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SUMMARY

Initiation is the rate-limiting step of translation, and in
bacteria, mRNA secondary structure has been exten-
sively reported as limiting the efficiency of translation
by occluding the ribosome-binding site. In striking
contrast with this inhibitory effect, we report here
that stem-loop structures located within coding
sequences instead activate translation initiation of
the Escherichia coli fepA and bamAmRNAs involved
in iron acquisition and outer membrane proteins
assembly, respectively. Both structures promote
ribosome binding in vitro, independently of their
nucleotide sequence. Moreover, two small regula-
tory RNAs, OmrA and OmrB, base pair to and most
likely disrupt the fepA stem-loop structure, thereby
repressing FepA synthesis. By expanding our under-
standing of how mRNA cis-acting elements regu-
late translation, these data challenge the widespread
view of mRNA secondary structures as translation
inhibitors and show that translation-activating ele-
ments embedded in coding sequences can be tar-
geted by small RNAs to inhibit gene expression.

INTRODUCTION

Successful adaptation of bacteria to multiple niches relies on

their ability to rapidly and precisely tune gene expression in

response to extremely diverse environmental cues.While control

can occur at virtually all stages of the gene expression pathway,

regulating translation and/or the stability of target mRNAs offers

several advantages for adaptive responses, in particular, the

speed of response by acting directly at the mRNA level, and

the possibility to prevent transcriptional noise or to differentially

regulate individual cistrons within an operon.

An important feature of post-transcriptional control is the

wide diversity of underlying molecular mechanisms and regula-

tors, in line with the remarkable plasticity of mRNAs, which are

the controlled targets. This is particularly well illustrated by the

plethora of small regulatory RNAs (sRNAs) identified in bacteria,

many of which base pair via short and imperfect duplexes to
target mRNAs and thereby modulate their translation and/or

stability (Wagner and Romby, 2015). In enterobacteria, these

imperfectly pairing sRNAsmost often require an RNA chaperone

called Hfq that stabilizes many sRNAs and facilitates sRNA-

mRNA duplex formation (Vogel and Luisi, 2011). Interestingly,

sRNAs have been shown to negatively or positively control

gene expression using a remarkable variety of molecular mech-

anisms (Jagodnik et al., 2017).

In the most frequent scenario, sRNAs repress the expression

of targets by binding at or in the vicinity of the ribosome-binding

site (RBS), thereby directly competing with the 30S ribosomal

subunit for binding to the mRNA. However, they can also affect

the accessibility of the RBS when they base pair outside of this

region by inducing structural changes that ultimately lead to a

more or less accessible Shine-Dalgarno (SD) region and thus to

a positive (Mandin and Gottesman, 2010 and references therein)

or negative (Heidrich et al., 2007) control. Furthermore, the pri-

mary effect of sRNA binding to mRNAs is not necessarily trans-

lational: sRNAs have been reported to mediate target mRNA

destabilization by guiding the endoribonuclease RNase E to the

mRNA, for instance (Bandyra et al., 2012; Pfeiffer et al., 2009),

or, in contrast, to stabilize target mRNAs (Obana et al., 2010;

Papenfort et al., 2013; Ramirez-Peña et al., 2010). Yet, other

mechanisms have been described that bring new insight into

translation mechanisms. For instance, the study of IstR sRNA

repression of tisB mRNA expression identified a ribosome

stand-by site that allows translation from a downstream transla-

tion initiation region (TIR) that is sequestered in a stem-loop

structure (Darfeuille et al., 2007). A variation on this theme was

later proposed for the translational activation of iroN by the Sal-

monellaRyhB sRNA homologs that would allow entry of the ribo-

some at an upstream stand-by site (Balbontı́n et al., 2016).

OmrA and OmrB are two Hfq-dependent sRNAs conserved

in enterobacteria. Their transcription is activated by the OmpR

regulator, either in its phosphorylated form or under high con-

centrations of its non-phosphorylated form (Brosse et al.,

2016). The transcription of omrA has also been shown to specif-

ically respond to the RpoS sigma factor (Lévi-Meyrueis et al.,

2014; Peano et al., 2015). OmrA andOmrB target several mRNAs

by base pairing interaction via their almost identical 50 ends,
which are highly conserved in other bacteria. As a consequence,

all the target mRNAs described so far, all negatively regulated,

are common to both sRNAs. Several of these targets encode

transcriptional regulators, such as CsgD and FlhDC, the master
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regulators of curli and flagella synthesis, respectively, or the

EnvZ-OmpR two-component system (TCS), i.e., the Omr tran-

scriptional activator (Brosse et al., 2016; De Lay and Gottesman,

2012; Holmqvist et al., 2010). In addition, OmrA/B downregulate

the synthesis of several outer membrane proteins (OMPs):

OmpT, CirA, FecA, and FepA (Guillier and Gottesman, 2006,

2008). While OmpT is a protease, CirA, FecA, and FepA are re-

ceptors for iron-siderophore complexes involved in iron uptake.

In line with this function, cirA, fecA, and fepA genes aremembers

of the Fur regulon, and their transcription is induced under con-

ditions of iron deprivation. In addition, synthesis of CirA also re-

sponds to iron starvation at the post-transcriptional level—this

time positively—through translational activation mediated by

the Fur-repressed RyhB sRNA (Salvail et al., 2013). These three

receptors bind to different siderophores, and FepA is likely to

play a key role in iron homeostasis, as it is the receptor for iron

chelated by enterobactin, i.e., the most potent siderophore.

From a mechanistic standpoint, the Omr sRNAs were shown

to pair with the TIR of ompT, cirA, ompR-envZ, and flhDC

mRNAs, thus presumably repressing their translation by the

classical mechanism of competition with ribosome binding.

However, the question of how the Omr achieved regulation of

fecA and fepA genes has not yet been addressed. This question

appears all the more pertinent as (1) OmrA/B were previously

shown to repress csgD expression by targeting the csgD

mRNA outside of the TIR (Holmqvist et al., 2010) and (2) there

is no obvious complementarity between the Omr 50 ends and

the TIR of fecA or fepA mRNA.

In the present work, we have investigated the mechanism of

fepA control by OmrA/B in detail and found that both sRNAs

target a stem-loop (SL) structure within the fepA mRNA coding

sequence. Unexpectedly, this SL activates translation initiation

by promoting formation of the pre-initiation complex between

the fepA mRNA, the 30S ribosomal subunit, and the initiator

tRNA. Introduction of compensatory changes within the SL

further indicated that this effect is independent of its nucleotide

sequence. Importantly, similar SL can be predicted in several

bacterial mRNAs, and we have shown that the one in the essen-

tial bamA gene also activates translation initiation. By uncovering

the positive role played by secondary structures of the mRNA,

these results shed a new light on the translation initiation step

in bacteria and the role of mRNA cis-elements in this process.

RESULTS

OmrA/B Directly Repress fepA Expression by Base
Pairing within Its Coding Sequence
We previously showed that pulse-induction of OmrA/B led to a

decrease in fepA mRNA levels, suggesting that fepA might be

a direct target of these sRNAs (Guillier and Gottesman, 2006,

2008). This prompted us to search for possible base pairing be-

tween fepA and OmrA/B using IntaRNA (Wright et al., 2014) and

TargetRNA (Kery et al., 2014) programs. Because amutant in the

50 end of OmrA/B no longer affected fepA mRNA levels (Guillier

andGottesman, 2008), we only used the 20 conserved 50 end nu-

cleotides of OmrA/B for this search; the fepA mRNA fragment

used encompassed nucleotides �173 (which corresponds to

the transcription start site) to +80 (+1 being the first nucleotide
2 Molecular Cell 68, 1–13, October 5, 2017
of fepA open reading frame [ORF]). The resulting prediction,

