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During the Paleocene–Eocene, the Earth experienced the warmest conditions of the Cenozoic and reduced 

equator-to-pole temperature gradients. Compared to low- and mid-latitude sites, Paleogene environmental 

changes are less documented in Arctic regions, although such high latitude areas constitute a critical domain 

to constrain global climate changes. Floral and faunal assemblages indicative of exceptionally warm and 

humid conditions during the late Paleocene–early Eocene have been reported in several localities around 

the Arctic Ocean. Additional studies are required to ascertain the effects of Paleocene–Eocene global 

environmental changes on western Arctic regions. Here we present multiproxy data from early Eocene 

deltaic plain sediments of the Mackenzie Delta (Canada). This environment is characterized by littoral 

forest, including swamp, showing that the mangrove Avicennia grew in Arctic Canada near 75°N under air 

temperatures averaging 21–22 °C annually and 10–14 °C in winter and with precipitation of 1200–1400 

mm/yr. Kaolinite contents are high (up to 75% of clay assemblages), as under a modern subtropical climate. 

The Avicennia pollens recently found in the New Siberian Islands and in Arctic Canada imply that warm 

and wet conditions were widespread along the Arctic coast during the early Eocene. It also suggests a marine 

connection between the Arctic Basin and the mid-latitude oceans. We propose that an oceanic current must 

have connected the Arctic Basin to the Atlantic and/or Pacific and that an internal current developed in the 

Arctic Basin since the early Eocene. 

 

 

 

INTRODUCTION 

The Paleocene to early Eocene has been recognized as the warmest period of the Cenozoic Era. 

Paleocene–Eocene global warming began in the late Paleocene and continued into the early 

Eocene (58–50 Ma; Vandenbergh e et al., 2012), reaching an optimum in the early Eocene (52–

50 Ma; Zachos et al., 2001; Vandenberghe et al., 2012). This time interval is punctuated by 

several short-lived (150–200 ky) hyperthermal events (Aubry et al., 2003; Röhl et al., 2007), 

the greatest in magnitude being the Paleocene–Eocene Thermal Maximum (PETM, 56 Ma) and 

the Eocene Thermal Maximum 2 (ETM2, 2 My after the PETM) (Zachos et al., 2001; Brinkhuis 

et al., 2006; Thomas, 2008; Stap et al., 2010; Storme et al., 2012a; Garel et al., 2013). 

During these hyperthermal events, the global average temperature rose by as much as 8 °C 

above pre-event values (Zachos et al., 2001; Jones et al., 2013). These extreme global warming 

events are systematically associated with negative carbon isotope excursions (CIE) in both 

marine and terrestrial carbonate (~–3 ‰) as well as in organic carbon (~6 ‰, e.g., Aubry et al., 

2007; Storme et al., 2012b), which is thought to refl ect the massive release of isotopically light 

carbon dioxide and methane into the ocean and atmosphere carbon pools (Kennett and Stott, 

1991; Pearson and Palmer, 2000; Zachos et al., 2001, 2008; Lourens et al., 2005; Schouten et 

al., 2007; DeConto et al., 2012). These late Paleocene and early Eocene hyperthermal events 



induced major turnovers in the assemblage of planktonic and benthic foraminifera, calcareous 

nannofossils, and dinoflagellates, with an especially pronounced increase in the relative 

abundance of the dinoflagellate genus Apectodinium during the PETM (Kennett and Stott, 

1991; Kaiho et al., 1996; Thomas et al., 2000; Crouch et al., 2003; Zachos et al., 2005). These 

biotic changes coincided with major changes in ocean and atmosphere circulations and repeated 

pulses of lysocline and carbonate compensation depth shoaling (Zachos et al., 2005; Schouten 

et al., 2007). 

Extensive paleobotanic studies have been performed in the Paleogene sediments of the Arctic 

domain. Many of them were based on plant macroremains with identifications most often at the 

genus level, establishing that many of the modern botanical genera already existed in Paleogene 

times (e.g.: Basinger et al., 1994; Greenwood and Basinger, 1994; Jahren, 2007; McIver and 

Basinger, 1999; Sunderlin et al., 2011; Eberle and Greenwood, 2012; Eldrett et al., 2014; West 

et al., 2015; Harrington et al., 2011; and older references). Simultaneously, studies based on 

pollen grain identification under the transmitted light microscope developed an identification 

approach mixing the artificial and botanic nomenclatures (Ridgway et al., 1995; Kalkreuth et 

al., 1996; Frederiksen et al., 2002; White, 2006; Sluijs et al., 2009). The result was a taxonomic 

gap between macroremain and pollen floras. Palynologists have put forth serious efforts in 

botanical identification aimed at reducing and closing this gap, first using only the transmitted 

light microscope (Eldrett et al., 2009; Barke et al., 2011; Harrington et al., 2011; Zaporozhets 

and Akhmetiev, 2013), then with the scanning electronic microscope (Liu and Basinger, 2000; 

Grimsson et al., 2014; Suan et al., 2017). The IODP-ACEX wells (2004) were cored on the 

Lomonosov Ridge in the central Arctic Ocean in order to increase information thanks to a long 

and continuous record (Moran et al., 2006; Sluijs et al., 2008; Backman and Moran, 2009). The 

results from the ACEX expedition indicate euxinic conditions and high primary productivity in 

the central Arctic Ocean during the Paleogene and early Eocene (Stein et al., 2006). Tetraether 

lipid based proxies (TEX86 and MBT) revealed an increase of air and sea surface temperatures 

(SST) of up to 8 °C during the PETM (Sluijs et al., 2006, 2009; Weijers et al., 2007) and a 

subsequent 3–5 °C SST warming during the ETM2 (Sluijs et al., 2009). On the Siberian margin, 

floral assemblages indicate a paratropical humid climate (Akhmetiev and Beniamovski, 2009; 

Suan et al., 2017). Floral and faunal assemblages indicative of exceptionally warmer and more 

humid conditions during the late Paleocene–early Eocene than today have been also reported 

in other localities around the Arctic Ocean (Ellesmere Island, e.g., Eberle et al., 2010; Schubert 

et al., 2012; Northeast Yukon, Vavrek et al., 2012; Axel Heiberg Island, e.g., McIver and 

Basinger, 1999; Northwest Territories (NWT), Ellesmere and Axel Heiberg Islands: 

Greenwood et al., 2010; Canadian Arctic: Eberle and Greenwood, 2012; Alaska: Sunderlin et 

al., 2011). Although these studies have provided valuable constraints for climate conditions in 

the Arctic during the Paleocene–Eocene, they are limited to a few localities (Fig. 1). Therefore, 

additional studies are required to ascertain the effects of Paleocene–Eocene global 

environmental changes on western Arctic regions. 

This study aims to constrain paleoclimatic conditions of the Canadian margin during the 

Paleocene–Eocene. We focus on the Mackenzie Delta of the Beaufort-Mackenzie Basin in the 

Arctic Basin with a multiproxy approach comprising organic matter characterization, clay 

mineralogy, comprehensive botanical palynology, and carbon isotope geochemistry on 

dispersed organic matter. 

 

 

GEOLOGICAL SETTING AND SAMPLES 

The Mackenzie Delta lies north of the Arctic Circle (68–69°N), on the coastline of the 

Northwest Territories, Canada (Fig. 1). This fluvial-dominated delta is 200 km long, and 80 km 

wide, oriented along a NNW axis (Dixon, 1986), and was located at a paleolatitutde of ~75°N 



during the Eocene (van Hinsbergen et al., 2015). A high sedimentation rate has been recorded 

in the Beaufort-Mackenzie Basin, with Cretaceous to Cenozoic deposits being 12–16 km thick 

(Dixon, 1992). The Cenozoic strata have been penetrated by many petroleum wells but are 

rarely exposed in outcrops. The most extensive outcrops are found along the Caribou Hills on 

the eastern part of the Mackenzie Delta (Fig. 1). Based on outcrop and well data, twelve 

transgressive-regressive sedimentary sequences have been recognized within Upper Cretaceous 

to Quaternary sedimentary succession in the Beaufort-Mackenzie Basin, each sequence being 

bounded by major unconformities (Dixon et al., 2008). The basin infill seems partly controlled 

by the local tectonic activity, at least until the late Miocene. The major tectonic pulses of 

deformation in the region spanned from Paleocene to Miocene during the development of the 

Canadian Cordillera ending to the North in the Richardson Mountains (Fig. 1) and the Brooks 

Range–British Mountains belt along the Arctic Ocean ending offshore with the Beaufort Fold 

Belt (Harrison et al., 1999; Dixon et al. 2008). The dating of these sedimentary sequences is 

based on the identification of foraminiferal and palynological assemblages (spore, pollen 

grains, and dinoflagellate cysts; McNeil, 1989; Dixon, 1992). 

The Paleogene strata constitute a series of predominantly delta plain deposits made up of 

unconsolidated sandy to gravel sedimentary packages corresponding to fluvial channel belts, as 

well as groups of shaly horizons indicative of levee or deltaic plain environment, and occasional 

thin coal beds of wetland environment (Price et al., 1980).  

The occurrence of the benthic foraminifera Reticulophragmium sp. at the base of the sequence 

and the associations of pollen grains, dinoflagellates, and foraminifera above led to the 

assignment of 720 m out of the total 1200 m of Cenozoic strata exposed at Caribou Hills to the 

late Paleocene–middle Eocene Aklak and Taglu depositional sequences (Parsons, 2000; Fig. 2). 

The rest of the Cenozoic succession is thought to be Oligocene to Pliocene in age (Kugmalitt 

to Iperk sequences; Parsons, 2000). The boundary between Aklak and Taglu sequences is 

marked by an angular unconformity, which is well documented in seismic data but difficult to 

observe on outcrops (Dixon, 1992). 

For this study, two sections have been sampled along the Caribou Hills exposure during the 

CASE 15 (Circum-Arctic Structural Events) expedition in 2013 by L. Labrousse (ISTeP, 

France) and L. Reinhardt (BGR, Germany). These two sections are 26 m thick (CaH1) and 50 

m thick (CaH2) and belong to the Taglu and/or Aklak sequence. CaH2 is estimated to be 

stratigraphically ca. 400 m above CaH1. The CaH1 section is mainly composed of silty clays 

more or less rich in organic matter, which are interrupted by three sandy levels at the base of 

the section. A bentonite layer occurs at 23 m, which is characterized by its prominent orange 

color when weathered. It consists mainly of smectite with some traces of goethite and gypsum. 

The fresh unweathered bentonite of the ~10 cm thick layer has a light beige color. Above this 

layer, an additional set of ~4 cm thick, orange bentonite layers are preserved in a sequence of 

brownish siltstones. The horizontally bedded sediments lack signs of reworking. The CaH2 

section is composed of a succession of coarse-grained sand, fi ne-sand, and silty clay beds, the 

latter being sometimes rich in organic matter. Four lignite seams are interbedded in the fi nest 

deposits. Assuming that the bentonite level measured at 23 m in the CaH1 section is the same 

as that identified by Price et al. (1980; Fig. 3), CaH1 and CaH2 are respectively equivalent to 

section 2 and 6 of Parsons (2000). Moreover, bentonite levels were found in Ellesmere Island 

and were assumed to result from explosive volcanism during the opening of the Labrador Sea, 

Baffin Bay, and northern Atlantic (Reinhardt et al., 2013). Facies correspond to migrating 

channel belts, laterally associated with levee, crevasse splay, and swamp deposits, characteristic 

of a delta plain environment. A total of 35 and 22 samples were collected along the CaH1 and 

CaH2 sections, respectively. 

 

 



METHODS 
Clay Mineralogy 

Clay mineral (<2μm) associations were identified on all samples by X-ray diffraction (XRD) 

using a Bruker D2 phaser X-ray powder diffractometer equipped with a LynxEye detector 

(CuKradiation, = 1.54Å and Ni filter). Oriented mounts were prepared for clay minerals 

analyses and three X-ray diagrams per sample were performed following the analytical 

procedure described in Holtzapffel (1985) and Moore and Reynolds (1997). Semiquantitative 

proportions of the identified minerals were obtained using the peak area of the basal reflection 

for each mineral, using MacDiff® 4.2.5 software. Some rock pieces were observed under 

Scanning Electron Microscopy to determine crystal morphology. 
 

