyridine complex 

for the oxidation of the benzylic amines with molecular oxygen under visible light irradiation. 

However, the multi-step synthesis of the hybrid photocatalyst makes the developed methodology 

of limited practical applicability. 

 In this paper, we report an efficient and simple visible light assisted heterostructured 

nanocomposite consisting of cuprous oxide (Cu2O), carbon quantum dots (CQD) i.e. Cu2O/CQD 

catalyzed photo-oxidation of benzylamines using molecular oxygen as an oxidant to the 

corresponding imines under ambient conditions (Scheme 1). 

 

 

Scheme 1:  Photo-oxidation of benzylamines. 

Experimental Section 

2.1 Materials 

Fructose, sodium hydroxide (NaOH), and copper perchlorate (Cu(ClO4)2) were obtained from 

Sigma Aldrich (France) and used as received. 
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2.2 Techniques used 

SEM images were obtained using an electron microscope Hitachi S4700 equipped with a cold 

field emission emitter and two different detectors (high efficiency In-lens SE detector, Everhart-

Thornley Secondary Electron Detector). The samples were prepared by casting 50 μL aqueous of 

Cu2O-CQDs composite on a clean silicon wafer followed by drying in an oven at 80 °C to 

remove adsorbed water. Transmission electron microscopy (TEM) imaging was performed on a 

FEI Tecnai G2-F20 microscope operating at an accelerating voltage of 200 kV. Powder X-ray 

diffraction (XRD) patterns were collected on a Bruker D8 advance diffractometer (Cu-Kα 

radiation, 1.54056 Å) with an applied voltage of 40 kV and an anode current of 40 mA in the 2θ 

range of 10-80°. UV/Vis absorption spectra were recorded using a Perkin Elmer Lambda UV/Vis 

950 spectrophotometer in quartz cuvettes with an optical path of 10 mm. The wavelength range 

was 200–800 nm.  X-ray photoelectron spectroscopy (XPS) experiments were performed in a 

PHl 5000 VersaProbe - Scanning ESCA Microprobe (ULVAC-PHI, Japan/USA) instrument at a 

base pressure below 5×10-9 mbar. Monochromatic AlKα radiation was used and the X-ray beam, 

focused to a diameter of 100 µm, was scanned on a 250×250 µm surface, at an operating power 

of 25 W (15 kV). Photoelectron survey spectra were acquired using a hemispherical analyzer at 

pass energy of 117.4 eV with 0.4 eV energy step. Core-level spectra were acquired at pass 

energy of 23.5 eV with 0.1 eV energy step. All spectra were acquired at 90° between X-ray 

source and analyzer and with the use of low energy electrons and low energy argon ions for 

charge neutralization. After subtraction of the Shirley-type background, the core-level spectra 

were decomposed into their components with mixed Gaussian-Lorentzian (30:70) shape lines 

using the CasaXPS software. Quantification calculations were performed using sensitivity 

factors supplied by PHI. The sample was prepared by casting a concentrated aqueous solution of 

the material onto silicon substrate followed by drying at 100 °C for 1 h. 
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2.3 Synthesis of carbon dots  

Carbon quantum dots (CQDs) were synthesized by a one-pot method at a relatively low reaction 

temperature [19]. In a typical procedure, fructose (500 mM) and sodium hydroxide (500 mM) 

were added to 20 mL water. The resulting solution was placed into a Teflon-lined stainless-steel 

autoclave and heated at 50 °C for 1 h. The solution turned from a colorless into brown. 

2.4 Synthesis of Cu2O/CQDs  

Copper perchlorate (1.35 g) was dissolved in 10 mL of previously prepared CQDs solution and 

heated at 80 °C for 3 h. The formed precipitate was separated by centrifugation, washed with 

water three times and annealed at 120 °C overnight [19]. For comparison, Cu2O was prepared by 

the same procedure using copper chloride and sodium hydroxide without adding fructose as 

mentioned above. The Cu content in the Cu2O/CQDs was determined by ICP-AES which was 

found to be 38.04 wt% (2.9 mmol Cu/g catalyst). 

2.5 Photocatalytic oxidative coupling of benzylamines 

All the photocatalytic experiments were carried out by using a 20 watt white cold LED light 

(Model No. HP-FL-20W-F-Hope LED Opto-Electric Co., Ltd, λ >400 nm) as a light source. In a 

typical experiment, benzylamine (1 mmol) and photocatalyst (25 mg) were mixed in acetonitrile 

(10 mL). The resulting mixture was irradiated with visible light with stirring for 8 h in the 

presence of molecular oxygen. The progress of the reaction was monitored by TLC. After 

completion of the reaction, the photocatalyst was separated by filtration and the obtained residue 

was concentrated under reduced pressure to obtain a crude product. The pure product was 

obtained via purification using column chromatography on silica gel by using ethyl acetate: 

hexane (9:1) as eluent. 
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3.0 Results and Discussion 

3.1 Synthesis and characterization of photocatalyst 

The Cu2O/CQDs investigated in this work was prepared according to a previous protocol 

published by some of us [19]. The morphology of the synthesized Cu2O/CQD nanocomposite 

was investigated by scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM). SEM image of the synthesized nanocomposite as shown in Figure 1a revealed 

nanoparticles in the aggregated form. 