with some manual adjustment, shows that nucleotides 1 to 26

of OmrA/B can potentially pair imperfectly with nucleotides 23

to 44 of fepA ORF (Figure 1A). The existence of this interaction

was further validated using a translational fepA-lacZ fusion,

where fepA 50 UTR and first 45 nt of the ORF were fused

upstream of the 10th codon of lacZ. This protein fusion is consti-

tutively expressed from a Ptet promoter (Figure 1B). Overpro-

duction of OmrA or OmrB reduced expression of this fusion by

8.3- and 4.7-fold, respectively (Figure 1C). This reduction was

no longer observed when mutations were introduced in the

regions predicted to pair, either in nucleotides 3–6 of OmrA/B

or in nucleotides 39–42 of the fepA ORF. Importantly, these

mutant forms of the Omr sRNAs accumulate to even higher

levels than their wild-type (WT) counterparts, and the loss in

repression is thus not due to differential levels of the different

sRNAs (Figure S1A). A combination of these mutations, which

re-establishes base pairing, partially restored control: OmrA/

Bmut repressed fepAmut-lacZ by 2.7- and 1.8-fold, respectively

(Figure 1C). These data strongly support the in vivo interaction

between OmrA/B 50 ends and the proximal region of the fepA

ORF. This regulation was confirmed by directly following the

levels of the FepA protein made from its endogenous locus dur-

ing a short overexpression of OmrA/B sRNA. More precisely,

cells transformed with OmrA/B-overexpressing plasmid were

grown to mid-exponential phase and split in two, and half of

the culture was treated with 250 mM 2-20-dipyridyl (dip) and
100 mM isopropyl b-D-thiogalactopyranoside (IPTG) to induce

fepA expression and OmrA/B synthesis, respectively. As a con-

trol, the other half of the culture was left untreated. After 15 min,

proteins and RNA samples were extracted, and the levels of

FepA protein and of OmrA and OmrB sRNAs were followed by

western or northern blot analysis, respectively. In the presence

of the vector control, addition of dip induced FepA synthesis,

as expected since fepA transcription is Fur repressed. This in-

duction was strongly reduced in presence of plasmids overex-

pressing either WT OmrA or OmrB but was completely restored

when the mutant versions of OmrA/B, which accumulate at

similar levels compared to their WT counterparts, were overex-

pressed instead (Figure 1D). OmrA/B sRNAs thus specifically

and rapidly repress synthesis of the FepA protein via base-pair-

ing interaction.

Only Short Regions of fepA mRNA and of OmrA/B Are
Involved in the Interaction
Identification of one site of interaction between a sRNA and its

target mRNA does not rule out the existence of other secondary

pairing sites. We therefore asked whether other regions of fepA

or of the Omr sRNAs were required for control. We first analyzed

the repression of a shorter fepA-lacZ fusion lacking most of the

fepA 50 UTR (fepA�26 in Figure 1B). Expression of this fusion

was repressed by OmrA/B as efficiently as the longer fusion (Fig-

ure 1E), showing that most of the fepA 50 UTR is dispensable for

control. To then determine whether the 50 end of OmrA/B is

the only region involved in pairing with fepA mRNA, we used a

chimeric sRNA construct called OmrY, which consists of the first

15 nt of OmrA/B followed by the last 61 nt of the RybB sRNA (Fig-

ure 1F). As RybB is an Hfq-dependent sRNA that regulates most



Figure 1. Direct Repression of fepA Expres-

sion by the 50 End of OmrA/B Relies on a

Short Interaction within fepA ORF

(A) Predicted base pairing between fepA mRNA

and OmrA/B sRNAs. Successive black and gray

codons indicate fepA reading frame. OmrB nu-

cleotides that differ from OmrA are shown below

the OmrA sequence. The mutations introduced

in fepA-lacZ or in OmrA/B are boxed (mut). The

pairing region shown to be necessary and suffi-

cient for regulation is highlighted in blue.

(B) Various fepA-lacZ translational fusions used in

this study. Positions on fepA mRNA are given

relative to the start codon.

(C) b-galactosidase activities of omrAB deleted

strains carrying the fepA�173-lacZ (strain JJ0015)

or fepAmut-lacZ (strain JJ0019) fusion and

transformed with OmrA-, OmrAmut-, OmrB-, or

OmrBmut-overexpressing plasmids or a vector

control.

(D)Western blot analysis of the FepA protein levels

(in strain MG1099) in response to WT or mutant

OmrA or OmrB induction. Levels of the different

sRNAs were followed by northern blot in the same

experiment. E. coli ribosomal protein S1 or SsrA

RNA were used as loading controls for proteins

and RNAs, respectively.

(E) b-galactosidase activities of the fepA�173-lacZ

(strain MG1772) and the fepA�26-lacZ (strain

JJ0135) fusion strains transformed with OmrA- or

OmrB-overexpressingplasmidsora vector control.

(F) b-galactosidase activity of the fepA�173-lacZ

(strain JJ0015) fusion strain transformed with

OmrA-, OmrB-, OmrY-, or OmrYmut-over-

expressing plasmids or a vector control. The

framed schematic displays the design of the

OmrY chimera: conserved nucleotides 1 to 15

of OmrA/B are fused to nucleotides 20 to 81 of

RybB. b-galactosidase activities are expressed in

Miller units. Numbers above the bars give the

repression factors.

Throughout the manuscript, error bars represent

95% confidence intervals (see STAR Methods for

more details).
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of its targets via its 50 end, the resulting OmrY is expected to

display the target specificity of OmrA/B while retaining all other

properties of an Hfq-dependent sRNA. Overexpression of WT

OmrY efficiently repressed expression of the fepA-lacZ fusion

(Figure 1F), as well as synthesis of the FepA protein (Figure S1B),

similar to what is observed with OmrA/B. Furthermore, repres-

sion was abolished when nucleotides 3–6 of OmrYweremutated

(this did not reduce sRNA levels; Figure S1B), showing that

repression by OmrY also primarily relies on its 50 end and not

on regions of the RybB sRNA (Figure 1F). Together, these data

suggest that the pairing site between nucleotides 1–15 of

OmrA/B and nucleotides 34–44 of fepA mRNA is the primary

site of interaction and is sufficient to provide full control. Interest-

ingly, the region of fepA mRNA targeted by OmrA/B is located

within the fepA ORF but outside of the region bound by the

30S ribosomal subunit during translation initiation (H€uttenhofer

and Noller, 1994; Yusupova et al., 2001), raising the question

of the underlying molecular mechanism of control.
RNase E Endonuclease Is Not Required for fepA
Repression by OmrA/B
Other examples of bacterial sRNAs pairing to coding regions

outside of the RBS have been reported previously (Heidrich

et al., 2007; Papenfort et al., 2013; Pfeiffer et al., 2009). In the

case of the repressive MicC-ompDmRNA interaction in Salmo-

nella, it was shown that this pairing far from the RBS did not

affect translation initiation but instead induced an RNase

E-dependent destabilization of the target mRNA (Bandyra

et al., 2012; Pfeiffer et al., 2009). This prompted us to investi-

gate whether RNase E was also required for OmrA/B control

of fepA expression by following the synthesis of FepA protein

in WT or rnets strains transformed with OmrA/B-overexpressing

plasmids. In this experiment, cells were grown at 37�C up to

mid-exponential phase, and cultures were split in two. One

aliquot continued to grow at 37�C as a control; the second

was shifted to 44�C for 15 min to inactivate the thermosensitive

RNase E, in the presence of 250 mM dip to induce FepA
Molecular Cell 68, 1–13, October 5, 2017 3



Figure 2. The Regulation of FepA Synthesis by OmrA/B Is RNase E

Independent

The levels of FepA protein and of fepA mRNA were analyzed in WT or rnets

strains overproducing OmrA or OmrB. Strains MG1325 (WT) or MG1326 (rnets)

transformed with indicated plasmids were grown at 37�C to mid-exponential

phase and either kept at 37�C (�) or shifted to 44�C in the presence of dip (+).

Specific proteins and RNAs were then analyzed by western or northern blot-

ting, respectively. Detection of S1 was performed as a loading control after

detection of FepA, which explains the presence of the FepA signal. Probing of

ompA and SsrA RNAswere also loading controls, whilemonitoring the levels of

RyhB sRNA was used as a control for dip induction.
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synthesis. Proteins and RNAs were extracted from both ali-

quots, and specific proteins or mRNAs were analyzed by west-

ern or northern blotting, respectively (Figure 2). In WT cells,

addition of dip induced FepA synthesis in presence of the

empty vector, and induction was reduced upon OmrA/B over-

production, as expected. Strikingly, a highly similar pattern

for FepA protein was observed with the empty vector or the

OmrA-overproducing plasmid in rnets cells. Inactivation of

RNase E activity was confirmed by the fact that ompT mRNA

was not degraded in response to OmrA/B induction, as previ-

ously observed (Guillier and Gottesman, 2008). Thus,

RNase E is not required for the control of FepA protein levels

by OmrA. For OmrB, control of FepA levels in the rnets mutant

was not as efficient as in the rne+ cells but was nonetheless still

visible, suggesting that repression still occurs. While these data

are not sufficient to rule out a role for the RNase E in achieving

the full range of regulation, especially for OmrB, they neverthe-

less show that OmrA/B still control the levels of FepA protein

in the absence of RNase E. In contrast, the decrease in fepA

mRNA levels observed upon OmrA/B overproduction clearly

required a functional RNase E, suggesting that fepA mRNA

degradation by RNase E is a consequence of the inhibition of

fepA translation by OmrA/B.