U-Pb Isotopic Dating (ID-TIMS) 

Sample CASE15_YU067 (coordinates N 68° 3819.5/ W 134° 0337.4, handheld GPS) 

from the 10 cm thick bentonite layer in section CaH1 was processed for U-Pb zircon 

geochronology and measured (ID-TIMS) at the Boise State University Isotope Geology 

Laboratory, Idaho (USA). The results are shown in Table 1 and Figure 3. Heavy minerals were 

separated from 0.5 kg aliquots of volcanic tuff via progressive washing under ultrasonication 

following the method of Hoke et al. (2014), followed by conventional density and magnetic 

methods. Separate from each sample, the entire heavy mineral was placed in a muffle furnace 

at 900 °C for 60 h in quartz beakers to anneal minor radiation damage in zircon. Annealing 

enhances cathodoluminescence (CL) emission (Nasdala et al., 2002), promotes more 

reproducible interelement fractionation during laser ablation-inductively coupled plasma mass 

spectrometry (LA-ICPMS) (Allen and Campbell, 2012), and prepares the crystals for 

subsequent chemical abrasion (Mattinson, 2005). Following annealing, individual grains were 

handpicked for further isotopic analysis. 

U-Pb geochronology methods for isotope dilution thermal ionization mass spectrometry 

followed those previously published by Davydov et al. (2010) and Schmitz and Davydov 

(2012). Zircon crystals were subjected to a modified version of the chemical abrasion method 

of Mattinson (2005), whereby single crystal fragments plucked from grain mounts were 

individually abraded in a single step with concentrated HF at 180 °C for 12 h. All analyses were 

undertaken on crystals previously mounted, polished, and imaged by cathodoluminence (CL), 

and selected on the basis of zoning patterns. U-Pb dates and uncertainties for each analysis were 

calculated using the algorithms of Schmitz and Schoene (2007) and the U decay constants of 

Jaffey et al. (1971). Uncertainties are based upon non-systematic analytical errors, including 

counting statistics, instrumental fractionation, tracer subtraction, and blank subtraction. These 

error estimates should be considered when comparing our 206Pb/238U dates with those from 

other laboratories that used tracer solutions calibrated against the EARTHTIME gravimetric 

standards. When comparing our dates with those derived from other decay schemes (e.g., 
40Ar/39Ar, 187Re-187Os), the uncertainties in tracer calibration (0.03%; Condon et al., 2015; 

McLean et al., 2015) and U decay constants (0.108%; Jaffey et al., 1971) should be added to 

the internal error in quadrature. Quoted errors for calculated weighted means are thus of the 

form X(Y)[Z], where X is solely analytical uncertainty, Y is the combined analytical and tracer 

uncertainty, and Z is the combined analytical, tracer, and 238U decay constant uncertainty. 

 
Rock-Eval Pyrolysis 

Rock-Eval pyrolysis was performed on all samples using a Rock-Eval 6 under standard 

conditions (Espitalié et al., 1985; Behar et al., 2001). The following parameters were 

determined: the Total Organic Carbon (TOC) content in weight %, reflecting the quantity of 

pyrolysed carbon and residual organic carbon; the Hydrogen Index (HI) expressed in mg of 

hydrocarbons by gram of TOC; the Oxygen Index (OI) expressed in mg of carbon dioxide by 



gram of TOC, constraining kerogen types and their preservation state; and the Tmax expressed 

in °C, used to estimate the degree of thermogenic maturation of the kerogen (Fig. 4). 

 

Palynofacies 

A total of 22 samples were selected for palynofacies observations, i.e., the identification of all 

particulate organic matter under the microscope in transmitted light (Tyson, 1995). Samples 

were crushed into millimetric pieces using a ceramic mortar, oven-dried, and treated with HCl 

and HF to remove the mineral matrix, and both total and sieved (fraction below 10 micron being 

removed) slides were prepared with the residues. The observations were carried out with an 

Axioplan2 Imaging Zeiss optical microscope under transmitted light and under UV excitation 

(Zeiss HBO 100 Microscope Illuminating System, mercury short-arc lamp). Over 1000 basic 

surface units per sample were counted to estimate the relative proportions of each organic 

group. The organic particles were grouped into the following categories: amorphous organic 

matter (AOM), phytoclast, and palynomorph groups. Based on shape, color, and fluorescence, 

the AOM can be subdivided into diffuse, granular, and gelified. The diffuse form is mainly 

yellow in natural light and exhibits fluffy shapes and weak to no fluorescence. The granular 

form is mainly gray to brown and exhibits irregular aggregated shapes and weak to no 

fluorescence. It sometimes contains small framboidal pyrite. The diffuse and granular AOM is 

thought to derive from phytoplankton, algae, and bacteria that accumulated in O2-depleted 

marine or lacustrine waters (Tyson, 1995), but may also derive from degraded terrestrial organic 

matter (Batten, 1996). The gelified AOM is orange to brown and lacks internal structures. As 

gelified AOM is here likely to correspond to degraded gelified phytoclasts (Tyson, 1995), we 

will further refer to gelified phytoclasts plus gelified AOM as gelified OM. 

Phytoclasts are plant-derived fragments, including cuticles, woody tissues, and charcoals. In 

this study the phytoclast group is separated into opaque particles, translucent ligno-cellulosic 

fragments, and gelified particles, some very dark in color that look like gelified semi-opaque 

particles. 

 

Palynology 

A total of 35 samples were analyzed specifically for palynology. Pollen slide preparation 

followed a standard gentle method resulting in no damage to palynomorph membranes (Cour, 

1974). Samples (15–25 g dry weight) were treated with HCl (35%) and HF (70%) to remove 

carbonates and silicates. Denser particles were separated from the organic residue using ZnCl2 

(density = 2.0). Residues were filtered through a 150 μm nylon sieve to eliminate the coarser 

particles, including organic macroremains. Palynomorphs were further concentrated using a 10 

μm nylon sieve. The final residue was then homogenized and mounted onto microscope slides 

with glycerol. A transmitted light microscope was used for counting (at magnification × 200) 

and identification (at magnification × 1000) of palynomorphs. Pollen grains are particularly 

well preserved, a condition that allows a detailed examination of their morphological characters 

and their identification at the botanical family or genus level supported by comparison of the 

fossil specimens with those from databases of present-day species (collection of pollen slides, 

photographs, and iconographic atlases). Information on some critical pollen identifications is 

provided in the GSA Data Repository Item1. A minimum of 150 pollen grains were counted 

per sample in addition to those of Pinus. Detailed data are provided in Tables 2 and 3. Results 

are summarized in synthetic pollen diagrams presented in Figure 5B. Botanical identification 

of pollen grains allows the grouping of the recorded elements with respect to Nix’s (1982) 

classification of living plants as reported in Tables 2 and 3: megatherm (tropical) elements 

(mean annual temperature (MAT)>24 °C); mega-mesotherm (subtropical) elements (20 

°C<MAT<24 °C); Cathaya, a conifer living today in tropical-subtropical regions at mid- to 

high-elevations but below the Abies-Picea belt; mesotherm (warm-temperate) elements (14 



°C<MAT<20 °C); mesomicrotherm (cool-temperate) elements (12 °C<MAT<14 °C); and 

microtherm (boreal) elements (MAT<12 °C). The other elements are composed of: elements 

without climatic signification apart from some Cupressaceae (Juniperus-Cupressus-type), 

which occupy various biotopes (the pollen of which cannot be identified at the genus level); 

hygrophilous elements (i.e., water plants); and various herbs (Fig. 5B; Tables 2 and 3). A pollen 

ratio is calculated between “thermophilous” (megatherms + megamesotherms + mesotherms) 

and “non-thermophilous” (Cathaya and Podocarpus-type + meso-microtherms + microtherms) 

taxa, which is regarded as a representative index of temperature variation (Tables 2 and 3). 

Values of this ratio significantly >1 characterize warm periods (Popescu, 2002; Popescu et al., 

2006). 

 

Carbon Isotope Analyses 

The organic carbon-isotope composition (13Corg) was determined for 42 samples that were 

powdered using a grinder and decarbonated using 1N HCl for 2 h at 25 °C prior to analysis. 

Depending on the TOC contents, between 0.2 and 10 mg of fully decarbonated sediment powder 

was weighted into tin capsules and placed in a PYRO cube® elemental analyzer connected to 

an Elementar Isoprime® 100 isotope-ratio mass spectrometer in continuous flow. Each 

analytical run contained four sets of two standards (IAEA CH7, δ13C = –32.15 ‰; Caseine, 

δ13C = –27.18 ‰) to monitor analytical precision and accuracy. The carbon isotope results are 

reported relative to the “Vienna PeeDee belemnite” (VPDB) in delta notation. The precision, 

based on replicate analysis of standard and samples, was better than 0.13 ‰. 

 

Paleoclimatic Reconstruction Based on Palynology 

The climate has been reconstructed, thanks to palynology, for the Caribou Hills deposits using 

the “Climatic Amplitude Method” in which the climatic requirements of the maximum number 

of modern taxa are transposed to the fossil data (Fauquette et al., 1998a, 1998b). This approach 

relies on the relationship between the relative pollen abundance of each individual taxon and 

climate. It takes into account not only presence/absence criterion but also pollen percentages to 

provide more reliable reconstructions. 

The estimated mean annual temperatures (MAT), coldest month mean temperature (CMMT), 

warmest month mean temperature (WMMT), mean annual precipitation (MAP), and available 

moisture concern the low-altitude vegetation because meso-microthermic and microthermic 

taxa have been excluded from the process to avoid a cold bias linked to transport from higher 

elevations. The excluded taxa are defined on the basis of their occurrence in modern vegetation 

zones (Walter, 1984), as vegetation types described for studied time period are found today in 

southeastern China from around 25–30°N and 110–120°E (Hou, 1983). In this region of China, 

the vertical distribution of the vegetation is characterized from the base to the top of the massifs 

(Taibai Shan in the Tsinling Massif, Shaanxi, Taba Shan, eastern Sichuan, or Hua Ping, 

Guangxi), by the evergreen broad-leaved forest, mixed evergreen and deciduous (Betula, Acer) 

broad-leaved forest, Cathaya/Tsuga forest, Picea/Abies forest, and high mountain meadows 

(Wang, 1961; Hou, 1983). This modern distribution allows us to exclude the modern high-

altitude taxa from the climatic reconstruction to obtain the low to middle-low altitude climate.  

The most probable climate for a fossil pollen assemblage is estimated as the climatic interval 

in which the highest number of taxa can exist and a “Most Likely Value” (MLV) corresponding 

to a weighted mean, according to the size of the climatic intervals of all taxa. As the precision 

of the information obtained from a taxon’s climatic interval is inversely related to the breadth 

of this interval, the weights are greater for taxa with smaller intervals (for more details, see 

Fauquette et al., 1998a). 
 
 



RESULTS 

Clay Mineralogy 

The clay fraction (<2 μm) mineralogy of samples of CaH1 and CaH2 sections is composed of 

kaolinite (0–75%, average value 30%), illite (0–70%, average value 30%), smectite (0–100%, 

average value 30%), and chlorite (0–30%, average value 15%) (Fig. 5A). 

Important differences in clay mineralogy are obvious between the two sections. Section CaH1 

is characterized by high proportions of smectite (10–100%, mean value 50%) when compared 

to CaH2, which is dominated by kaolinite (20–75%, average value 45%) (Fig. 5A). Illite is the 

second clay mineral represented in both sections and may correspond to the background 

physical erosion from the hinterland (Chamley, 1989). The illite crystallinity does not show 

continuous improvement along the sections, so no diagenetic overprint is highlighted. Chlorite 

is more abundant in CaH2 than in CaH1, a feature that may reflect local erosional inputs, as 

chloritic minerals are often thought to result from the physical erosion of catchment areas 

(Chamley, 1989). Kaolinite is generally poorly crystallized according to Scanning Electron 

Microscopy (SEM) observations. Only small to moderate amounts of well-crystallized crystals 

have been observed in some pure sand samples, showing that kaolinite has mainly detrital 

origins, and only localized, small amounts of kaolinite may be of diagenetic origin. 

Kaolinite forms under intense hydrolyzing conditions and is considered to reflect warm and wet 

climatic conditions (Chamley, 1989; Velde and Meunier, 2008; Tramoy et al., 2016). Smectite 

forms under colder and/or dryer conditions, in poorly drained environments or under contrasted 

seasonality (Chamley, 1989; Tramoy et al., 2016). 