 
 

Figure 1. SEM (a), low (b) and high (c) resolution TEM images, (d) HR-TEM of a nanoparticle 

and (e) SAED of Cu2O/CQD. 
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The TEM image of the prepared nanocomposite indicated Cu2O NPs of 20-30 nm in size (Fig. 

1b, c). In addition, in the HR-TEM image of a single Cu2O NP an interplanar distance of 0.21 nm 

between adjacent planes, related to the interplanar spacing of the (002) plane of Cu2O was 

observed (Fig. 1d). The appearance of five diffraction rings in the selected-area electron 

diffraction (SAED) pattern corresponding to the (022), (112), (002), (111), and (011) planes of 

Cu2O suggested the poly crystalline nature of the sample (Fig. 1e). 

X-ray diffractogram of Cu2O/CQD composite as shown in Figure 2 exhibited several reflections 

having at least two different crystalline phases of Cu (ICDD No. 65-9026) and Cu2O (ICDD No. 

78-2076). The diffraction planes of the Cu phase observed at 43.2° and 50.3° were corresponded 

to the Cu(111) and Cu(200), respectively. The other diffraction peaks at 29.5°, 36.5°, 42.2°, 

61.3°, and 73.7° were related to the Cu2O (110), Cu2O (111), Cu2O (200), Cu2O (220) and Cu2O 

(311) crystalline planes, respectively. Indeed, very weak peaks of Cu appeared in the XRD 

pattern of Cu2O/CQD. However, the material is mostly Cu2O and also the chemical 

transformation is a photochemical process, the contribution of Cu is believed to be negligible. 

Hence we have denoted active photocatalyst as Cu2O/CQD. Additionally, a small peak at ~22.8° 

confirmed the presence of carbon from the CQD. These characterization results were found to be 

in good agreement with our previous reports on reduced graphene oxide modified with Cu2O 

[20], and Cu2O modified multi-walled carbon nanotube nanostructures [21] and CQD [22]. 
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Figure 2. Powder X-ray diffraction pattern of Cu2O/CQD. 

The UV-Vis spectra of nanocomposite Cu2O/CQD and its components are shown in Figure. 3. 

The UV-vis absorption spectrum of CQDs in water revealed a main absorption peak at 293 and a 

shoulder at 340 nm attributed to the π–π* transition of the conjugated C=C and the n–π* 

transition of the C=O, respectively [19]. Interestingly, both Cu2O and Cu2O/CQD absorb 

remarkably in the visible region, making these materials suitable for photocatalytic processes 

under visible light irradiation. The band gap of Cu2O was determined with the help of Tauc plot 

which was found to be 2.2 eV (Fig. S3). According to the band gap, the absorption edge 

wavelength for Cu2O was estimated to be 563 nm.  
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Figure 3. UV-Vis spectra of CQD, Cu2O/CQD and Cu2O 

The chemical composition of the synthesized nanocomposite was examined by X-ray 

photoelectron spectroscopy (XPS). In survey scan as shown in Figure S1, the appearance the 

corresponding peaks of all the desired elements such as Cu3s (75.0 eV), Cu3p (122.5 eV), C1s 

(285.0 eV), O1s (531.5 eV) and Cu2p (532 eV) confirmed the successful synthesis of the material. 

The high-resolution XPS spectrum of C1s (Fig. 3) revealed the main peak at ~285 eV due to C-H, 

C-C and C=C bonds from the CQD along with two components at 286.2 and 288.6 eV assigned 

to C-O and C=O bonds, respectively. 

The XPS high-resolution spectrum of Cu2p displayed two peaks at 932.5 and 952.4 eV attributed 

to Cu2p3/2 and Cu2p1/2, respectively from Cu2O (Fig. 4). The XPS high-resolution spectrum of O1s 

exhibited peaks at 530.7 and 531.8 eV respectively, due to the oxygen bonded to the carbon 

skeleton of the CQD and Cu-O in Cu2O (Fig. S2). 
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Figure 4. High-resolution XPS spectra of C1s and Cu2p of Cu2O/CQD. 