OmrA/B 50 End Controls fepA Translation Initiation by
Inhibition of Ribosome Binding
Even though the previous result did not rule out a primary effect

of OmrA/B on fepAmRNA stability via the involvement of ribonu-

cleases other than RNase E, it nonetheless led us to investigate
4 Molecular Cell 68, 1–13, October 5, 2017
whether OmrA/B affected ribosome binding to the fepA mRNA.

For this purpose, toeprinting experiments were performed

on the fepA�173 transcript extending from nucleotides �173

to +129 to follow the formation of ternary translation initiation

complexes in vitro, with and without sRNA. Addition of the 30S

ribosomal subunit and initiator tRNA induced reverse transcrip-

tion (RT) stops at positions +15/+16 of the fepA ORF (‘‘toeprint’’

signal in Figure 3A). Despite the fact that only the WT OmrA or

OmrB, and not the mutant derivatives, seemed to bind to fepA

mRNA in this experiment, the toeprint signal was non-specif-

ically decreased in presence of any of these sRNAs (Figure 3A;

Figure S2). To circumvent this lack of specificity, the experiment

was repeated with OmrA and OmrAmut in the presence of

increasing concentrations of the Hfq RNA chaperone. Addition

of Hfq alone led to a strong inhibition of the toeprint at high con-

centrations (Figure 3B). This is again most likely non-specific, as

it is not observed in the presence of sRNAs known to strongly

bind Hfq, such as OmrA or OmrAmut. Furthermore, when added

in conjunction with sRNAs, Hfq both increased formation of

the OmrA-fepA duplex, as previously observed for other sRNA-

mRNA pairs in vitro (e.g., Kawamoto et al., 2006), and allowed

a specific inhibition of toeprint formation by OmrA (Figure 3B).

At this stage, it was not clear whether this was simply due to

the stronger binding of OmrA to fepA mRNA in the presence of

Hfq or whether Hfq could play amore direct role in the translation

inhibition.

To discriminate between these possibilities, the experiment

was then performed without Hfq and in presence of increasing

concentrations of the chimeric OmrY sRNA or the 50 end

mutant variant. OmrY, but not OmrYmut, produced a specific

inhibition of the toeprint, possibly due to a stronger binding

of OmrY than OmrA/B to the fepA mRNA, as it induced a stron-

ger RT stop at nucleotide G+44 of fepA ORF (Figure 3A; Fig-

ures S2A and S2B). Finally, we also analyzed the effect of a

16-mer DNA oligonucleotide mimicking the 50 end of OmrA/

B, again in the absence of Hfq. This antisense DNA (AsDNA),

referred to as As28.43, is perfectly complementary to nucleo-

tides 28 to 43 of the fepA ORF, i.e., the nucleotides that

base pair with nucleotides 2–6 and 11–21 of OmrA/B (Fig-

ure 3C). As28.43 DNA efficiently bound to the fepA mRNA

in vitro, as shown by the RT stop it induced at position

G+43, and it strongly inhibited the toeprint, even at the

lowest AsDNA/mRNA ratio used in this experiment. And as ex-

pected, neither binding nor toeprint inhibition was observed

with the mutant derivative of As28.43, showing that the effect

of As28.43 is specific (Figure 3D).

Together, these data show that, at least in presence of Hfq,

OmrA/B repress fepA expression at the level of translation

initiation by preventing binding of the 30S ribosomal subunit.

Furthermore, the results obtained with OmrY or the short AsDNA

indicate that the role of Hfq is limited to facilitating and/or

stabilizing duplex formation and that the OmrA/B sequence

downstream of nucleotide +15 is dispensable for this effect.

In other words, the 50 end of OmrA/B is sufficient to inhibit trans-

lation initiation in vitro by pairing within fepA ORF downstream

of nucleotide +28. Intriguingly, this lies outside of the region

bound by the 30S ribosomal subunit during initiation complex

formation.



Figure 3. OmrA/B 50 End Inhibits Binding of the 30S Ribosomal Subunit to fepA mRNA

(A andB) Toeprinting assays on fepA�173mRNA in the presence of increasing concentrations ofWT ormutant OmrA or OmrY sRNAs (A) or of a fixed concentration

of OmrA(mut) and increasing amounts of purified Hfq (B). ‘‘Toeprint’’ and ‘‘duplex’’ indicate RT stops due to 30S/initiator tRNA binding to mRNA or to pairing of the

sRNA, respectively. Full-size gel of (A) is shown in Figure S2A and Figure S2B shows a repeat of this experiment including OmrB and OmrBmut sRNAs.

(C) Design of the As28.43 DNAmimicking theOmr 50 end interacting with fepAmRNA. The sequence of this AsDNA is based on the Omr nucleotides highlighted in

gray, modified in order to have onlyWatson-Crick base pairs in themRNA-AsDNAduplex. The samemutation as that introduced in theOmr 50 endwas introduced

in As28.43.

(D) Toeprinting assay on fepA�173 transcript in the presence of increasing concentrations of WT or mutant As28.43 AsDNA. In (A), (B), and (D), numbers above the

gels indicate the ratio of the sRNA, hexameric Hfq, or AsDNA over the fepA mRNA. Full-size gels of (B) and (D) are shown in Figures S2C and S2D, respectively.
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The RBS Is Not the Only fepA mRNA Region whose
Accessibility Affects Ribosome Binding
Using an antisense scanning approach, it was shown previously

that, for several Salmonella mRNAs, the ability of AsDNAs to

compete with ribosome binding was lost when pairing occurred

downstream of nucleotide +14 of the ORF (Bouvier et al., 2008).

We therefore performed a similar antisense scanning experiment

on the fepA�173 transcript to determine whether the fepA ORF

displays a specific sensitivity to AsDNAs binding, as suggested

by the effect of As28.43. In this experiment, the toeprint signal

on fepA mRNA was monitored in the presence of 20 different

AsDNAs, perfectly complementary to the early fepA ORF with

similar melting temperatures and whose 30 ends were consecu-

tively shifted by 2 nt (Figure 4A). A first group of AsDNAs

(As�1.16 to As12.26) strongly inhibited toeprint, in agreement

with the fact that they bind to fepA RBS (Figures 4B and 4C). In

contrast, the three next AsDNAs, As14.27 to As18.31, base pair

mostly downstream of the region bound by the 30S ribosomal

subunit during translation initiation and, similar to what was

observed previously (Bouvier et al., 2008), no longer inhibited

toeprint formation. Surprisingly, however, the eight following

scanning AsDNAs, As20.33 to As34.49 (group 2), recovered the

ability to inhibit the toeprint, even though they base pair outside

of the RBS (Figure 4). It is worth noting that binding of the various

AsDNAs to fepAmRNA induced RT arrests of variable intensities

downstreamof the toeprint position,which in theory could induce

a decrease in the toeprint signal by blocking RT progression.

However, our experimental data seem to exclude this possibility:

the last two scanning oligos, As36.52 andAs38.53, induce strong

RT stops at positions +45 and +46 but do not inhibit toeprint

formation. This strongly suggests that the effect of As20.33

to As28.43 on the toeprint is not due to the blocking of RT as

those AsDNAs induce weaker RT stops. Even though the use of
AsDNAs is artificial, these data led us to consider that the fepA

mRNA displays two distinct regions that positively impact the

binding of the 30S subunit. The first corresponds to the RBS,

and the second, which ismore surprising, to the region extending

from nucleotides 20 to 35 of fepAORF. Interestingly, this second

region partially overlaps but is not restricted to the OmrA/B bind-

ing site. Furthermore, a secondary structure prediction proposes

the existence of an imperfect SL structure within the fepA ORF

from nucleotides 19 to 46 (Figure 5A), opening the possibility

that the group 2 AsDNAs, as OmrA/B, might inhibit toeprint for-

mation via disruption of this structure.