The (Smectite + Kaolinite) / (Illite + Chlorite) ratio (S+K / I+C) may be used as a relative 

weathering indicator as smectite and kaolinite are secondary form clay minerals, whereas illite 

and chlorite are derived from physical erosion of parent rocks. The higher the ratio, the more 

elevated were the inland hydrolyzing conditions compared to physical erosion. The 

Smectite/Kaolinite ratio (S/K) may be used as a relative paleoclimatic proxy, with a high S/K 

ratio indicating dryer and/or colder climate conditions. The (S+K / I+C) ratio is around 1 in 

most of the CaH1 section and decreases toward the top of the section. It varies from 1.5 to 3 in 

CaH2, and reaches high values between 20 and 30 m and around 40–45 m (Fig. 5A). The S/K 

ratio is high in the CaH1 section, mostly above 1 with three really high values (up to 4.9), 

whereas it is below 0.5 in most of the CaH2 section. 

In CaH1, the kaolinite content is higher between 19–21 m and 24–26 m, when compared to the 

rest of the section. Conversely, smectite proportions are higher at the base and between 21 and 

24 m when compared to the rest of the section. The bentonite level at the top of the section 

contains mostly smectite and traces of illite and kaolinite. In CaH2, the kaolinite content is 

higher than in CaH1 and decreases from the base of the section up to 21 m, where the illite 

proportion is higher than the kaolinite proportion. From 21 m to 30 m, the proportion of 

kaolinite increases and then decreases toward the top of the section (Fig. 5A). 

 

U-Pb Isotopic Dating (ID-TIMS) 

The heavy mineral separation of sample CASE15_YU067 resulted in an abundant population 

of sharply facetted, prismatic zircon crystals, with accompanying abundant prismatic apatite. 

Five grains were selected for CA-TIMS analysis on the basis of external morphology, clarity, 

and consistency. Chemical abrasion in concentrated HF at 190° for 12 h resulted in only slight 

dissolution of the zircon crystals. Moderately high uranium concentration of these crystals 

resulted in modest radiogenic Pb contents and precisely measured isotope ratios.  

All five crystals yielded concordant and equivalent isotope ratios, with a weighted mean 
206Pb/238U date of 54.304 ± 0.029(0.039)[0.070] Ma (MSWD = 1.18; probability of fit = 0.317), 

which is interpreted as dating the eruption and deposition of this tuff. 

 



Rock-Eval Pyrolysis 

The Rock Eval pyrolysis analyses indicate that TOC values vary from 0 to 56% and the HI 

values are below 350 mgHC/gTOC. These values reveal a Type III (terrestrial derived) 

organic matter for most of the samples with minor marine influence for some samples (Fig. 

5A). Tmax values are mainly below 435 °C (359–438 °C, with an average of 411 °C), 

indicative of immature kerogen. This Tmax variation range is not uncommon for outcrop 

samples and cannot be assigned to differences in maturity of the organic matter but is mostly 

due to weathering effect on the organic matter. The TOC values from the CaH1 section (0–

8.65%, with an average of 2.36%) are lower than TOC values from CaH2 (0–51%, with an 

average of 12%), reflecting the occurrence of coal seams in CaH2. On average the CaH2 

samples have higher HI values (26–322 mgHC/gTOC, with an average of 192 mgHC/gTOC) 

compared to that of CaH1 (23–158 mgHC/gTOC, with an average of 60 mgHC/gTOC) (Fig. 

5B), suggesting that organic matter is probably better preserved in CaH2 than in CaH1. In 

CaH2, TOC values are higher between 25 and 50 m when compared to the rest of the section 

(Fig. 5A) due to the occurrence of lignite beds. 

 

Palynofacies 

Palynomorphs are observed in minor proportions and are dominated by bisaccate pollen grains. 

Spores are also present. Very few palynomorphs belonging to freshwater algae (Pediastrum) 

and dinoflagellate cysts have been observed. The development of Pediastrum algae is generally 

associated with an eutrophic freshwater environment (Tyson, 1995; Garel et al., 2013). 

The samples from CaH1 are dominated by gelified organic matter, palynomorphs (i.e., pollen 

grains and/or spores and/or dinoflagellate cysts), and opaque phytoclasts, confirming a 

dominant terrestrial origin of the organic matter. Diffuse AOM also occurs in minor 

proportions. CaH2 samples also contain a large amount of gelified organic matter, which, 

together with phytoclasts, opaque phytoclasts, and palynomorphs, again indicates a terrestrial 

origin of the organic matter. Moreover, lower proportions of opaque phytoclasts and 

palynomorphs are recorded when compared to the CaH1 section. Finally, CaH2 samples contain 

a larger amount of translucent phytoclasts (Fig. 5B). 

At the base of the CaH1 section, palynofacies are dominated by granular AOM associated with 

sandy deposits and also characterized by lower TOC values. In contrast, the top of the section 

is rich in gelified OM correlated to higher TOC values. It also contains important palynomorph 

proportions. At the base of CaH2, granular AOM dominates the palynofacies in sandy deposits 

with low TOC. The rest of the section is dominated by gelified OM, phytoclasts associated with 

higher TOC (Fig. 5B) corresponding to well-preserved OM from lignite formed in swamps. 

 

Pollen Grains and Dinoflagellate Cysts 

The pollen flora of CaH1 includes 69 taxa that have been grouped in a synthetic diagram (Fig. 

5B) according to the mean annual temperature (MAT) range of their present-day relatives 

(Nix, 1982). Mega-mesotherm plants and Cupressaceae are dominant. Mesotherm plants, meso-

microtherm plants, and microtherm plants were also recorded but in comparatively lower 

proportions. Several specimens of the dinoflagellate cyst Apectodinium spp. have been recorded 

at the top of the section (24.8 m). The proportion of Pinus is very low along the section and 

decreases to the top with the exception of one sample at 19.5 m. The “thermophilous/non-

thermophilous taxa” ratio, continuously >1, increases toward the top of the section (Table 2). 

The pollen flora of CaH2 yielded 102 taxa and is also dominated by mega-mesotherm plants. 

In contrast with CaH1, megatherm plants including Avicennia (Fig. 6A–6D; Data Repository 

Plate DR4) and mesotherm plants are abundant (Fig. 5B). Pollen grains of microtherm plants 

are rare but with larger percentage than in CaH1. At the top of the section (near 41 and 50 m) a 

large number of individual Azolla microspores, a freshwater fern, have been recorded. The 



proportion of Pinus is higher than in CaH1 and the thermophilous/non-thermophilous taxa ratio, 

still >1, shows very high values in the uppermost part of the section (Table 3). 

 

Carbon Isotopes 

The δ13Corg values measured in CaH1 and CaH2 range from –27.7 to –23.4‰ (Fig. 5B). The 

average δ13Corg values for CaH1 are –26.1‰ and –25.6‰ for CaH2. These values are similar 

to those of modern C3 plants and to other δ13Corg values recorded for Paleocene–Eocene 

terrestrial organic matter around the world (Magioncalda et al., 2004; Jaramillo et al., 2010; 

Garel et al. 2013). In CaH1 the values fluctuate around –26‰, with one sample at 20.95 m 

recording a value of –27.7‰ and two samples at 23 and 24 m showing slightly higher values 

of –25‰. In CaH2, δ13Corg values show an increase from the base to 30 m, interrupted by three 

excursions to lower values (< –26‰) at 0.2, 3.2, and 40.35 m. One sample near 8 m has a 

distinctly higher value of –23.4‰. 

 

Palaeoclimate Quantification Based on Palynology 

The climatic quantification based on the pollen flora of the CaH1 section shows high 

temperatures (MAT, CMMT, WMMT) and high precipitation at sea level for this part of the 

globe. Mean annual temperatures are between 16 and 25 °C, with “Most Likely Values” (MLV) 

between 18.2 and 19.3 °C, CMMT between 5 and 15.5 °C with MLV between 5.6 and 12 °C, 

and WMMT between 25 and 28 °C with MLV between 25.8 and 26.4 °C along the section. 

Mean annual precipitation and available moisture are continuously high, at 1100–1600 mm 

(with MLV of 1160–1400 mm) and 66–100% (with MLV of 77–87%) (Fig. 5B), respectively. 

The quantification based on the pollen flora of the CaH2 section shows, from the base of the 

section to 41.2 m, higher temperatures compared to CaH1, especially for CMMT (Fig. 5B). 

Mean annual precipitation estimates are similar in the two sections (Fig. 5B). From the base to 

41.2 m, MAT are between 16 and 25 °C with MLV between 21.3 and 22 °C (except 2 levels at 

18.5 and 19 °C; Fig. 5B), CMMT between 10 and 15.5 °C with MLV of 10.5–14 °C, and 

WMMT between 25 and 30 °C with MLV of 26.2–27.7 °C along the section. MLV of MAP 

and available moisture are between 1200 mm and 1360 mm and between 75% and 92%, 

respectively. From 41.5 m to the top, with the exception of 2 points showing higher 

temperatures, MAT are between 15 and 25 °C with MLV of 17.8–19.7 °C, CMMT between 5 

and 15.5 °C with MLV between 7.6 and 11.6 °C, and WMMT between 25 and 28 °C with MLV 

between 25.8 and 26.3 °C. Most Likely Values of MAP and available moisture are between 

1160 and 1400 mm and between 81% and 92%, respectively. 

 

 

DISCUSSION 

 

Age of the Sections 

 Caribou Hills 1 (CaH1) 

Parsons (2000), in his section 2, equivalent to CaH1, reported a foraminifer taxon 

(Portatrocharnmina tagluensis), which is characteristic of the Taglu sequence and is indicative 

of an early to middle Eocene age on the basis of associated dinoflagellate cysts and a rich 

assemblage of pollen grains and spores as defined by McNeil (1997) on his regional 

biostratigraphic chart. Thus, based on equivalence with section 2 in Parsons (2000), CaH1 

probably corresponds to the lowest part of the Taglu sequence or the upper part of the Aklak 

sequence and is here considered as early Eocene in age. In our samples, Aquilapollenites pollen 

grains have been found in the CaH1 succession and could also indicate an early Eocene age 

(Harrison et al., 1999). This supposition is supported by the bentonite level U-Pb age of 54.304 

Ma for the top of the CaH1 section (Figs. 3, 5A, and 5B; Table 1). According to Westerhold et 



al. (2017), the onset of the PETM and the ETM-2 hyperthermals have astronomically calibrated 

ages of 55.930 Ma and 54.050 Ma, respectively. Therefore, the bentonite layer on top of section 

CaH1 was deposited just before the onset of the ETM-2 hyperthermal. 

The top of the CaH1 section yielded dinoflagellate cysts of the genus Apectodinium spp. 

Sporadic occurrences of Apectodinium were also recorded in the partly equivalent section 2 of 

Parsons and Norris (1999). The global Apectodinium acme coinciding with the negative carbon 

isotope excursions (Crouch et al., 2003; Sluijs et al., 2006) is a secondary marker of the PETM 

(Aubry et al., 2007). The occurrence of the species Apectodinium augustum, which is restricted 

to the CIE interval, is furthermore a useful criterion for identification of the PETM (Aubry et 

al., 2007; Sluijs et al., 2008). However, in accordance with McNeil and Parsons (2013), we did 

not find Apectodinium augustum in the Caribou Hills sections that we studied and the few 

Apectodinium spp. occurrences found do not account for an acme. In a section located 

stratigraphically 100 m below CaH1, Ioannides and McIntyre (1980) reported Apectodinium 

parvum, which may co-occur with Apectodinium augustum in Beaufort-Mackenzie wells but 

ranges considerably higher in the early Eocene (Damassa et al., 1990; McNeil and Parsons, 

2013). 