3.2 Catalytic Activity 

The photocatalytic activity of the synthesized nanocomposite Cu2O/CQD and its components 

were checked for the oxidation of benzylamine with O2 in acetonitrile solvent under visible light 

irradiation at ambient temperature and pressure conditions (Scheme 1). At first, optimization 

experiments using variable reaction parameters were performed and the results of these 

experiments are summarized in Table 1. In a blank reaction, no product was formed even in the 

prolonged time (24h) in the absence of photocatalyst under otherwise identical conditions. (Table 

1, entry 1). Similarly, in the absence of a visible light source, no reaction was occurred (Table 1, 

entry 2), suggesting that the reaction was truly photocatalytic in nature. However, in the presence 

of visible light irradiation, the oxidation of benzylamine (1 mmol) using 25 mg Cu2O/CQD as a 

photocatalyst in CH3CN under an oxygen atmosphere at an ambient temperature (25 oC) and 

pressure (1 atm) afforded an almost quantitative yield of the corresponding imine (Table 1, entry 

3). Furthermore, the use of neat Cu2O or CQDs as photocatalysts under identical conditions 
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afforded only 12 and 30% conversion, respectively (Table 1, entry 4-5). Furthermore, the effect 

of various solvents was studied to select the optimum reaction medium. Among the different 

solvents such as methanol, dimethylformamide, tetrahydrofuran, acetonitrile, and ethanol (Table 

1, entries 3, 6-9) studied, acetonitrile (CH3CN) was found to be the best solvent for the reaction 

(Table 1, entry 3). Molecular oxygen played an essential role and in its absence (irradiation 

under nitrogen atmosphere), a negligible conversion was achieved (Table 1, entry 10). Although 

the reaction occurred efficiently at room temperature (24 oC) at 1 atmospheric pressure, to check 

the effect of temperature, the reaction was performed at 50 oC under described conditions (Table 

1, entry 3). A marginal enhancement in the conversion (97.5%) was observed at higher 

temperature; therefore we selected room temperature as the optimum temperature for the 

reaction. 

Table 1: Optimization of oxidative coupling of benzylamine with molecular oxygen under 

different reaction conditions[a] 

Entry Visible 

light 

Solvent  Photocatalyst Time 

(h) 

Conv. 

(%)[b] 

TON[c] TOF 

(h-1) 

1 Yes CH3CN No 24 - - - 

2 No CH3CN Cu2O/CQDs 24 - -  

3 Yes CH3CN Cu2O/CQDs 8 97, 

97.5[d] 

13.8 
13.9 

1.7 
1.7 

4 Yes CH3CN Cu2O 10 15 - - 

5 Yes CH3CN CQDs 10 30 - - 

6 Yes MeOH Cu2O/CQDs 10 74 10.6 1.1 

7 Yes DMF Cu2O/CQDs 10 92 13.1 1.3 

8 Yes THF Cu2O/CQDs 10 54 7.7 0.8 

9 Yes EtOH Cu2O/CQDs 10 75 10.7 1.1 

10[d] Yes CH3CN Cu2O/CQDs 8 trace - - 
[a]Reaction conditions: benzylamine (1 mmol), photocatalyst (25 mg), solvent (10 mL), light source: white 

cold LED λ > 400 nm, time: 8-24 h under oxygen balloon; Power at reaction vessel: 70 W/m2; 
[b]determined by GC-MS; [c]TON is defined as the amount of product formed to that of the active site Cu 

in the photocatalyst; [d]at 50 oC temeprature; [e]in the absence of molecular oxygen under N2 atmosphere. 
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Furthermore, the reaction was generalized to variously substituted benzylamines under optimized 

reaction conditions using Cu2O/CQD/O2 system under visible light at room temperature. The 

results of these reactions are summarized in Table 2. All the substrates afforded corresponding 

imine products selectively without observing any by-product. Moreover, marginal substituent 

effect was observed and all the substrates containing either electron-releasing or withdrawing 

groups were smoothly and efficiently converted to the resultant N-benzylidene benzylamines in 

good to excellent yields (75-95%). The slightly higher activity of the electron rich amines might 

be due to the easy formation of an intermediate imine. Furthermore, o-substituted benzylamine 

displayed slightly poor product yield as compared to the p-isomer, which is mainly due to the 

obvious reason of steric hindrance (Table 2, entry 4). Secondary benzylamine (dibenzylamine) 

also showed high reactivity and afforded moderate product yield (Table 2, entry 8). However, 

cyclohexylamine was not reacted under the described conditions (Table 2, entry 10).   
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Table 2: Cu2O/CQD-catalyzed oxidative coupling of benzylamines[a]  

Entry Substrate Product Conv.  
(%)[b] 

Yield  
(%)[c] 

1 
NH2  

N

 

97 95 

2 H3CO
NH2  

N

H3CO OCH3  

97.5 95 

3 H3C
NH2  

N

H3C CH3  

97 93 

4 NH2

 

N

 

91 88 

5 Cl
NH2  

N

Cl Cl  

94 90 

6 
Br

NH2  

N

Br Br  

94 91 

7 CN
NH2  

N

CN NC  

89 85 

8 N
H

 
N

 

90 86 

9 NH2

 
N

 

79 75 

10 NH2

 
- - - 

aReaction conditions: benzylamine (1 mmol), Cu2O/CQD (25 mg), acetonitrile (10 mL) under visible light 

irradiation with white cold LED λ > 400 nm for 8 h; Power at reaction vessel: 70 W/m2; bdetermined by 

GC-MS; cIsolated yield. 