The fepA Region Targeted by OmrA/B Forms a Stem-
Loop Structure that Is Required for Control by
These sRNAs
To provide experimental support for the predicted SL, we

performed a structural probing analysis of the fepA�26 transcript

extending from nucleotides�26 to +129 in vitro using the chem-

ical probes DMS (that modifies adenosine and to a lesser extent

cytosine residues) and CMCT (that modifies guanosine and uri-

dine residues). As shown in Figure 5A, most of the nucleotides

located in the TIR of fepA displayed a moderate to strong

reactivity toward the probes, suggesting that this region of

fepAmRNA ismostly unstructured. In contrast, most nucleotides

between positions +19 and +46 were poorly reactive, except for

nucleotides 28–32 and 37–41, corresponding to the loop and

bulge of the predicted SL. The structural probing data thus

strongly support the existence of this SL. Because it encom-

passes the OmrA/B binding site, these results also suggest

that control of fepA expression by these sRNAs would rely on

disruption of this secondary structure.

This was more directly assessed by following repression by

OmrA/B of a fepA-lacZ fusion, where formation of the SL was
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Figure 4. Formation of the fepA Translation Initiation Complex Depends on the Accessibility of Two Distinct Regions of the mRNA

(A) Schematic of the different oligonucleotides (AsDNAs) used in the antisense-scanning experiment. AsDNAs that inhibit the toeprint signal are indicated in

color and those that do not are in black, respectively. The expected position of the 30S subunit on fepA mRNA in the translation initiation complex is shown

schematically, together with the fepA SD sequence, AUG, and the minimal OmrA/B binding site identified in Figure 1.

(B) Toeprinting assay on fepA�173 transcript in presence of the various AsDNAs in a 10-foldmolar excess over themRNA. The corresponding full-size gel is shown

in Figure S3.

(C) Quantification of the toeprinting assay shown in (B). The sum of the full-length, toeprint, and AsDNA signals was set up at 100% for each lane. Hence, the

toeprint is represented here as a percentage of total lane signals.
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impaired by changing nucleotides +20 to +27 from CCCUGGCC

to GGGAAAAA (G3A5 mutation in Figure 5B). The ability of

the Omr to repress this mutant version of fepA-lacZwas strongly

reduced: OmrA and OmrB repressed its expression by 2.2- and

1.6-fold, respectively, while they repressed expression of the

WT fusion by 7.6- and 4.4-fold (Figure 5C). Because pairing of

OmrA/B to nucleotides 20–27 of the fepA ORF is not required

for control (Figure 1), the effect of the G3A5 mutant is most likely

due to its preventing formation of the SL. In contrast, changing

nucleotides +28 to +32 in the loop from UUGUU to AACAA

(loop mutation in Figure 5B) did not affect the ability of OmrA/B

to control fepA (repression factors of 9.4- and 5-fold, respec-

tively; Figure 5C). This result indicates that pairing of the

OmrA/B downstream of nucleotide +32 of fepA ORF is sufficient

for the control, confirming the primary role of the Omr 50 end in

this interaction.

It is striking that several of the fepA nucleotides that pair to

OmrA/B are located in the bulge, and we wondered whether

this was a requisite for the control. We thus engineered a mutant
6 Molecular Cell 68, 1–13, October 5, 2017
version of the fepA-lacZ fusion, where 6 extra nt (AGGAUU), 5 of

which being perfectly complementary to the bulged nucleotides,

have been inserted in the 50 strand of the SL (Figure 5B). In this

‘‘antiBulge’’ mutant, all nucleotides of the Omr pairing region

are thus expected to pair with nucleotides from the 50 strand,
and interestingly, control by OmrA/B was completely abolished

(Figure 5C). These data are not only consistent with the forma-

tion of the SL, but they also strongly suggest that the bulge

is required for allowing the Omr 50 end to interact with fepA

mRNA, possibly serving as an anchor point for the sRNAs.

The Stem-Loop Activates FepA Synthesis in a
Sequence-Independent Manner
Because OmrA/B likely inhibit fepA translation by disrupting the

SL, we next investigated the role of this structure in fepA expres-

sion. For this purpose, the effect of diverse mutations on fepA

expression was analyzed in the context of both the short and

the long fusions described earlier. A first group of mutants con-

sisted of changes of 5 or 8 nt on either side of the stem (mutants



Figure 5. Regulation by OmrA/B Relies on

the Disruption of a Secondary Structure in

fepA mRNA, which Does Not Modify RBS

Accessibility

(A) In vitro chemical probing assay of the sec-

ondary structure of the fepA�26 transcript using

CMCT and DMS. Stronger RT stops in the pres-

ence of the probe (+) than in its absence (�) indi-

cate accessible nucleotides, which are therefore

considered as unfolded. Positions relative to fepA

start codon are indicated to the right of the gel.

The full-size gel is reproduced in Figure S4A. A

model of the secondary structure of the 50 region
of fepA�26 derived from probing is shown. Nucle-

otides are colored according to their reactivity

to DMS or CMCT, while arrows indicate RT stops

that are not probe dependent.

(B) Mutations designed to disrupt the predicted

secondary structure (G3A5), to alter the sequence

of the loop (Loop), or to pair all nucleotides of the

OmrA/B binding site to nucleotides of the 50 strand
of the SL (antiBulge). The base pair at the base of

the SL (U-A in fepAmRNA and U-G in fepA-lacZ) is

omitted in this representation. Nucleotides high-

lighted in blue indicate the minimal Omr binding

site as defined in Figure 1.

(C) Repression by OmrA or OmrB of the fepA�173-

lacZ fusion, WT or carrying the G3A5, Loop, or

antiBulge mutation. Strains used in this experi-

ment are JJ0015, JJ0286, JJ0281, and MG2247;

raw data used to calculate the repression factors

are given in Figure S4B.

(D) Principle of the RT experiment performed

to assess the fepA mRNA RBS accessibility:

following duplex formation between OmrY or

OmrYmut and either fepA�26 or fepA�173 tran-

script, binding of the As�14.�2 AsDNA to the

transcripts was analyzed by RT. The construct

fepA�26* is a modification of fepA�26 carrying 16

extra nucleotides at the 50 end that can form a

secondary structure occluding the SD region.

(E) Selected portions of the gel analyzing the RT

products. Upper and lower panels show the RT

stops due to As�14.�2 binding and to OmrY-fepA

mRNA duplex formation, respectively. The full gel

is shown in Figure S5.
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A5, U5, G3A5, and U5C3 in Figure 6A), which should impair for-

mation of the SL. All four mutants decreased expression of both

the short and the long fepA-lacZ fusions, with a stronger effect

observed for the 8 nt changes (Figure 6B). These changes

were then combined to re-establish the SL structure (mutants

Comp1 and Comp2; Figure 6A), which restored, at least partially,

a higher fepA expression. In the case of the Comp1 change in the

short fusion, the restoration of fepA expression was essentially

complete (Figure 6B). These effects were independent of the

Omr sRNAs as the same results were obtained in strains deleted

for omrAB (Figure S6A). These data strongly suggest that forma-

tion of the SL promotes FepA synthesis. Furthermore, as fepA

expression was also increased with the Comp1 and Comp2 con-

structs, where most of the pairing nucleotides of the SL have

been changed, it appears that this effect is largely sequence in-

dependent. The fact that the Comp2 change is not as efficient as

Comp1 in restoring fepA expression could be due to a slight
difference in the topology and/or the stability of the Comp2 SL

compared to the WT structure.

The functional importance of the unpaired nucleotides of the SL

was then assayed by either deleting the bulged nucleotides

(mutantDbulge in Figure 6A) or using the Loopmutant (Figure 5B).

Neither of these mutations had a strong impact on fepA expres-

sion (Figure 6B). Furthermore, formation of the SL still activated

fepA expression in those two constructs as shown by the fact

that the Loop mutant fusion was controlled by the Omr sRNAs

similarly to the WT fusion (Figure 5C) and that expression of the

Dbulge construct was weakened by the G3A5 change to the

same extent as the WT (Figure 6E). Together, these data strongly

suggest that the SL activates fepA expression via its secondary

rather than primary structure and that changes in the topology

of this structure (e.g., by deleting the bulge) are permissible.