The carbon isotope measurements performed on both CaH1 and CaH2 sections can be used to 

refine this age assignation, if the obtained values are not biased by changing organic matter 

source or abundance. In both sections, neither linear nor logarithmic correlation is seen between 

δ13Corg and TOC, suggesting that carbon isotope values are not influenced by the amount of 

remaining organic carbon. To be sure that the correlation coefficients are significant, the 

autocorrelation of each proxy (clay minerals, organic matter parameters, and carbon isotopes) 

was tested with the R software (R Core Team, 2013), and shows no autocorrelation in the data 

(acf function, critic value <0.2). This lack of correlation suggests that the recorded changes in 

δ13Corg values are mostly not attributable to changing organic sources or different stages of 

organic matter degradation, except for the coarser sand beds (e.g., CaH1 at 20.95 m), where 

very low δ13Corg values possibly reflect enrichment of lignin or other more resistant 13C-

depleted components (Benner et al., 1987; Wynn et al., 2005; Foreman et al., 2013). The 

δ13Corg values at CaH1 are slightly lower than those recorded at CaH2, which could be 

associated with the interval showing lower δ13C values in lower Eocene marine carbonate 

materials (Vandenberghe et al., 2012). This association is supported by the warming trend 

recorded by clay mineralogy and pollen assemblages at CaH1 toward the top of the section with 

a slight increase in kaolinite highlighted by several kaolinite peaks, an increase of mega-

mesotherm plant proportions, and an increase in the thermophilous/non-thermophilous taxa 

ratio. Given the above age constraints, we associate this record with the overall warming trend 

associated with the Early Eocene Thermal Optimum and proximity to the Eocene Thermal 

Maximum-2 (ETM-2) hyperthermal (Fig. 7). 

 

 Caribou Hills 2 (CaH2) 

In the CaH2 section, pollen grains of megatherm plants are abundant, especially the mangrove 

element Avicennia (Fig. 5B), and thermophilous plants display a high diversity indicative of 

well-developed forest ecosystems and stable climatic warm conditions. Modern representatives 

of Avicennia are pollinated by animals and, thus, its pollen is expected to be present in very low 

quantity in coastal sediments, as suggested by analysis of modern coastal sediments offshore 

Ivory Coast and Thailand (Caratini et al., 1987; Somboon, 1990). A depleted mangrove with 

Avicennia showing pollen percentages similar to those observed in the CaH2 section are 

recorded in early mid-Miocene coastal marine sediments controlled by river input from the 

Northwestern Mediterranean region (Bessedik and Cabrera, 1985; Jiménez-Moreno and Suc, 

2007). The Miocene context for pollen transport resembles that of the studied Caribou Hills 

sections: the active pollen transport by a river may explain the relatively high percentages of 



Avicennia (Table 3). In present-day surface sediments offshore Indonesia, the percentage of 

Avicennia pollen varies with distance from shoreline, and percentages matching with those of 

Caribou Hills must be interpreted as indicating a nearby mangrove (Engelhart et al., 2007). 

Moreover, microspores of the freefloating freshwater fern Azolla (Collinson, 2002) are 

abundant at the top of the section. A massive Azolla bloom is recorded in the central Arctic 

Ocean and in all Nordic Seas in strata of latest early Eocene age (49 Ma; van der Burgh et al., 

2013; chron 22n-21r; Barke et al., 2012), interpreted as reflecting a massive freshwater 

discharge into the Arctic Ocean (Brinkhuis et al., 2006; Collinson et al., 2009; Greenwood et 

al., 2010; Barke et al., 2012) due to elevated precipitations in adjacent drainage areas. The 

duration of this Azolla bloom is estimated to have been ~800 ky (Brinkhuis et al., 2006) or 1.2 

My (Barke et al., 2012). These comparisons suggest that the CaH2 sediments were deposited 

during the termination of the Early Eocene Climate Optimum and more precisely just before 

and at the onset of the Azolla event (49 Ma), in agreement with the late early to early middle 

Eocene age suggested by Parsons (2000) for his section 6, which is partly equivalent to CaH2 

(Fig. 2). 

These dating propositions are also supported by δ13Corg data from CaH2, which, similarly to 

CaH1, show no correlation with TOC, HI, or the type of organic particles described in the 

palynofacies section. The high frequency, small amplitude changes in δ13Corg values recorded 

at CaH2 could, however, reflect differences in the composition of the organic matter or even 

annual change in temperature and humidity, which are known to influence δ13Corg values of 

modern C3 plants (Jahren, 2007). In this regard, it is noteworthy that the negative δ13Corg 

excursion recorded between 37 and 40 m coincides with a marked increase in the proportion of 

pollen grains belonging to megatherm plants (Fig. 5B). As several studies have shown that 

higher precipitation decreases the δ13C values of C3 plants (Stewart et al., 1995; Diefendorf et 

al., 2010; Kohn, 2010; Schubert et al., 2012), this excursion could be attributed to a transient 

period of higher precipitation. Nevertheless, significant changes in mean annual precipitation 

are not supported by our climatic reconstruction or in similar studies for the same interval 

(Eldrett et al., 2009, 2014) or for the middle to late Paleocene in the Northwest Territories 

(Greenwood et al., 2010). Notwithstanding this excursion, the CaH2 succession shows average 

δ13Corg values that are significantly higher than in CaH1, and may thus correlate with marine 

strata showing higher values toward the termination of the EECO (Fig. 7). Altogether, these 

palynological and geochemical data support a late early Eocene age for the CaH2 section. 

 

Reconstruction of Depositional Environments 

The high amounts of smectite, the absence of illite-smectite mixed layers, the stratigraphically 

invariant illite crystallinity, and the low average Tmax values (<435 °C) recorded in the two 

studied sections indicate limited burial and thermal overprinting and allow the interpretation of 

organic matter and clay assemblages in terms of paleoenvironmental conditions. 

The pseudo Van Krevelen diagram (Fig. 4) and the palynofacies suggest that the organic matter 

of the two sections mostly corresponds to terrestrial higher plants debris. The numerous plant 

cell structures observed in the palynofacies suggest a rather well-preserved organic matter and 

the relative proximity of terrestrial organic sources. Few dinoflagellate cysts have been 

observed along the sections (stars on Fig. 5B), indicating some marine incursions and relative 

proximity of the coastline. In CaH1, dinoflagellate cysts are found at 0.65, 18, 20.5, 21.4, 22.4, 

23.4, and 24.8 m. In CaH2, only three samples exhibit very few dinoflagellate cysts, at 3.7, 7.6, 

and 51.2 m, and thus indicate a more proximal environment compared to CaH1. This is in 

agreement with the higher proportions of small equant opaque phytoclasts (50 μm) and pollen 

grains in the palynofacies assemblages of CaH1 when compared to those of CaH2. Small 

equantopaque phytoclasts particles have a high buoyancy (McArthur et al., 2016) and thus 

suggest a longer aquatic transport for organic particles at CaH1 when compared to CaH2. 



The pollen assemblage of CaH1 is characteristic of littoral forests with freshwater to marine 

water swamp trees (Glyptostrobus-Taxodium-type) and fern (Osmunda). Freshwater marshes 

were also present as illustrated by Myrica, Cyperaceae, and the association of Cuphea, 

Menyanthaceae, Myriophyllum, Oenotheraceae, Restionaceae, and Typha. Very few specimens 

of brackish marshes species are found, such as many Amaranthaceae species and Tamarix. The 

hinterland was probably covered by evergreen broadleaf forests (Engelhardia, Amanoa, 

Distylium, Cupressaceae, Sapotaceae) and with increasing altitude by deciduous broadleaf 

mesophilous forests (Alnus, Carpinus, Carya, Liquidambar, Populus, Pterocarya, Quercus, 

Ulmus, Zelkova), both growing in a humid climate. Proximity of a higher elevation massif is 

indicated by Cathaya, Podocarpus-type, Cedrus, Tsuga, Abies, and Picea. The CaH1 section is 

characterized by massive silty clay sediments without root traces. Such fine-grained deposits 

more or less enriched in organic matter are indicative of low-energy conditions that we attribute 

to outer levees or swamps of deltaic plains. The centimeter-thick laminated sand located at 20 

m could correspond to a crevasse splay deposit. In summary, the CaH1 succession corresponds 

to a proximal, dominantly freshwater littoral swamp environment with intermittent connections 

with marine areas. 

Pollen assemblage of CaH2 suggests a freshwater to marine water swamp forest 

(Glyptostrobus-Taxodium-type), but in a warmer climatic context as illustrated by the presence 

of megatherm elements (Amanoa, Bombax, Buxus bahamensis-type, Croton, Fabaceae 

Mimosoideae, Icacinaceae, Resedaceae, and Theaceae). The occurrence of Avicennia pollen on 

CaH2 is indicative of a mangrove swamp environment, and confirms the presence of this genus 

in the Eocene Arctic as initially suggested by pollen data of coastal plain sediments from the 

New Siberia Islands (Suan et al., 2017). 

Mangrove is a salt tolerant forest environment containing diverse assemblages of trees and 

shrubs and developing along sheltered tropical to subtropical coasts (Mao et al., 2012), where 

the average annual temperature of seawater is at or above 18 °C (Chapman, 1976). Avicennia 

is the mangrove genus that can support relatively cooler temperatures compared to other 

mangrove taxa and may extend into marginally subtropical areas in the Southern Hemisphere 

(Duke et al., 1998; Quisthoudt et al., 2012). Modern Avicennia mangrove forest develops on 

soft, exposed mudflats of low to middle intertidal zones inundated by high tides, although they 

may occasionally develop in the high intertidal zone (Duke et al., 1992). This taxon indicates a 

mangrove environment inundated by high tides, as recorded in modern coastal areas of 

Southeast Asia (Giesen et al., 2007). A depleted mangrove with Nypa probably out of its typical 

latitudinal climate zone was already evidenced at the same time period in Tasmania at a similar 

paleolatitude (Pole and Macphail, 1996; Carpenter et al., 2012). This mangrove swamp would 

have been located near a fluvial channel belt, as suggested by the occurrence of unconsolidated 

sand and gravel deposits surrounded by fine sand, silty clay, and coal deposits. These fining 

upward sequences are characteristic of channel, levee, and backswamp deposits. At the base of 

the CaH2 section, a sand layer shows parallel laminations and as suggested for a bed of similar 

aspect at CaH1, is here interpreted as crevasse splay deposit. 

As for CaH1, the pollen data of CaH2 indicate that the hinterland forest environments contained 

evergreen broadleaf megathermic and mega-mesothermic taxa (Amanoa, Sapotaceae, 

Engelhardia, Distylium) and mesophilous taxa (Alnus, Carpinus, Carya, Liquidambar, 

Populus, Pterocarya, Quercus, Ulmus, Zelkova). Pollen grains of deciduous plants and meso- 

microtherm and microtherm taxa are more abundant in CaH2 than in CaH1, which appears 

surprising given that the CaH2 section also yielded numerous and diversified pollen grains of 

megatherm and mega-mesotherm elements (Fig. 6B). The higher abundance of these elements 

could be explained by an uplift phase of the neighboring hinterland heights; this uplift would 

have either decreased the distance between the main areas of these plants and the studied coastal 

deposits, or increased the areas favorable to their development. This hypothesis is also 



supported by higher amounts of chlorite minerals in CaH2, which could be related to an erosion 

pulse of hinterland areas. Alternatively, the higher abundance of meso-microtherm and 

microtherm plants in CaH2 could reflect a shift in the fluvial network draining higher altitudinal 

source areas. Source areas for Beaufort-Mackenzie Basin sediments from the Eocene consisted 

of the northern Cordillera, including the Ogilvie and Richardson Mountains, the Porcupine 

River drainage basin, and the northeastern Brooks Range (Duk-Rodkin and Hughes, 1994). 

During the Paleocene and Eocene these mountains underwent major uplift due to the accretion 

of terranes along the west margin of North America. In summary, the CaH2 succession was in 

a proximal, freshwater swamp and mangrove environment with a more limited connection to 

the open sea that could be inundated only during high tides. 

 

Paleoclimatic Conditions 

Clay assemblages from the CaH1 section are dominated by smectite, suggesting drier and/or 

colder and/or seasonally contrasted climate (Chamley, 1989) when compared to CaH2. CaH1 

shows kaolinite proportions mostly around 10%, indicating colder and/or dryer paleoclimate 

compared to the high kaolinite proportions (40% in average) recorded in CaH2. This is in 

agreement with the lower proportions of megatherm and megamesotherm plants in CaH1 and 

the climate estimates that indicate lower temperatures for CaH1 than CaH2 (Fig. 6b). 

Conversely, a warm and humid paleoclimate is suggested by the higher kaolinite content in 

CaH2, in agreement with high values of the S+K/I+C ratio, low values of S/K, high pollen 

proportions of megatherm and mega-mesotherm plants (Amanoa, Bombax, Buxus bahamensis-

type), and high temperature estimates, especially from the base to 41.2 m. Furthermore, at 

CaH2, the Most Likely Values of MAT (between 21.3 and 22 °C) and MAP (between 1200 and 

1360 mm) are compatible with kaolinite formation in soils. In both sections, illite and chlorite 

are present in high proportions, reflecting a high detrital input and active erosion of the 

hinterland, consistent with the record of pollen of meso-microtherm and microtherm plants that 

were most likely sourced from hinterland heights. 