 

 Further, to check the recyclability of the material, recycling experiments were performed 

by choosing benzylamine as a representative example. After completion of the reaction; the 

photocatalyst was separated by simple filtration, washed with acetonitrile, dried and reused in the 

subsequent experiments for six runs (Fig. 5). Almost similar conversion and product yield were 

obtained in all cases, suggesting that the synthesized photocatalyst was highly stable in nature. 

Furthermore, to ascertain the leaching of metal, selected filtrate samples of recycling 
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experiments were subjected to ICP-AES analysis. No metal trace was detected in the solution 

phase, indicating no leaching had occurred and the reaction was truly heterogeneous in nature.  

 

Figure 5. Results of recycling experiments. 

Although, the exact mechanism of the reaction is not clear at this stage, based on our 

experimental findings and existing literature reports [17] a plausible mechanism of the reaction is 

depicted in Scheme 2. As shown in a controlled experiment that oxygen played a pivotal role and 

in its absence the reaction did not occur (Table 1, entry 10). It is believed that after absorbing the 

light, charge separation takes place in photocatalyst Cu2O/CQD. The photogenerated electrons 

were excited from the VB to the CB of Cu2O. Subsequently the photo-generated electrons were 

transferred to CQD, which act as electron collector, transporter to provide better mobility and 

charge separation. Furthermore, molecular oxygen gets excited under light and converted to the 

singlet oxygen which can accept an electron from the conduction band of nanocomposite to give 

superoxide radical. To confirm the formation of superoxide radical, the reaction was performed 

by adding a common radical scavenger, i.e. p-benzoquinone (BQ). A significant decrease in the 
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product yield was observed, which confirmed the formation of superoxide radical as an 

intermediate during the photo-oxidation reaction. In the subsequent step, benzylamine transferred 

an electron to the valence band of photocatalyst and converted to cation radical as shown in 

Scheme 2. In the final step, superoxide radical abstracts a hydrogen atom from the benzylic 

position of a benzylamine radical cation to produce benzylimine, which interacted with another 

benzylamine molecule to give the corresponding N-benzylidene benzylamine along with H2O2 as 

a by-product (Scheme 2). 

 

Scheme 2: Plausible mechanism of photocatalytic oxidative coupling of benzylamine in the 

presence of Cu2O/CQD. 

3.3 Formation of singlet oxygen in Cu2O/CQD system under visible light irradiation 

The formation of singlet oxygen (1O2) during the photocatalytic oxidative coupling of 

benzylamine was investigated by adding sodium azide (NaN3), a quencher of 1O2. For this study, 

a comparison was made between the original photocatalytic experiment and that obtained after 

the addition of sodium azide (NaN3) at different time intervals (Fig. 6). As shown in Fig. 6, the 
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conversion of benzylamine using Cu2O/CQDs photocatalyst with oxygen under visible light 

irradiation was found to be 21, 58, 87.4 and 97.5% after 2, 4, 6 and 8h, respectively in the 

absence of NaN3. However, the conversion was reduced significantly, and maximum conversion 

reached only up to 12.5% after 8h when NaN3 was added into the system. These experimental 

results confirmed the generation of singlet oxygen (1O2) in the photocatalytic system under 

visible light irradiation. 

 

Figure 6. Conversion of benzylamine using Cu2O/CQD photocatalyst with and without adding 

NaN3 as a quencher. 

4.0 Conclusions 

We have demonstrated an efficient, readily synthesized and cost effective photocatalyst i.e. 

heterostructured nanocomposite consisting of cuprous oxide and carbon quantum dots 

(Cu2O/CQD) for the oxidative coupling of benzylamines using molecular oxygen as oxidant 

under visible light at ambient conditions. The developed nanocomposite Cu2O/CQD exhibited 

superior activity as compared to bare Cu2O and CQD. In addition, the nanocomposite showed 
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excellent stability and efficient recyclability without any detectable leaching during the reaction. 

The superior performance of Cu2O/CQD was mainly attributed to the enhanced charge 

transportation, effective separation of the photogenerated electron-hole pair and improved 

contact between photocatalyst and substrate molecules. Owing to the low cost and better 

efficiency, such Cu2O/CQDs nanocomposite can be used as a promising alternative to the noble 

metals (Au, Pd, Pt etc) in improving the photocatalytic ability of semiconductor photocatalysts. 
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