Importantly, the G3A5, U5C3, Loop, and Dbulge mutants show

that all nucleotides can be modified without interfering with the
Molecular Cell 68, 1–13, October 5, 2017 7



Figure 6. The fepAmRNA Stem-Loop Structure Activates Translation in a Sequence-Independent Manner, Possibly by Acting as a ‘‘Starting

Block’’ Structure

(A) Mutations designed to alter (mutants A5, U5, G3A5, and U5C3) or restore (mutants Comp1 and Comp2) the SL structure. The Dbulge mutant consists in the

deletion of nucleotides 37–42. The Loop mutant is depicted in Figure 5B. The minimal OmrA/B binding site as defined in Figure 1 is highlighted in blue.

(B) b-galactosidase activity of strains carrying these different versions of the fepA�173-lacZ or the fepA�26-lacZ fusion. Strains used in this experiment are, from left

to right, MG1772, JJ0150, JJ0225, JJ0190, JJ0233, JJ0229, JJ0237, JJ0241, and JJ0192 for the fepA�173-lacZ variants and JJ0135, JJ0120, JJ0227, JJ0180,

JJ0235, JJ0231, JJ0238, JJ0243, and JJ0193 for the fepA�26-lacZ variants. Ratios between activities of theWT and eachmutant fusion are given above the bars.

(C) Toeprinting assay on fepA�173 mutant transcripts. Only the portion of the gel with the toeprint signal is shown; full-size gel is reproduced in Figure S6B.

(D) Model of the starting block mechanism: the SL at position +19 of fepA mRNA would arrest scanning of the 30S ribosomal subunit at the proper position to

initiate translation. Disruption of the SL by the Omr sRNAs or by the G3A5mutation decreases translation initiation, possibly because of sliding of the 30S subunit

on fepA mRNA.

(E) Activation of fepA expression by the SL structure was determined after insertion of 9 nt upstream (mutant +9up) or downstream (mutant +9down) of the SL, as

well as in the Dbulge variant. The activation factor, given above the red bars, is the ratio of the b-galactosidase activity of the WT SL fusion (gray bars) over the

activity of the G3A5 derivative (red bars). Strains used in this experiment are, from left to right, MG1772, JJ0268, JJ0271, and JJ0241 for the WT derivatives and

JJ0233, JJ0250, JJ0260, and JJ0290 for the G3A5 mutants.
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activating role of this structure, arguing strongly against a struc-

tural switch that would occur upon OmrA/B binding and that

would ultimately affect RBS accessibility.

We nonetheless wanted tomore directly assess whether bind-

ing of the Omr 50 end would affect fepA RBS accessibility. For

this purpose, we first repeated the probing experiment of fepA

mRNA (Figure 5A) in the presence of an excess of OmrA or

OmrY sRNA but found that both sRNAs fail to bind to fepA

mRNA in this experiment (Figure S4A). This is different from

what we observed in other in vitro experiments, such as the

toeprinting assays (see, for example, Figure 3), and this is most

likely due to the use of different buffers required for DMS- or

CMCT-induced modifications. To assess RBS accessibility,

we thus chose instead to follow the binding of the As�14.�2

AsDNA to fepAmRNA in an RT experiment (Figure 5D). Because

As�14.�2 is perfectly complementary to nucleotides �14 to �2

of fepA, which encompass the SD sequence, its binding is

expected to reflect the accessibility of the SD region. As a

proof of principle, we first showed that this was indeed the

case: while strong RT stops indicated As�14.�2 binding to

fepA�26 or fepA�173 transcripts, no stop was detected when

we used instead a fepA�26* transcript carrying an extra
8 Molecular Cell 68, 1–13, October 5, 2017
sequence at its 50 end that can occlude the SD region. Binding

of As�14.�2 was then analyzed on fepA�26 or fepA�173 tran-

scripts that were beforehand denatured and renatured in the

presence of increasing concentrations of OmrY or OmrYmut

sRNA. As visible on Figure 5E, the specific binding of OmrY

had no noticeable effect on As�14.�2 binding to fepA

mRNA, providing yet another indication that control of fepA by

OmrA/B does not rely on a change in RBS accessibility.

The Stem-Loop Structure Acts at the Translation
Initiation Level
Our in vivo results did not allow us to discriminate between an

effect of the SL on fepA mRNA translation, stability, processing,

or yet another process. However, because disruption of this SL

by OmrA/B sRNAs (or group 2 AsDNAs) inhibited 30S ribo-

somal subunit binding to fepA mRNA, it seemed likely that it

acted at the translation initiation step. This was tested in vitro

by performing a toeprinting assay using the WT fepA�173 tran-

script or its variants G3A5, U5C3, or Comp2. The results were

in remarkable agreement with what was observed in vivo with

the fusions: disruption of the SL using the G3A5 or U5C3 muta-

tions strongly inhibited the toeprint, while restoring the structure
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using the compensatory change partially recovered the toeprint

signal (Figure 6C). This demonstrates that the SL enhances the

formation of the ternary translation initiation complex without

requiring other actors than the fepA transcript, the 30S ribosomal

subunit, and the initiator tRNA.

How Could This Structure Activate Translation of
fepA mRNA?
An intriguing question raised by our results is the mechanism by

which the SL activates translation initiation at such an early step.

One possibility is that it would do so by helping to recruit the 30S

ribosomal subunit. This could be due, for instance, to an interac-

tion between the SL and one of the 30S components (protein or

RNA). Importantly, however, the effect of this SL is independent

of its nucleotide sequence and is permissive to topological

changes. This is hard to reconcile with a recruitment model at

first sight; nonetheless, ribosomal proteins tend to interact with

the sugar-phosphate backbone on ribosomal RNA (Brodersen

et al., 2002; Mangeol et al., 2011), and similar interactions could

occur between proteins and the activating SL. Other elements of

the fepA mRNA could furthermore be involved in the activating

role of the SL and provide specificity.

Alternatively, one might envision that this structure activates

translation initiation by providing a ‘‘starting block’’ to the 30S

subunit (Figure 6D). In this regard, it is striking that the 50 edge
of the SL is located at position +19 of fepA ORF, exactly contig-

uous to the 30 edge of the RBS (H€uttenhofer and Noller, 1994). It

would thus be ideally located to block the 30S subunit at proper

position for an efficient translation initiation. Results of Figure 5E

suggested that the fepA SD sequence is as accessible in the

absence as in the presence of the SL. This is consistent with

the affinity between the 30S ribosomal subunit and the fepA

mRNA being similar regardless of the formation of the SL. If so,

the increase in the toeprint signal observed in presence of the

SL (Figure 6C) could rely on a ‘‘starting block’’ mechanism (Fig-

ure 6D) through which the SL would block the 30S ribosomal

subunit from sliding on the mRNA without establishing a

translation initiation complex. This optimized positioning of

the 30S subunit would ultimately lead to an increased transla-

tion initiation rate. A prediction of this starting block model is

that increasing the distance between the fepA start codon

and the SL should prevent the ability of the latter to activate

translation. This was tested by measuring the activation by

the SL when 9 extra nt were introduced after position +18

(mutant +9up in Figure 6E). While the SL activated fepA expres-

sion by almost 10-fold when located at nucleotide +19, i.e., in

the WT situation, activation was completely abolished when it

was moved to position +28 (Figure 6E). In contrast, the SL still

activated fepA expression by 7.5-fold when 9 nt were intro-

duced after nucleotide +45, i.e., downstream of this structure

(mutant +9down, Figure 6E). Together, these results indicate

that the distance between the start codon and the SL is impor-

tant for the ability of this structure to activate translation. Even

though this does not necessarily rule out the recruitment model,

this is in perfect agreement with the starting block hypothesis.