The two sections also record short-term variations in temperature or precipitation. In CaH1, as 

stated previously, the higher proportion of kaolinite toward the top of the section is associated 

with a lower S+K/I+C ratio that could reflect higher physical erosion due to higher 

precipitation. The higher proportion of mega-mesotherm plants, thermophilous taxa to the top 

of the section also attest for a warming trend from the base to top of CaH1 section. 

In CaH2, the proportion of pollen grains of megatherm plants decreases toward the top of the 

section above 42 m in association with higher proportions of mesotherm and microtherm plants. 

Above 41.5 m, temperatures become lower than during the first part of the sequence, especially 

for the coldest month mean temperature, equivalent to CaH1 temperatures (Fig. 5B). This 

interval shows lower kaolinite proportions and S+K/I+C ratios lower than 1. This interval could 

therefore be linked to the onset of the cooling phase following the EECO starting near 50 Ma 

(Fig. 7). Later in this region, SST rose from 10 to 13 °C at the termination of the Azolla event. 

Along CaH2, high S+K/I+C and S/K ratios at 3.2, 27, and 40.75 m indicate an increase in 

smectite contents and thus likely point to transient intervals of cooler or dryer climate 

conditions, in line with the drop in abundance of megatherm taxa in corresponding strata and 

with the occurrence of Azolla at 40 m. As Azolla is thought to indicate higher precipitation 

(Brinkhuis et al. 2006), the increase in smectite at 40 m likely reflects a cooler climate. 

However, Avicennia is still present, and climatic estimates do not show changes. 

The record of warm and wet climate conditions in the Mackenzie Delta of the Eocene Arctic is 

consistent with other studies of coeval strata in Ellesmere Island, Axel Heiberg Island, 

Greenland, Norwegian Sea, and New Siberian Islands (Table 4; Fig. 1), where both macro and 

micro remains of humid temperate swamp forests and lush rain forests have been also reported 



(Kalkreuth et al., 1998; Eldrett et al., 2009, 2014; Eberle et al., 2010; Greenwood et al., 2010; 

Harrington et al., 2011; West et al., 2015; Suan et al., 2017). Mild warm-temperate climates 

with mean annual temperatures (MAT) around 8–15 °C have been estimated for the early and 

middle Eocene around the Arctic. Warm and wet summers prevailing in the Arctic during the 

early and early middle Eocene, with the WMMT between 18 and 26 °C and MAP values around 

1200 mm, and mild winters (CMMT between 0 and 13 °C; Basinger et al., 1994; Greenwood 

and Wing, 1995; Brinkhuis et al., 2006; Sluijs et al., 2009; Greenwood et al., 2010; Eberle et 

al., 2010, 2014; Suan et al., 2017) enabled the growth of a forest assemblage of deciduous and 

evergreen conifers. Such MAT and humidity conditions are presently found in regions such as 

southeast North America or southeast China, which have plant associations similar to those 

recorded in Eocene Arctic forests (Kumagai et al., 1995). Warm climates during the early and 

latest early Eocene are recorded in many localities around the world, for example in Wyoming, 

Texas, Canada, England, and high latitude Antarctica (Robert and Kennett, 1994; Andreasson 

and Schmitz, 1996; Wilf, 2000; Pross et al., 2012; Smith et al., 2012; Jacques et al., 2014; 

Gushulak et al., 2016), with temperatures up to 10–30 °C higher when compared to those 

characterizing modern high- and midlatitude areas. These warm temperatures are associated 

either with high precipitation, especially in high- and mid-latitudes (Robert and Kennett, 1992; 

Wilf, 2000) or monsoon-like climates at lower latitudes (Shukla et al., 2014; Bougeois et al., 

2014; West et al., 2015; Gushulak et al., 2016; Spicer et al., 2016). All these records provide 

strong evidence for a reduced latitudinal temperature gradient during the Eocene (Zachos et al., 

1994; Andreasson and Schmitz, 2000; Sluijs et al., 2006) and tend to invalidate recent 

hypotheses postulating that the Eocene high-latitude warmth is an artifact of paleothermometer 

miscalibrations or oxygen isotope diagenetic overprint (Ho and Laepple, 2016; Bernard et al., 

2017). 

Our results thus provide further evidence for climate conditions that are exceptionally warmer 

and more humid than today in the high latitude regions of the northern hemisphere during the 

early Eocene, and, in this regard, can be used as critical climatic constraints for future climate 

modeling work, similarly to the modelling works by Huber and Caballero (2011) and Huber 

and Goldner (2012), which used climate condition reconstructions determined from studies on 

sections. Furthermore, we note that pollen grains of Avicennia are, for the first time, recognized 

in the Canadian margin of the Arctic Basin. This strengthens the idea that the exceptional Arctic 

warmth of the Eocene was a phenomenon characterizing both coastal marine and atmospheric 

environments (Suan et al., 2017). 

Beyond these climatic implications, the occurrence of Avicennia pollen in the Arctic Canada, 

through analogy with modern representatives of this genus that only spread through a marine 

transport of their propagules (Quisthoudt et al., 2012), implies a marine connection between the 

Arctic Basin and the mid-latitude oceans. Avicennia pollen is known today to be transported a 

very short distance (<2 km) from its source (Somboon, 1990; Behling et al., 2001), thus 

indicating the presence of this mangrove around the Arctic Ocean in the early Eocene. 

According to several authors (Ellison et al., 1999; Duke et al., 2002; Lo et al., 2014) the 

mangrove evolved around the Tethys Sea during the Late Cretaceous and spread over long 

distances through oceanic currents. The only gateways through which this dispersal may have 

occurred during this time interval were the Greenland- Norway Seaway connecting the Atlantic 

and Arctic oceans (Roberts et al., 2009; Fig. 1) and the Turgai Strait connecting the Tethys and 

Arctic Oceans (open at least until the Lutetian according to Iakovleva et al., 2001, and until the 

Oligocene according to Rögl, 1999). We can therefore assume that oceanic currents flowing 

toward the Arctic Ocean existed through at least one of these gateways at this time. Their 

influence on the mean salinity of the Arctic Ocean was, however, probably limited, as shown 

by the development of the Azolla freshwater fern. Moreover, the occurrence of Avicennia on 

both the Siberian and Canadian margins also implies the existence of oceanic currents within 



the Arctic Ocean during the Eocene. Although further data are needed to constrain its detailed 

patterns, such an oceanic circulation could have been similar to the modern Beaufort gyre and 

Transpolar drift, which has been previously suggested to have developed only after at 46 Ma 

(Backman and Moran, 2009). The occurrence of Avicennia pollen grains on both sides of the 

Arctic, as highlighted by our new results, suggests that the onset of such a trans-Arctic oceanic 

circulation may have occurred as early as during the early Eocene. 

 

 

CONCLUSIONS 

This multiproxy study leads to several conclusions dealing with the climatic variations during 

the early Eocene in the Canadian margin of the Arctic Ocean:  

• The two studied sections (CaH1 and CaH2) of the Caribou Hills represent high-latitude 

records, near 75°N, of early and late early Eocene ages, respectively. The new U-Pb zircon (ID-

TIMS) age of 54.304 (±0.029) Ma of the bentonite layer in section CaH1 proves deposition of 

the sediments just before the Early Eocene Thermal Maximum 2 hyperthermal. CaH1 and CaH2 

sediments were deposited under a subtropical climate and warmer conditions during the late 

early Eocene, respectively, as shown by consistent mineralogical and palynological records. 

For the two sections, the paleoclimatic reconstruction indicates most likely values of MAT 

between 18 and 22 °C, CMMT between 6 and 14 °C, WMMT between 26 and 28 °C, MAP 

between 1200 and 1400 mm, and available moisture between 75 and 95%, compatible with 

kaolinite formation in soils. 

• The two portions of the Caribou Hills outcrop represent two delta plain environments with 

littoral forests including swamps in a hinterland landscape dominated by evergreen broadleaf 

forest and with increased altitude by deciduous forest. 

• We report the first occurrence of Avicennia pollen in the Canadian Arctic, which indicates 

that mangrove environments developed along Canadian Arctic coastlines during the early 

Eocene. Such mangrove environments, recently recognized in Eocene deposits of the New 

Siberia Islands (Suan et al., 2017), imply that warm and wet conditions were widespread along 

the Arctic coast during the early Eocene. These Avicennia pollen records also imply that oceanic 

currents connected Siberian and Arctic Canadian margins as early as during the early Eocene.  

 

 

ACKNOWLEDGMENTS 

This study was funded by TOTAL through the project Groupement Recherche Industrie (GRI) 

zones péri-arctiques. We acknowledge Florence Savignac, François Fourel, Ingrid Antheaume, 

Omar Boudouma, and Vincent Grossi for their help with analytical procedures. We wish to 

thank two anonymous reviewers for their constructive remarks. 

 
 

REFERENCES  

 
 

Akhmetiev, M.A., and Beniamovski, V.N., 2009, Paleogene floral assemblages around 

epicontinental seas and straits in Northern Central Eurasia: proxies for climatic and paleogeographic 

evolution: Geologica Acta, v. 7, no. 1–2, p. 297–309. 

Allen, C.M., and Campbell, I.H., 2012, Identification and elimination of a matrix-induced systematic 

error in LA–ICP–MS 206Pb/238U dating of zircon: Chemical Geology, v. 332–333, p. 157–165, 

https://doi.org/10.1016/jchemgeo.2012.09.038. 

Andreasson, F. P., and Schmitz, B., 1996, Winter and summer temperatures of the early middle 

Eocene of France from Turritella δ18O profiles: Geology, v. 24, p. 1067–1070, 

https://doi.org/10.1130/0091-7613. 024<1067:WASTOT>2.3.CO;2. 

https://doi.org/10.1130/0091-7613


Andreasson, F.P., and Schmitz, B., 2000, Temperature seasonality in the early middle Eocene North 

Atlantic region: Evidence from stable isotope profiles of marine gastropod shells: Geological Society of 

America Bulletin, v. 112, no. 4, p. 628–640, https://doi.org/10.1130/0016 -

7606(2000)112<628:TSITEM>2.0.CO;2. 

Aubry, M.P., Berggren, W.A., Van Couvering, J.A., Ali, J., Brinkhuis, H., Cramer, B., Kent, D.V., 

Swisher, C.C., Dupuis, C., Gingerich, P.D., Heilmann-Clausen, C., King, C., Ward, D.J., Knox, R.W., 

Ouda, K., Stott, L.D., and Thiry, M., 2003, Chronostratigraphic terminology at the Paleocene/Eocene 

boundary, in Wing, S.L., Gingerich, P.D., Schmitz, B., Thomas, E, eds., Causes and consequences of 

globally warm climates in the early Paleogene: Geological Society of America Special Paper 369, p. 

551–566, https://doi.org/10.1130/0-8137-2369-8.551. 

Aubry, M.P., Ouda, K., Dupuis, C., Berggren, W.A., Van Couvering, J.A., Ali, J., and Ward, D.R., 

2007, The Global Standard Stratotype-section and Point (GSSP) for the base of the Eocene Series in the 

Dababiya section (Egypt): Episodes, v. 30, no. 4, p. 271–286. 

Backman, J., and Moran, K., 2009, Expanding the Cenozoic paleoceanographic record in the Central 

Arctic Ocean: IODP Expedition 302 Synthesis: Central European Journal of Geosciences, v. 1, no. 2, p. 

157–175. 

Barke, J., Abels, H.A., Sangiorgi, F., Greenwoof, D.R., Sweet, A.R., Donders, T., Reichart, G.-J., 

Lotter, A.F., and Brinkhuis, H., 2011, Orbitally forced Azolla blooms and Middle Eocene Arctic 

hydrology: clues from palynology: Geology, v. 39, no. 5, p. 427–430, https://doi.org/10.1130/G31640.1. 

Barke, J., van der Burgh, J., van Konijnenburg-van Cittert, J.H., Collinson, M.E., Pearce, M.A., 

Bujak, J., Heilmann-Clausen, C., Speelman, E.N., van Kempen, M.M.L., Reichart, G.J., Lotter, A.F., 

and Brinkhuis, H., 2012, Coeval Eocene blooms of the freshwater fern Azolla in and around Arctic and 

Nordic seas: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 337, p. 108–119, 

https://doi.org/10.1016/j.palaeo.2012.04.002. 

Basinger, J.F., Greenwood, D.R., and Sweda, T., 1994, Early Tertiary vegetation of Arctic Canada 

and its relevance to paleoclimatic interpretation, in Boulter, M.C., and Fisher, H.C. eds., Cenozoic plants 

and climates of the Arctic: Springer Berlin Heidelberg, NATO ASI Series 27, p. 175 –198, 

https://doi.org/10.1007/978-3-642-79378-3_13. 

Batten, D.J., 1996, Palynofacies and paleoenvironmental interpretation, in Jansonius, J., and 

McGregor, D.C. eds., Palynology: Principles and Applications: American Association of Stratigraphic 

Palynologists Foundation, p. 1011–1064. 

Behar, F., Beaumont, V., and Penteado, H.D.B., 2001, Rock-Eval 6 technology: performances and 

developments: Oil & Gas Science and Technology, v. 56, no. 2, p. 111–134, 

https://doi.org/10.2516/ogst:2001013. 

Behling, H., Cohen, M.C.L., and Lara, R.J., 2001, Studies on Holocene mangrove ecosystem 

dynamics of the Bragança Peninsula in north-eastern Pará, Brazil: Palaeogeography, Palaeoclimatology, 

Palaeoecology, v. 167, no. 3–4, p. 225–242, https://doi.org/10.1016/S0031-0182(00)00239-X. 

Benner, R., Fogel, M.L., Sprague, E.K., and Hodson, R.E., 1987, Depletion of 13C in lignin and its 

implications for stable carbon isotope studies: Nature, v. 329, no. 6141, p. 708, 

https://doi.org/10.1038/329708a0. 

Bernard, S., Daval, D., Ackerer, P., Pont, S., and Meibom, A., 2017, Burialinduced oxygen-isotope 

reequilibration of fossil foraminifera explains ocean paleotemperature paradoxes: Nature 

Communications, v. 8, no. 1, p. 1134, https://doi.org/10.1038/s41467-017-01225-9. 

Bessedik, M., and Cabrera, L., 1985, Le couple récif-mangrove à Sant Pau d’Ordal (Vallès-Pénédès, 

Espagne), témoin du maximum transgressif en Méditerranée nord occidentale (Burdigalien supérieur – 

Langhien inférieur): Newsletters on Stratigraphy, v. 14, no. 1, p. 20–35, 

https://doi.org/10.1127/nos/14/1985/20. 

Bougeois, L., De Rafélis, M., Reichart, G.J., De Nooijer, L.J., Nicollin, F., and Dupont-Nivet, G., 

2014, A high resolution study of trace elements and stable isotopes in oyster shells to estimate Central 

Asian Middle Eocene seasonality: Chemical Geology, v. 363, p. 200–212, 

https://doi.org/10.1016/j.chemgeo.2013.10.037. 

Brinkhuis, H., Schouten, S., Collinson, M.E., Sluijs, A., Damsté, J.S.S., Dickens, G.R., and Moran, 

K., 2006, Episodic fresh surface waters in the Eocene Arctic Ocean: Nature, v. 441, no. 7093, p. 606–

609, https://doi.org/10.1038/nature04692. 

https://doi.org/10.1130/0016


Caratini, C., Tastet, J.-P., Tissot, C., and Frédoux, A., 1987, Sédimentation palynologique actuelle 

sur le plateau continental de Côte d’Ivoire: Mémoires et Travaux de l’Ecole Pratique des Hautes Etudes: 

Institut de Montpellier, v. 17, p. 69–100. 

Carpenter, R.J., Jordan, G.J., Macphail, M.K., and Hill, R.S., 2012, Neartropical Early Eocene 

terrestrial temperatures at the Australo-Antarctic margin, western Tasmania: Geology, v. 40, no. 3, p. 

267–270, https://doi.org/10.1130/G32584.1. 

Chamley, H., 1989, Clay Sedimentology: Springer Science and Business Media, 623 p., 

https://doi.org/10.1007/978-3-642-85916-8. 

Chapman, V.J., 1976, Mangrove Vegetation: Vaduz, J. Cramer, 447 p. 

Collinson, M.E., 2002, The ecology of Cainozoic ferns: Review of Palaeobotany and Palynology, v. 

119, no. 1, p. 51–68, https://doi.org/10.1016/S0034-6667(01)00129-4. 

Collinson, M.E., Barke, J., van der Burgh, J., and van Konijnenburg-van Cittert, J.H., 2009, A new 

species of the freshwater fern Azolla (Azollaceae) from the Eocene Arctic Ocean: Review of 

Palaeobotany and Palynology, v. 155, no. 1, p. 1–14, https://doi.org/10.1016/j.revpalbo.2008.12.014. 

Condon, D.J., Schoene, B., McLean, N.M., Bowring, S.A., and Parrish, R.R., 2015, Metrology and 

traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I): 

Geochimica et Cosmochimica Acta, v. 164, p. 464–480, https://doi.org/10.1016/j.gca.2015.05.026. 

Cour, P., 1974, Nouvelles techniques de détection des fl ux et retombées polliniques: Etude de la 

sédimentation des pollens et des spores à la surface des sols: Pollen et spores, v. 16, p. 103–141. 

Crouch, E.M., Dickens, G.R., Brinkhuis, H., Aubry, M.P., Hollis, C.J., Rogers, K.M., and Visscher, 

H., 2003, The Apectodinium acme and terrestrial discharge during the Paleocene–Eocene thermal 

maximum: new palynological, geochemical and calcareous nannoplankton observations at Tawanui, 

New Zealand: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 194, no. 4, p. 387–403, 

https://doi.org/10.1016/S0031-0182(03)00334-1. 

Damassa, S.P., Goodman, D.K., Kidson, E.J., and Williams, G.L., 1990, Correlation of Paleogene 

dinoflagellate assemblages to standard nannofossil zonation in North Atlantic DSDP sites: Review of 

Palaeobotany and Palynology, v. 65, no. 1–4, p. 331–339, https://doi.org/10.1016/0034-6667(90)90083-

U. 

Davydov, V.I., Crowley, J.L., Schmitz, M.D., and Poletaev, V.I., 2010, Highprecision U-Pb zircon 

age calibration of the global Carboniferous time scale and Milankovitch-band cyclicity in the Donets 

Basin, eastern Ukraine: Geochemistry Geophysics Geosystems, 

https://doi.org/10.1029/2009GC002736. 

DeConto, R.M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K., Zhang, T., and Beerling, D.J., 2012, 

Past extreme warming events linked to massive carbon release from thawing permafrost: Nature, v. 484, 

p. 87–91, https://doi.org/10.1038/nature10929. 

Diefendorf, A.F., Mueller, K.E., Wing, S.L., Koch, P.L., and Freeman, K.H., 2010, Global patterns 

in leaf 13C discrimination and implications for studies of past and future climate: Proceedings of the 

National Academy of Sciences of the United States of America, v. 107, p. 5738–5743, 

https://doi.org/10.1073/pnas.0910513107. 

Dixon, J., 1986, Cretaceous to Pleistocene stratigraphy and paleogeography, northern Yukon and 

northwestern District of Mackenzie: Bulletin of Canadian Petroleum Geology, v. 34, no. 1, p. 49–70. 

Dixon, J., 1992, A review of Cretaceous and Tertiary stratigraphy in the northern Yukon and adjacent 

Northwest Territories: Ottawa, Canada, Geological Survey of Canada, Paper 92-9, 

https://doi.org/10.4095/134182. 

Dixon, J., 1996, Geological atlas of the Beaufort-Mackenzie area, Ottawa, Canada: Geological 

Survey of Canada Miscellaneous Report 59, 173 p. 

Dixon, J., Dietrich, J.R., Lane, L.S., and McNeil, D.H., 2008, Geology of the Late Cretaceous to 

Cenozoic Beaufort-Mackenzie Basin, Canada: Sedimentary Basins of the World, v. 5, p. 551–572, 

https://doi.org/10.1016/S1874-5997(08)00016-6. 

Duk-Rodkin, A., and Hughes, O.L., 1994, Tertiary-Quaternary drainage of the pre-glacial Mackenzie 

Basin: Quaternary International, v. 22, p. 221–241, https://doi.org/10.1016/1040-6182(94)90015-9. 

Duke, N.C., Zuleika, S., and Pinzon, M., 1992, Aging Rhizophora seedlings from leaf scar nodes: a 

technique for studying recruitment and growth in mangrove forests: Biotropica, v. 24, p. 173–186, 

https://doi.org/10.2307/2388671. 



Duke, N.C., Benzie, J.A., Goodall, J.A., and Ballment, E.R., 1998, Genetic structure and evolution 

of species in the mangrove genus Avicennia (Avicenniaceae) in the Indo-West Pacific: International 

Journal of Organic Evolution, v. 52, p. 1612–1626, https://doi.org/10.1111/j.1558-

5646.1998.tb02242.x. 

Duke, N.C., Lo, E., and Sun, M., 2002, Global distribution and genetic discontinuities of mangroves–

emerging patterns in the evolution of Rhizophora: Trees (Berlin), v. 16, no. 2–3, p. 65–79, 

https://doi.org/10.1007/s00468-001-0141-7. 

Eberle, J.J., Fricke, H.C., Humphrey, J.D., Hackett, L., Newbrey, M.G., and Hutchison, J.H., 2010, 

Seasonal variability in Arctic temperatures during early Eocene time: Earth and Planetary Science 

Letters, v. 296, no. 3, p. 481–486, https://doi.org/10.1016/j.epsl.2010.06.005. 

Eberle, J.J., and Greenwood, D.R., 2012, Life at the top of the greenhouse Eocene world–A review 

of the Eocene flora and vertebrate fauna from Canada’s High Arctic: Geological Society of America 

Bulletin, v. 124, no. 1–2, p. 3–23, https://doi.org/10.1130/B30571.1. 

Eberle, J.J., Gottfried, M.D., Hutchison, J.H., and Brochu, C.A., 2014, First record of Eocene bony 

fi shes and crocodyliforms from Canada’s Western Arctic: PLoS One, v. 9, no. 5, 

https://doi.org/10.1371/journal.pone.0096079. 

Eldrett, J.S., Greenwood, D.R., Harding, I.C., and Huber, M., 2009, Increased seasonality through 

the Eocene to Oligocene transition in northern high latitudes: Nature, v. 459, no. 7249, p. 969–973, 

https://doi.org/10.1038/nature08069 
Eldrett, J.S., Greenwood, D.R., Polling, M., Brinkhuis, H., and Sluijs, A., 2014, A seasonality trigger 

for carbon injection at the Paleocene–Eocene Thermal Maximum: Climate of the Past, v. 10, no. 2, p. 

759–769, https://doi.org/10.5194/cp-10-759-2014. 

Ellison, A.M., Farnsworth, E.J., and Merkt, R.E., 1999, Origins of mangrove ecosystems and the 

mangrove biodiversity anomaly: Global Ecology and Biogeography, v. 8, no. 2, p. 95–115, 

https://doi.org/10.1046/j.1466-822X.1999.00126.x. 

Engelhart, S.E., Horton, B.P., Roberts, D.H., Bryant, C.L., and Corbett, D.R., 2007, Mangrove pollen 

of Indonesia and its suitability as a sea-level indicator: Marine Geology, v. 242, p. 65–81, 

https://doi.org/10.1016/j. margeo.2007.02.020. 

Espitalié, J., Deroo, G., and Marquis, F., 1985, La pyrolyse Rock-Eval et ses applications: Deuxième 

partie: Oil & Gas Science and Technology, v. 40, no. 6, p. 755–784. 

Fauquette, S., Guiot, J., and Suc, J.-P., 1998a, A method for climatic reconstruction of the 

Mediterranean Pliocene using pollen data: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 144, 

no. 1–2, p. 183–201, https://doi.org/10.1016/S0031-0182(98)00083-2. 

Fauquette, S., Quézel, P., Guiot, J., and Suc, J.-P., 1998b, Signification bioclimatique de taxons-

guides du Pliocène Méditerranéen: Geobios, v. 31, no.2, p. 151–169, https://doi.org/10.1016/S0016-

6995(98)80035-1. 

Foreman, B.Z., Clementz, M.T., and Heller, P.L., 2013, Evaluation of paleoclimatic conditions east 

and west of the southern Canadian Cordillera in the mid-late Paleocene using bulk organic δ13C records: 

Palaeogeography, Palaeoclimatology, Palaeoecology, v. 376, p. 103–113, 

https://doi.org/10.1016/j.palaeo.2013.02.023. 