Thus, at least in the fepA context, translation initiation is acti-

vated by the presence of a SL that may help the correct posi-

tioning of the 30S ribosomal subunit for efficient initiation.
ASimilar Activating Role for a Stem-Loop in bamAmRNA
Another obvious question raised by our results is whether transla-

tionactivationbyaSL is restricted to fepAor is, in contrast, amore

general phenomenon. To address this, we searched for putative

SL located around the nucleotide +20 in a subset of diverse

mRNAs by combining Mfold prediction (Zuker, 2003) and visual

inspection and found that such SL can be predicted in many

mRNAs (a few examples are given in Figure 7A). One of the

most convincing SLs is predicted within bamA, encoding an

essential component of theBamcomplex that allows the insertion

of b-barrel integral OMPs in the outer membrane of Gram-nega-

tive bacteria (Ricci and Silhavy, 2012). Another striking feature

of the bamA mRNA is that it possesses a putative AGGA SD

sequence located 16 nt upstream of the AUG (a distance

conserved in several bacteria; Figure S7A), i.e., a spacing that is

not optimal for efficient initiation, and whether it is really involved

in the initial bindingof the ribosomecanbequestioned.Weexper-

imentally tested whether this predicted SL could have a role in

bamA expression, both in vivo using compensatory changes

introduced in a bamA-lacZ translational fusion and in vitro by a

toeprinting assay (Figures 7B–7D). The results are in all points

similar to those obtained with fepA. First, mutations Mut50 and
Mut30 that are expected to disrupt the SL strongly decreased

expression of the fusion, which was restored to its WT level in

presence of the compensatory change (Comp) (Figure 7C). These

data support both the existence of the predicted SL and its

positive role in bamA expression. Furthermore, formation of the

translation initiation complex was detected by toeprinting for

both the WT and the Comp version of bamA, but not for the

Mut50 and Mut30 variants, showing that, as for fepA, the SL pro-

motes translation initiation at a very early stage (Figure 7D).

Importantly, while fepA is found only in enterobacteria, the

bamA gene is present in much more phylogenetically distant

bacteria, and despite important variations at the nucleotide

sequence level, a similar SL can be predicted in bamA mRNA

of other g-proteobacteria such as Vibrio species (Figure S7).

This suggests that this novel mechanism of translation activation

by a SL is conserved in a wide set of Gram-negative bacteria.

DISCUSSION

A Role for mRNA Secondary Structures in Activating
Translation
In bacteria, several cis-acting elements embedded in the mRNA

are known to play important roles in translation, at either the

sequence or the structure level. The most obvious example is

the evolutionary conserved SD sequence, but in addition, several

enhancers that improve binding of the 30S subunit, such as (A)

CA-rich motifs (Sharma et al., 2007; Yang et al., 2014) or A-rich

regions in the mRNA (Brock et al., 2007), have been described.

Secondary structures in mRNA are known to impact transla-

tion as well because they represent thermodynamic and kinetic

barriers that must be disrupted to allow the ribosome to bind

to or move on mRNA. Secondary structures have been reported

to negatively affect translation initiation by decreasing access of

the ribosome to the RBS, for instance (de Smit and van Duin,

1990), or by slowing down the elongation rate of the translating

ribosome (e.g., Qu et al., 2011; Wen et al., 2008).
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Figure 7. A Similar Activating Stem-Loop Structure in the bamA mRNA

(A) Examples of SL predicted in a subset of E. coli mRNAs around the position +20 of the ORF. The start codon is indicated by a green square in each mRNA.

Sequences between nucleotide �25 and the start codon are given in Figure S6C.

(B) Scheme of the Ptet-bamA-lacZ fusion and of the mutations introduced in the SL to assay its role in bamA expression.

(C) b-galactosidase activities of the different bamA-lacZ fusions. Strains used in this experiment are JJ0383 (WT), JJ0384 (Mut50), JJ0385 (Mut30), and JJ0386

(Comp). Ratios between activities of the WT and each mutant fusion are given above the bars.

(D) Toeprinting assay on WT and mutant bamA mRNA fragments. Only the portion of the gel with the toeprint signal is shown; full-size gel is reproduced in

Figure S6D.
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The present work shows that mRNA secondary structures

located around position +20 can surprisingly promote formation

of the ternary initiation complex and thus activate translation,

possibly by helping to correctly position the 30S ribosomal

subunit for optimal translation initiation. Why would some

mRNAs require such a SL for maximal expression? In the case

of bamA, it is tempting to speculate that this is related to the un-

usually long SD-AUG spacing. Regarding fepA, the involvement

of such an activating SL in translation is more puzzling at first

sight given the canonical AGGA SD sequence optimally spaced

from the start codon (8 nt). This could suggest that cis-elements

of this mRNA somehow destabilize its interaction with the 30S

ribosomal subunit. In line with this, we found that, when intro-

duced at nucleotide +20 of a different mRNA, this SL no longer

activated translation, indicating that its effect depends on spe-

cific features of the fepA mRNA (unpublished data). Because

the SL activates expression of the short fepA-lacZ fusion (Fig-

ure 6), these specific features are most likely located between

nucleotides�26 and +18 of fepAmRNA, and it will be interesting

to determine how they participate in fepA expression and its

control by the SL.

Folding of the Activating Stem-Loop Structure and
Translation
The activating SL identified in fepA and bamA mRNAs are part

of ORF and are thus disrupted by translating ribosomes.
10 Molecular Cell 68, 1–13, October 5, 2017
Considering that disruption of the SL significantly decreases

the toeprint signal on those mRNAs (Figures 6 and 7), we

can assume that each translating ribosome will transiently

decrease the initiation rate until the hairpin refolds. Given

that the time needed to form a simple hairpin helix is less

than 1 ms in vitro (Crothers et al., 1974), while initiation fre-

quency for a well-translated gene like lacZ is on the second

range (Kennell and Riezman, 1977), it is likely that the SL re-

folds after clearance of the translating ribosome and before

binding of the next ribosome. Therefore, activation of ribo-

some binding by this SL can affect several rounds of trans-

lation and might ensure that translation is kept within a

given range.

Are Activating Stem-Loops a General Feature
of mRNAs?
In addition to the fepA and bamA genes, it is likely that such

activating SLs are present in other genes given that they can

be predicted around position +20 in yet more E. coli mRNAs

(a few are shown in Figure 7A). Also, in line with the idea

that our findings could apply to mRNAs other than fepA or

bamA, it was previously reported that introduction of a 7 bp

SL at position +19 dramatically enhanced the translation of

poorly expressed heterologous genes (Paulus et al., 2004).

Furthermore, the analysis of fepA sequences from diverse

enterobacteria and of bamA in several g-proteobacteria
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indicates that these structures are likely to be conserved in

several species despite changes in the nucleotide and possibly

in the amino acid sequence (Figure S7), suggesting that trans-

lation activation by SL structures occurs in these organisms

as well.

Nonetheless, data from recent genome-wide studies of

RNA structures in E. coli did not specifically point out the ex-

istence of secondary structures near the position +20 of

mRNAs (Burkhardt et al., 2017; Del Campo et al., 2015).

And, as mentioned above, the ability of the fepA SL to activate

translation does not necessarily withstand a change in the sur-

rounding mRNA sequence. Thus, translation activation by SL

might be limited to a subset of mRNAs, whose identity remains

to be deciphered.

The Activating Stem-Loop as a Target for Regulators
of fepA
We have identified at least two regulators that modulate fepA

expression by targeting this activating SL. These regulators

are the OmrA and OmrB sRNAs, whose binding site on fepA

mRNA corresponds to the 30 side of the SL and, accordingly,

repress FepA synthesis at the translation level. It is tempting to

speculate that yet other post-transcriptional regulators, being

sRNAs or proteins, could target this structure in fepA or bamA.

In addition, these SLs could also form thermosensors and inte-

grate the temperature as an additional cue of FepA or BamA

synthesis.

From a physiological standpoint, regulating fepA expression

at the post-transcriptional level, by OmrA/B or other regula-

tors, is expected to change FepA levels in response to

different environmental cues and with different dynamic prop-

erties than the well-established transcriptional control by the

Fur repressor. However, one can wonder what would be the

advantage of limiting FepA synthesis by OmrA/B sRNAs that

themselves respond to the EnvZ-OmpR TCS or to the RpoS

sigma factor (at least for OmrA). A possible connection lies

in the fact that EnvZ-OmpR is activated in response to acid

stress (Quinn et al., 2014; Stincone et al., 2011), i.e., condi-

tions that increase the solubility of iron. OmrA/B can thus

participate in limiting not only the levels of FepA, but also of

other receptors of iron-siderophore complexes, such as

FecA or CirA, under those conditions where iron scavenging

by siderophores might be less needed, or even possibly harm-

ful. Another important note is that both OmrA and OmrB are

induced upon host infection (Westermann et al., 2016).

Because FepA and other iron-dependent OMPs are recog-

nized by the host immune system (Fernandez-Beros et al.,

1989), decreasing their levels in response to the infectious

process may help to limit the host response to bacterial

infection.