Frederiksen, N.O., Edwards, L.E., Ager, T.A., and Sheehan, T.P., 2002, Palynology of Eocene strata 

in the Sagavanirktok and Canning formations of the north slope of Alaska: Palynology, v. 26, p. 59–93, 

https://doi.org/10.2113/0260059. 

Garel, S., Schnyder, J., Jacob, J., Dupuis, C., Boussafir, M., Le Milbeau, C., Storme, J.Y., Iakovleva, 

A.I., Yans, J., Baudin, F., Fléhoc, C., and Quesnel, F., 2013, Paleohydrological and paleoenvironmental 

changes recorded in terrestrial sediments of the Paleocene–Eocene boundary (Normandy, France): 

Palaeogeography, Palaeoclimatology, Palaeoecology, v. 376, p. 184–199, 

https://doi.org/10.1016/j.palaeo.2013.02.035. 

Giesen, W., Wulffraat, S., Zieren, M., and Scholten, L., 2007, Mangrove guidebook for Southeast 

Asia: Bangkok, FAO Regional Office for Asia and the Pacific, 769 p. 

Greenwood, D.R., and Basinger, J.F., 1994, The paleoecology of high-latitude Eocene swamp forests 

from Axel Heiberg Island, Canadian High Arctic: Review of Palaeobotany and Palynology, v. 81, p. 

83–97, https://doi.org/10.1016/0034-6667(94)90128-7. 



Greenwood, D.R., and Wing, S.L., 1995, Eocene continental climates and latitudinal temperature 

gradients: Geology, v. 23, p. 1044–1048, https://doi.org/10.1130/0091-

7613(1995)023<1044:ECCALT>2.3.CO;2. 

Greenwood, D.R., Basinger, J.F., and Smith, R.Y., 2010, How wet was the Arctic Eocene rain forest? 

Estimates of precipitation from Paleogene Arctic macrofloras: Geology, v. 38, p. 15–18, 

https://doi.org/10.1130/G30218.1. 

Grimsson, F., Zetter, R., Pedersen, G.K., Pedersen, A.K., and Denk, T., 2014, Middle Eocene 

palynoflora from a resinite-rich coal bed on Hareøen (Qeqetarsuatsiaq), West Greenland: 9th European 

Palaeobotany–Palynology Conference, Padova, Italy, Abstract Book, p. 86. 

Gushulak, C.A.C., West, C.K., and Greenwood, D.R., 2016, Paleoclimate and precipitation 

seasonality of the Early Eocene McAbee megaflora, Kamloops Group, British Columbia: Canadian 

Journal of Earth Sciences, v. 53, p. 591–604, https://doi.org/10.1139/cjes-2015-0160. 

Harrington, G.J., Eberle, J., LePage, B.A., Dawson, M., and Hutchison, J.H., 2011, Arctic plant 

diversity in the Early Eocene greenhouse: Proceedings, Biological Sciences, v. 279, p. 1515–1521, 

https://doi.org/10.1098/rspb.2011.1704. 

Harrison, J.C., Mayr, U., McNeil, D.H., Sweet, A.R., McIntyre, D.J., Eberle, J.J., Harington, C.R., 

Chalmers, J.A., Dam, G., and Nohr-Hansen, H., 1999, Correlation of Cenozoic sequences of the 

Canadian Arctic region and Greenland; implications for the tectonic history of northern North America: 

Bulletin of Canadian Petroleum Geology, v. 47, no. 3, p. 223–254. 

Ho, S.L., and Laepple, T., 2016, Flat meridional temperature gradient in the early Eocene in the 

subsurface rather than surface ocean: Nature Geoscience, v. 9, p. 606–610, 

https://doi.org/10.1038/ngeo2763. 

Hoke, G.D., Schmitz, M.D., and Bowring, S.A., 2014, An ultrasonic method for isolating nonclay 

components from clay-rich material: Geochemistry Geophysics Geosystems, v. 15, p. 492–498, 

https://doi.org/10.1002/2013GC005125. 

Holtzapffel, T., 1985, Les minéraux argileux: préparation, analyse diffractométrique et 

détermination, Volume 12: Société géologique du Nord, 136 p. 

Hou, H.-Y., 1983, Vegetation of China with reference to its geographical distribution: Annals of the 

Missouri Botanical Garden, v. 70, p. 509–548, https://doi.org/10.2307/2992085. 

Huber, M., and Caballero, R., 2011, The Early Eocene equable climate problem revisited: Climate 

of the Past, v. 7, p. 603–633, https://doi.org/10.5194/cp-7-603-2011. 

Huber, M., and Goldner, A., 2012, Eocene monsoons: Journal of Asian Earth Sciences, v. 44, p. 3–

23, https://doi.org/10.1016/j.jseaes.2011.09.014. 

Iakovleva, A.I., Brinkhuis, H., and Cavagnetto, C., 2001, Late Palaeocene–Early Eocene 

dinoflagellate cysts from the Turgay Strait, Kazakhstan; correlations across ancient seaways: 

Palaeogeography, Palaeoclimatology, Palaeoecology, v. 172, no. 3–4, p. 243–268, 

https://doi.org/10.1016/S0031-0182(01)00300-5. 

Ioannides, N.S., and McIntyre, D.J., 1980, A preliminary palynological study of the Caribou Hills 

outcrop section along the Mackenzie River, District of Mackenzie: Current Research, Part A, Geological 

Survey of Canada Paper, p. 197–208, https://doi.org/10.4095/106203. 

Jacques, F.M., Shi, G., Li, H., and Wang, W., 2014, An early–middle Eocene Antarctic summer 

monsoon: evidence of ‘fossil climates’: Gondwana Research, v. 25, no. 4, p. 1422–1428, 

https://doi.org/10.1016/j.gr.2012.08.007. 

Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., and Essling, A.M., 1971, Precision 

measurements of half-lives and specifi c activities of 235U and 238U: Physical Review C: Nuclear Physics, 

v. 4, p. 1889–1906, https://doi.org/10.1103/PhysRevC.4.1889. 

Jahren, A.H., 2007, The Arctic forest of the middle Eocene: Annual Review of Earth and Planetary 

Sciences, v. 35, p. 509–540, https://doi.org/10.1146/annurev.earth.35.031306.140125. 

Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J.A., Forbes, S., Fridman, B., Hodnesdal, H., 

Noormets, R., Pedersen, R., Rebesco, M., Schenke, H.W., Zarayskaya, Y., Accettella, D., Armstrong, 

A., Anderson, R.M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J.V., Hall, J.K., 

Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S.V., 

Pedrosa, M.T., Travaglini, P.G., and Weatherall, P., 2012, The International Bathymetric Chart of the 

Arctic Ocean (IBCAO) Version 3.0: Geophysical Research Letters, v. 39, 

https://doi.org/10.1029/2012GL052219. 



Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H., Pratt, L.M., Krishnan, S., 

Cardona, A., Romero, M., Quiroz, L., Rodriguez, G., Rueda, M.J., de la Parra, F., Moron, S., Green, 

W., Bayona, G., Montes, C., Quintero, O., Ramirez, R., Mora, G., Schouten, S., Bermudez, H., 

Navarrete, R., Parra, F., Alvaran, M., and Osorno, J., 2010, Effects of rapid global warming at the 

Paleocene–Eocene boundary on neotropical vegetation: Science, v. 330, p. 957–961, 

https://doi.org/10.1126/science.1193833. 

Jiménez-Moreno, G., and Suc, J.-P., 2007, Middle Miocene latitudinal climatic gradient in Western 

Europe: evidence from pollen records: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 253, p. 

208–225, https://doi.org/10.1016/j.palaeo.2007.03.040. 

Jones, T.D., Lunt, D.J., Schmidt, D.N., Ridgwell, A., Sluijs, A., Valdes, P.J., and Maslin, M., 2013, 

Climate model and proxy data constraints on ocean warming across the Paleocene–Eocene Thermal 

Maximum: Earth-Science Reviews, v. 125, p. 123–145, https://doi.org/10.1016/j. 

earscirev.2013.07.004. 

Kaiho, K., Arinobu, T., Ishiwatari, R., Morgans, H.E., Okada, H., Takeda, N., Tazaki, K., Zhou, G., 

Kajiwara, Y., Matsumoto, R., Hirai, A., Niitsuma, N., and Wada, H., 1996, Latest Paleocene benthic 

foraminiferal extinction and environmental changes at Tawanui, New Zealand: Paleoceanography, v. 

11, p. 447–465, https://doi.org/10.1029/96PA01021. 

Kalkreuth, W., Keuser, C., Fowler, M., Li, M., McIntyre, D., Püttmann, W., and Richardson, R., 

1998, The petrology, organic geochemistry and palynology of Tertiary age Eureka Sound Group coals, 

Arctic Canada: Organic Geochemistry, v. 29, p. 799–809, https://doi.org/10.1016/S0146-

6380(98)00122-3. 

Kalkreuth, W.D., Riediger, C.L., McIntyre, D.J., Richardson, R.J.H., Fowler, M.G., and Marchioni, 

D., 1996, Petrological, palynological and geochemical characteristics of Eureka Sound Group coals 

(Stenkul Fiord, southern Ellesmere Island, Arctic Canada): International Journal of Coal Geology, v. 

30, p. 151–182, https://doi.org/10.1016/0166-5162(96)00005-5. 

Kennett, J.P., and Stott, L.D., 1991, Abrupt deep sea warming, paleoceanographic changes and 

benthic extinctions at the end of the Paleocene: Nature, v. 353, p. 225–229, 

https://doi.org/10.1038/353225a0. 

Kohn, M.J., 2010, Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) 

ecology and (paleo) climate: Proceedings of the National Academy of Sciences of the United States of 

America, v. 107, no. 46, p. 19691–19695, https://doi.org/10.1073/pnas.1004933107. 

Kumagai, H., Sweda, T., Hayashi, K., Kojima, S., Basinger, J.F., Shibuya, M., and Fukaoa, Y., 1995, 

Growth-ring analysis of Early Tertiary conifer woods from the Canadian High Arctic and its 

paleoclimatic interpretation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 116, no. 3, p. 247–

262, https://doi.org/10.1016/0031-0182(94)00100-M. 

Liu, Y.-S., and Basinger, J.F., 2000, Fossil Cathaya (Pinaceae) pollen from the Canadian High 

Arctic: International Journal of Plant Sciences, v. 161, no. 5, p. 829–847, 

https://doi.org/10.1086/314296. 

Lo, E.Y., Duke, N.C., and Sun, M., 2014, Phylogeographic pattern of Rhizophora (Rhizophoraceae) 

reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove 

distribution: BMC Evolutionary Biology, v. 14, no. 1, p. 83, https://doi.org/10.1186/1471-2148-14-83. 

Lourens, L.J., Sluijs, A., Kroon, D., Zachos, J.C., Thomas, E., Röhl, U., Bowles, J., and Raffi , I., 

2005, Astronomical pacing of late Palaeocene to early Eocene global warming events: Nature, v. 435, 

no. 7045, p. 1083–1087, https://doi.org/10.1038/nature03814. 

Magioncalda, R., Dupuis, C., Smith, T., Steurbaut, E., and Gingerich, P.D., 2004, Paleocene-Eocene 

carbon isotope excursion in organic carbon and pedogenic carbonate: Direct comparison in a continental 

stratigraphic section: Geology, v. 32, no. 7, p. 553–556, https://doi.org/10.1130/G20476.1. 

Mao, L., Batten, D.J., Fujiki, T., Li, Z., Dai, L., and Weng, C., 2012, Key to mangrove pollen and 

spores of southern China: an aid to palynological interpretation of Quaternary deposits in the South 

China Sea: Review of Palaeobotany and Palynology, v. 176, p. 41–67, 

https://doi.org/10.1016/j.revpalbo.2012.03.004. 

Mattinson, J.M., 2005, Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing 

and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages: Chemical 

Geology, v. 220, p. 47–66, https://doi.org/10.1016/j.chemgeo.2005.03.011. 

https://doi.org/10.1016/0166-5162(96)00005-5


McArthur, A.D., Kneller, B.C., Souza, P.A., and Kuchle, J., 2016, Characterization of deep-marine 

channel-levee complex architecture with palynofacies: An outcrop example from the Rosario 

Formation, Baja California, Mexico: Marine and Petroleum Geology, v. 73, p. 157–173, 

https://doi.org/10.1016/j.marpetgeo.2016.02.030. 