Together with previous reports, the study presented here high-

lights the wide diversity in the mRNA regions targeted by sRNAs

and in the regulatory mechanisms by which sRNAs control gene

expression. Importantly, it also led to the identification of trans-

lation-activating SLs that promote formation of the initiation

ternary complex on several bacterial mRNAs, suggesting that

the definition of RBS may need to be reevaluated for some

transcripts.
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tions between the RNA chaperone Hfq and an sRNA regulate sensitivity to the

antibiotic colicin. EMBO J. 32, 2764–2778.

Sharma, C.M., Darfeuille, F., Plantinga, T.H., and Vogel, J. (2007). A small

RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich

elements inside and upstream of ribosome-binding sites. Genes Dev.

21, 2804–2817.

Stincone, A., Daudi, N., Rahman, A.S., Antczak, P., Henderson, I., Cole, J.,

Johnson, M.D., Lund, P., and Falciani, F. (2011). A systems biology approach

sheds new light on Escherichia coli acid resistance. Nucleic Acids Res. 39,

7512–7528.

Vogel, J., and Luisi, B.F. (2011). Hfq and its constellation of RNA. Nat. Rev.

Microbiol. 9, 578–589.

Wagner, E.G., and Romby, P. (2015). Small RNAs in bacteria and archaea: who

they are, what they do, and how they do it. Adv. Genet. 90, 133–208.

Wen, J.D., Lancaster, L., Hodges, C., Zeri, A.C., Yoshimura, S.H., Noller, H.F.,

Bustamante, C., and Tinoco, I. (2008). Following translation by single ribo-

somes one codon at a time. Nature 452, 598–603.

http://refhub.elsevier.com/S1097-2765(17)30612-3/sref5
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref5
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref5
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref5
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref6
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref6
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref6
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref7
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref7
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref7
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref8
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref8
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref8
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref8
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref9
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref9
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref9
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref10
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref10
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref10
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref11
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref11
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref12
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref12
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref12
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref13
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref13
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref13
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref13
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref14
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref14
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref14
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref15
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref15
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref15
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref16
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref16
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref16
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref16
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref17
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref17
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref17
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref18
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref18
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref18
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref19
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref19
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref19
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref20
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref20
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref20
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref21
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref21
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref21
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref22
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref22
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref22
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref23
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref23
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref24
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref24
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref24
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref25
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref25
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref25
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref25
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref26
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref26
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref26
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref27
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref27
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref27
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref28
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref28
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref28
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref29
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref29
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref30
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref30
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref30
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref30
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref31
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref31
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref31
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref32
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref32
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref32
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref33
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref33
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref33
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref33
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref34
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref34
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref34
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref34
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref35
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref35
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref35
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref36
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref36
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref36
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref36
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref37
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref37
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref37
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref37
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref38
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref38
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref39
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref39
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref39
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref40
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref40
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref40
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref40
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref41
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref41
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref41
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref41
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref42
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref42
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref43
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref43
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref44
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref44
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref44


Please cite this article in press as: Jagodnik et al., Stem-Loop Structures within mRNA Coding Sequences Activate Translation Initiation and Mediate
Control by Small Regulatory RNAs, Molecular Cell (2017), http://dx.doi.org/10.1016/j.molcel.2017.08.015
Westermann, A.J., Förstner, K.U., Amman, F., Barquist, L., Chao, Y., Schulte,

L.N., M€uller, L., Reinhardt, R., Stadler, P.F., and Vogel, J. (2016). Dual RNA-seq

unveils noncoding RNA functions in host-pathogen interactions. Nature 529,

496–501.

Wright, P.R., Georg, J., Mann, M., Sorescu, D.A., Richter, A.S., Lott, S.,

Kleinkauf, R., Hess, W.R., and Backofen, R. (2014). CopraRNA and IntaRNA:

predicting small RNA targets, networks and interaction domains. Nucleic

Acids Res. 42, W119-23.
Yang, Q., Figueroa-Bossi, N., and Bossi, L. (2014). Translation enhancing ACA

motifs and their silencing by a bacterial small regulatory RNA. PLoS Genet. 10,

e1004026.

Yusupova, G.Z., Yusupov, M.M., Cate, J.H., and Noller, H.F. (2001). The path

of messenger RNA through the ribosome. Cell 106, 233–241.

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization

prediction. Nucleic Acids Res. 31, 3406–3415.
Molecular Cell 68, 1–13, October 5, 2017 13

http://refhub.elsevier.com/S1097-2765(17)30612-3/sref45
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref45
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref45
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref45
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref45
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref46
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref46
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref46
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref46
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref47
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref47
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref47
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref48
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref48
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref49
http://refhub.elsevier.com/S1097-2765(17)30612-3/sref49


Please cite this article in press as: Jagodnik et al., Stem-Loop Structures within mRNA Coding Sequences Activate Translation Initiation and Mediate
Control by Small Regulatory RNAs, Molecular Cell (2017), http://dx.doi.org/10.1016/j.molcel.2017.08.015
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-FepA K. Postle; Higgs et al., 2002 N/A

Rabbit polyclonal anti-S1 K. Nierhaus N/A

Bacterial and Virus Strains

Escherichia coli K-12 MG1655 strain F. Blattner RefSeq NC000913.3

Strains used in this study all derive from MG1655 and are

listed in Table S1

This study or references in

Table S1

N/A

Chemicals, Peptides, and Recombinant Proteins

DMS Sigma-Aldrich Cat#D186309

CMCT Sigma-Aldrich Cat#C106402

Oligonucleotides

All oligonucleotides used in this study are listed in Table S2 This study N/A

Recombinant DNA

Plasmids pBRplac, pBRplacOmrA, pBRplacOmrB Guillier and Gottesman, 2006 N/A

Plasmids pBRplacOmrAmut, pBRplacOmrBmut,

pBRplacOmrY, and pBRplacOmrYmut

This study N/A

Software and Algorithms

MFold Zuker, 2003 http://unafold.rna.albany.edu/?q=mfold/

RNA-Folding-Form

ImageJ ImageJ freeware https://imagej.nih.gov/ij/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Maude

Guillier (maude.guillier@ibpc.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial Strains
Bacterial strains used in this study are listed in Table S1, and are derivatives of E.coli strain MG1655. Cells were grown in LB. When

relevant, antibiotics were added at the following concentrations: kanamycin 25mg mL-1, chloramphenicol 10 mg mL-1, tetracycline

10 mg mL-1, ampicillin 150 mg mL-1 in liquid cultures or 100 mg mL-1 on plates. The rnets mutant allele was obtained from E. Massé

(Massé et al., 2003).

Construction of lacZ fusions was by recombineering following previously described l red-based procedures (Coornaert et al.,

2013). Briefly, DNA fragments corresponding to nts �173 or �26 to +45 of fepA mRNA (relative to start codon), or to nts �107

to +57 of bamA, were amplified by PCR using Phusion high fidelity DNA polymerase. The primers used introduced sequences ho-

mologous to the PLtet0-1 (Ptet) promoter upstream of fepA (or bamA) 50 end, and to lacZ from nts +28 to at least +48, in frame with

the coding sequence. When needed, primers introducing mutations were used instead, or in prior PCR reactions (see Table S2).

The final PCR products were recombined in the MG1508 strain, by replacing the cat-sacB cassette of a chromosomal Ptet-cat-

sacB-lacZ construct. Recombinants were selected on LB plates without NaCl, supplemented with 6% sucrose to counterselect cells

carrying sacB. Chloramphenicol-sensitive colonies were subsequently purified, and the final strains were checked by PCR and

sequencing for the presence of the desired fusions.

METHOD DETAILS

Oligonucleotides and Plasmids
The oligonucleotides used in this study are listed in Table S2. The plasmids are all derivatives of the pBRpLac plasmid (Guillier and

Gottesman, 2006). For construction of pOmrY and pOmrYmut, DNA fragments were PCR-amplified from pBRplacRybB plasmid
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(Mandin and Gottesman, 2010) using pBRrev2 and either AatIIOmrY or AatIIOmrYmut primers. After DpnI digestion of the template

plasmids, the DNA fragments were subsequently cleaved with EcoRI and AatII and cloned into the corresponding sites on pBRplac.

The recombinant plasmids were then transformed into DH5a cells, and sequenced.

pOmrAmut and pOmrBmut plasmids were constructed using the QuikChange II site-directedmutagenesis kit (Stratagene). pOmrA

and pOmrB were used as templates in PCR with oligonucleotides introducing the desired mutation (see Table S2).

b-galactosidase Assays
Overnight cultures were diluted 500-fold in fresh LB (or LB-Amp-IPTG 100 mM for strains with plasmids) and grown at 37�C to mid-

exponential phase. The b-galactosidase activity was then measured as previously described (Miller, 1992). Briefly, aliquots of 200mL

(for fepA fusions) or 500mL (for bamA fusions) were mixed with 800mL or 500mL, respectively, of Z buffer and lysed with toluene. After

toluene evaporation at 37�C for at least 1h, specific b-galactosidase activity was assayed with 200mL ONPG at 4mg/mL and reaction

was stopped with 500mL Na2CO3 1M. The culture final OD at 600nm (cOD600), the culture volume in each sample (v), the reaction

time (rt), and the reaction final OD at 420nm (rOD420) and 550nm (rOD550) were taken into account to calculate the specific b-galac-

tosidase activity, following this formula: 1000 � ðrOD420� ð1:75 � rOD550Þ=cOD600 � rt � vÞ. The results shown are the mean of at

least three independent replicates, and error bars represent 95% confidence intervals.

RNA Extraction and Northern Blot Assays
Total RNA was extracted by the hot-phenol method (Guillier and Gottesman, 2006) either from the same cultures than those used for

the b-galactosidase experiments or from cultures subjected to pulse-induction of FepA synthesis. In this latter case, overnight cul-

tures were diluted 500-fold in fresh LB-Amp (Figure 1D) or LB-Amp-IPTG 100 mM (Figure 2) and grown at 37�C to mid-exponential

phase, then shifted or not to 44�C for 15 min in presence of 250 mM dip (and IPTG for Figure 1D); RNA was extracted after this treat-

ment. RNA was then ethanol precipitated and equal amounts of total RNA were separated on denaturing acrylamide (for sRNAs;

3.5 mg RNA loaded) or agarose (for mRNAs; 5.5 mg RNA loaded) gels, transferred to Hybond-N+ membranes and specific RNAs

were detected using specific biotinylated probes and the Ambion Brightstar detection kit.

Protein Extraction and Western Blot Assays
Protein samples were prepared from the same cultures as those used for RNA extraction. Samples preparation and western blotting

were as described previously (Coornaert et al., 2013), except that detection was performed with the West-Femto kit (Thermo-Scien-

tific). The anti-FepA and the anti-S1, kind gifts from Kathleen Postle (Higgs et al., 2002) and Knud Nierhaus, were used at 1:5000 and

1:10000 dilutions, respectively.

In Vitro RNA Transcription
Templates for T7 RNA transcription were generated by PCR, using primers adding a T7 promoter upstream of the gene to be tran-

scribed. Two G nts were added to fepA 50 end to improve transcription efficiency; the 50 end of the sRNAs was left unchanged. After

purification, the PCR products were used to generate RNAs with the T7 Megascript kit (Ambion) following manufacturer’s instruc-

tions. Transcripts were then phenol extracted, ethanol precipitated and finally purified with Nucleoseq columns (GE Healthcare).

In Vitro Reverse Transcription
For those experiments, 1pmol of wt ormutant fepAmRNA transcripts (�173 to +129 or�26 to +129) were denatured at 80�C for 3min

in the presence of 2pmol of the Cyanine-5 labeled fepToeCy5 probe and either water or 1, 5 or 10pmol of OmrY or OmrYmut sRNA.

Samples were then immediately immersed in solid CO2/ethanol for 1 min and subsequently thawed on ice. 1x final concentration of

AMV-buffer (Finnzymes) was added to the reactions along with 3mM final concentration of dNTPs, and samples were subsequently

incubated at 37�C for 10 min to allow for transcript-sRNA annealing and folding. 1pmol of the As�14.�2 AsDNA or water was then

added to the reactions, which were incubated for another 10min at 37�C to allow for transcript-AsDNA annealing and folding. Finally,

reverse-transcription was performed with 1 unit of AMV reverse transcriptase (Finnzymes) at 37�C for 20 min, and stopped with a

formamide/EDTA mixture. cDNAs were fractionated by PAGE on a 6% denaturing gel along with sequencing reactions, and visual-

ized with a Typhoon fluorescent scanner set up for Cy5 detection.

In Vitro Toeprinting and RNA Structure Probing Assays
These assays were performed essentially as in (Coornaert et al., 2013), with minor modifications that are detailed thereafter. Briefly,

0.5pmol of wt or mutant fepA (�173 to +129) or bamA (�107 to +100) transcripts were denatured at 80�C for 3 min in 10mM Tris-

acetate pH7.4, 60mMNH4Cl and 6mM b-mercaptoethanol, together with 2pmol of fepAToeCy5 or bamAToeCy5 DNA primer labeled

with a Cyanine-5 at their 50 end. When relevant, this step was performed in the presence of increasing concentrations of sRNAs or

AsDNAs. Samples were then immediately immersed in solid CO2/ethanol for 1min and subsequently thawed on ice. Magnesiumwas

added at 10mM final concentration, and samples were incubated at 37�C for 10 min to allow for transcript-sRNA annealing and

folding. Samples were then incubated at 37�C for 10 min in 0.015% triton, 3.6mM Tris-HCl pH7.5, 0.07mM EDTA pH8.0, 7% glycerol

and 7mM NH4Cl, or the same buffer supplemented with purified Hfq protein (a kind gift from Eliane Hajnsdorf). 5pmol of 30S ribo-

somal subunits were then added together with 1,5mM dNTPs and 15pmol tRNAfmet, and the samples were incubated at 37�C for
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10 min. Finally, reverse-transcription was performed by incubating the samples at 37�C for 20 min with 1 unit of AMV reverse tran-

scriptase (Finnzymes) and stoppedwith a formamide/EDTAmixture. cDNAswere fractionated by PAGE on 6%denaturing gels along

with sequencing reactions, and visualized with a Typhoon fluorescent scanner set up for Cy5 detection.

In Vitro RNA Structure Probing
RNA structure probing assayswere adapted from (Coornaert et al., 2013) as follows. Samples containing 3pmol of fepA (�26 to +129)

transcript in water were heated at 80�C for 3min, immediately immersed in solid CO2/ethanol for 1 min and thawed on ice. They were

then incubated at 25�C for 10 min in a buffer containing 10mM magnesium acetate, 50mM ammonium chloride and either 50mM

sodium cacodylate pH 7.5 for DMS treatment, or 50mM sodium borate pH 8.0 for CMCT treatment. 1mg of L.lactis 23S rRNA was

added to the samples, along with 0.1 volume of either DMS (1:20 dilution in ethanol) or CMCT (100mg/mL in CMCT buffer). Probing

reactions were carried out at 25�C for 5 min for DMSmodification or 10min for CMCTmodification. RNAs were recovered by ethanol

precipitation, resuspended in water and denatured along with 5pmol of the fepAToeCy5 primer mentioned above at 80�C for 3 min.

The samples were then immediately immersed in solid CO2/ethanol for 1 min and thawed on ice. They were subsequently supple-

mented with 2.5mM dNTPs, 3mM DTT, 1X superscript III buffer, and 5.6 units of Superscript III reverse-transcriptase (Invitrogen).

Reverse-transcription was performed at 50�C for 30min followed by incubation of the samples at 75�C for 15 min to inactivate the

enzyme. After addition of a formamide /EDTA mixture, the cDNAs were analyzed as described above for the toeprinting assays.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis for b-galactosidase assays was performed as follows: for each fusion and condition, the mean of at least

three independent replicates was considered as the final b-galactosidase specific activity. The 95% confidence intervals were

then calculated from the standard deviation between replicates (s), and the number of replicates (n) as follows: ðx � 1:96 � s=
ffiffiffi

n
p

; x + 1:96 � s= ffiffiffi

n
p Þ where x is the mean value of the considered replicates.

Quantification of the cDNA bands produced in the toeprinting assay (Figure 4C) was carried out using the ImageJ software. For

each sample, the total lane signal is the sum of the bands which correspond to the full length extension signal, the toeprint signal

and the antisense-mRNA duplex signal. Each signal was then expressed as the ratio over the total lane signal.
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