McIver, E.E., and Basinger, J.F., 1999, Early Tertiary floral evolution in the Canadian high Arctic: 

Annals of the Missouri Botanical Garden, v. 86, no. 2, p. 523–545, https://doi.org/10.2307/2666184. 

McLean, N.M., Condon, D.J., Schoene, B., and Bowring, S.A., 2015, Evaluating uncertainties in the 

calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer 

Calibration Part II): Geochimica et Cosmochimica Acta, v. 164, p. 481–501, 

https://doi.org/10.1016/j.gca.2015.02.040. 

McNeil, D.H., 1989, Foraminiferal zonation and biofacies analysis of Cenozoic strata in the 

Beaufort-Mackenzie Basin of Arctic Canada: Current Research, Part G, Geological Survey of Canada, 

Paper no. 89-1G, p. 203–223, https://doi.org/10.4095/127602. 

McNeil, D.H., 1997, New foraminifera from the Upper Cretaceous and Cenozoic of the Beaufort-

Mackenzie Basin of Arctic Canada: Cushman Foundation for Foraminiferal Research, Special 

Publication no. 35, 95 p. 

McNeil, D.H., and Parsons, M.G., 2013, The Paleocene-Eocene thermal maximum in the Arctic 

Beaufort–Mackenzie Basin—Palynomorphs, carbon isotopes and benthic foraminiferal turnover: 

Bulletin of Canadian Petroleum Geology, v. 61, no. 2, p. 157–186, 

https://doi.org/10.2113/gscpgbull.61.2.157. 

Moore, D.M., and Reynolds, R.C., 1997, X-ray Diffraction and the Identification and Analysis of 

Clay Minerals: Oxford: Oxford University Press, 378 p. 

Moran, K., Backman, J., Brinkhuis, H., Clemens, S.C., Cronin, T., Dickens, G.R., Eynaud, F., 

Gattacceca, J., Jakobsson, M., Jordan, R.W., Kaminski, M., King, J., Koc, N., Krylov, A., Martinez, N., 

Matthiessen, J., Mc Inroy, D., Moore, T.C., Onodera, J., O’Regan, M., Pälike, H., Rea, B., Rio, D., 

Sakamoto, T., Smith, D.C., Stein, R., St John, K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M., 

Yamamoto, M., Farrell, J., Frank, M., Kubik, P., Jokat, W., and Kristoffersen, Y., 2006, The Cenozoic 

palaeo environment of the Arctic Ocean: Nature, v. 441, p. 601–605, 

https://doi.org/10.1038/nature04800. 

Nasdala, L., Lengauer, C.L., Hanchar, J.M., Kronz, A., Wirth, R., Blanc, P., Kennedy, A.K., and 

Seydoux-Guillaume, A.M., 2002, Annealing radiation damage and the recovery of 

cathodoluminescence: Chemical Geology, v. 191, p. 121–140, https://doi.org/10.1016/S0009-

2541(02)00152-3. 

Nix, H., 1982, Environmental determinants of biogeography and evolution in Terra Australis, in 

Barker W. R., and Greenslade, P.J.M., eds., Evolution of the Flora and fauna of Arid Australia, 

Frewville: Peacock Publishing, p. 47–66. 

Norris, D.K., and Whitman, G.S., 1981, Geology, Aklavik, District of Mackenzie: Geological Survey 

of Canada, https://doi.org/10.4095/109706. 

Parsons, M.G., 2000, Palynology of Paleogene strata in the Caribou Hills, Beaufort-Mackenzie 

Basin, northern Canada [Ph.D. thesis]: University of Toronto, 604 p. 

Parsons, M.G., and Norris, G., 1999, Paleogene fungi from the Caribou Hills, Mackenzie Delta, 

northern Canada: Palaeontographica Abteilung B, p. 77–167. 

Pearson, P.N., and Palmer, M.R., 2000, Atmospheric carbon dioxide concentrations over the past 60 

million years: Nature, v. 406, p. 695–699, https://doi.org/10.1038/35021000. 

Peppe, D., Royer, D.L., Cariglino, B., Oliver, S.Y., Newman, S., Leight, E., Enikolopov, G., 

Fernandez-Burgos, M., Herrera, F., Adams, J.M., Correa, E., Currano, E.D., Erickson, J.M., Hinojosa, 

L.F., Hoganson, J.W., Iglesias, A., Jaramillo, C.A., Johnson, K.R., Jordan, G.J., Kraft, N.J.B., Lovelock, 

E.C., Lusk, C.H., Niinemets, U., Penuelas, J., Rapson, G., Wing, S.L., and Wright, I.J., 2011, Sensitivity 

of leaf size and shape to climate: global patterns and paleoclimatic applications: The New Phytologist, 

v. 190, p. 724–739, https://doi.org/10.1111/j.1469-8137.2010.03615.x. 

Pole, M.S., and Macphail, M.K., 1996, Eocene Nypa from Regatta Point, Tasmania: Review of 

Palaeobotany and Palynology, v. 92, no. 1–2, p. 55–67, https://doi.org/10.1016/0034-6667(95)00099-2. 

Popescu, S.-M., 2002, Repetitive changes in Early Pliocene vegetation revealed by high-resolution 

pollen analysis: revised cyclostratigraphy of southwestern Romania: Review of Palaeobotany and 

Palynology, v. 120, p. 181–202, https://doi.org/10.1016/S0034-6667(01)00142-7. 



Popescu, S.-M., Krijgsman, W., Suc, J.-P., Clauzon, G., Mărunţeanu, M., and Nica, T., 2006, Pollen 

record and integrated high-resolution chronology of the early Pliocene Dacic Basin (southwestern 

Romania): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 238, p. 78–90, 

https://doi.org/10.1016/j.palaeo.2006.03.019. 

Price, L.L., McNeil, D.H., and Ioannides, N.S., 1980, Revision of the Tertiary Reindeer Formation 

in the Caribou Hills, District of Mackenzie, in Current Research, Part B: Geological Survey of Canada, 

Paper 80-1B, p. 179–184. 

Pross, J., Contreras, L., Bijl, P.K., Greenwood, D.R., Bohaty, S.M., Schouten, S., Bendle, J.A., Röhl, 

U., Tauxe, L., Raine, J.I., Huck, C.E., van de Flierdt, T., Jamieson, S.S.R., Stickley, C.E., van de 

Schootbrugge, B., Escutia, C., Brinkhuis, H., and Integrated Ocean Drilling Program Expedition 318 

Scientists, 2012, Persistent near-tropical warmth on the Antarctic continent during the early Eocene 

epoch: Nature, v. 488, p. 73–77, https://doi.org/10.1038/nature11300. 

Quisthoudt, K., Schmitz, N., Randin, C.F., Dahdouh-Guebas, F., Robert, E.M., and Koedam, N., 

2012, Temperature variation among mangrove latitudinal range limits worldwide: Trees (Berlin), v. 26, 

no. 6, p. 1919–1931, https://doi.org/10.1007/s00468-012-0760-1. 

R Core Team, 2013, R: A language and environment for statistical computing: R Foundation for 

Statistical Computing, Vienna, Austria, http://www.R-project.org/. 

Reinhardt, L., Estrada, S., Andruleit, H., Dohrmann, R., Piepjohn, K., von Gosen, W., Davis, D.W., 

and Davis, B., 2013, Altered volcanic ashes in Palaeocene and Eocene sediments of the Eureka Sound 

Group (Ellesmere Island, Nunavut, Arctic Canada): Zeitschrift der Deutschen Gesellschaft für 

Geowissenschaften, v. 164, no. 1, p. 131–147, https://doi.org/10.1127/1860-1804/2013/0004. 

Ridgway, K.D., Sweet, A.R., and Cameron, A.R., 1995, Climatically induced floristic changes across 

the Eocene–Oligocene transition in the northern high latitudes, Yukon Territory, Canada: Geological 

Society of America Bulletin, v. 107, p. 676–696, https://doi.org/10.1130/0016-7606 

(1995)107<0676:CIFCAT>2.3.CO;2. 

Robert, C., and Kennett, J.P., 1992, Paleocene and Eocene kaolinite distribution in the South Atlantic 

and Southern Ocean: Antarctic climatic and paleoceanographic implications: Marine Geology, v. 103, 

no. 1–3, p. 99–110, https://doi.org/10.1016/0025-3227(92)90010-F. 

Robert, C., and Kennett, J.P., 1994, Antarctic subtropical humid episode at the Paleocene-Eocene 

boundary: Clay-mineral evidence: Geology, v. 22, p. 211–214, https://doi.org/10.1130/0091-

7613(1994)022<0211:ASHEAT >2.3.CO;2. 

Roberts, C., LeGrande, A., and Tripati, A., 2009, Climate sensitivity to Arctic seaway restriction 

during the early Paleogene: Earth and Planetary Science Letters, v. 286, p. 576–585, 

https://doi.org/10.1016/j.epsl.2009.07.026. 

Rögl, F., 1999, Mediterranean and Paratethys palaeogeography during the Oligocene and Miocene, 

in Agustí, J., ed., Hominoid evolution and climatic change in Europe, Part 1: Cambridge University 

Press, p. 8–22, https://doi.org/10.1017/CBO9780511542329.002. 

Röhl, U., Westerhold, T., Bralower, T.J., and Zachos, J.C., 2007, On the duration of the Paleocene-

Eocene thermal maximum (PETM): Geochemistry Geophysics Geosystems, v. 8, 

https://doi.org/10.1029/2007GC001784. 

Schmitz, M.D., and Davydov, V.I., 2012, Quantitative radiometric and biostratigraphic calibration 

of the global Pennsylvanian–Early Permian time scale: Geological Society of America Bulletin, v. 124, 

p. 549–577, https://doi.org/10.1130/B30385.1. 

Schmitz, M.D., and Schoene, B., 2007, Derivation of isotope ratios, errors and error correlations for 

U-Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass 

spectrometric data: Geochemistry Geophysics Geosystems, v. 8, no. 8, 

https://doi.org/10.1029/2006GC001492. 

Schouten, S., Woltering, M., Rijpstra, W.I.C., Sluijs, A., Brinkhuis, H., and Damsté, J.S.S., 2007, 

The Paleocene–Eocene carbon isotope excursion in higher plant organic matter: Differential 

fractionation of angiosperms and conifers in the Arctic: Earth and Planetary Science Letters, v. 258, no. 

3, p. 581–592, https://doi.org/10.1016/j.epsl.2007.04.024. 

Schubert, B.A., Jahren, A.H., Eberle, J.J., Sternberg, L.S., and Eberth, D.A., 2012, A summertime 

rainy season in the Arctic forests of the Eocene: Geology, v. 40, no. 6, p. 523–526, 

https://doi.org/10.1130/G32856.1. 

https://doi.org/10.1130/0016-7606
https://doi.org/10.1130/0091-7613(1994)022%3c0211:ASHEAT
https://doi.org/10.1130/0091-7613(1994)022%3c0211:ASHEAT


Shukla, A., Mehrotra, R.C., Spicer, R.A., Spicer, T.E., and Kumar, M., 2014, Cool equatorial 

terrestrial temperatures and the South Asian monsoon in the Early Eocene: evidence from the Gurha 

Mine, Rajasthan, India: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 412, p. 187–198, 

https://doi.org/10.1016/j.palaeo.2014.08.004. 

Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Damsté, J.S.S., and Moran, K., 

2006, Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum: Nature, 

v. 441, p. 610–613, https://doi.org/10.1038/nature04668. 

Sluijs, A., Röhl, U., Schouten, S., Brumsack, H.J., Sangiorgi, F., Sinninghe Damsté, J.S., and 

Brinkhuis, H., 2008, Arctic late Paleocene–early Eocene paleoenvironments with special emphasis on 

the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program 

Expedition 302): Paleoceanography, v. 23, no. 1, https://doi.org/10.1029/2007PA001495. 

Sluijs, A., Schouten, S., Donders, T.H., Schoon, P.L., Röhl, U., Reichart, G.J., and Brinkhuis, H., 

2009, Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2: Nature 

Geoscience, v. 2, no. 11, p. 777–780, https://doi.org/10.1038/ngeo668. 

Smith, R.Y., Basinger, J.F., and Greenwood, D.R., 2012, Early Eocene plant diversity and dynamics 

in the Falkland flora, Okanagan Highlands, British Columbia, Canada: Palaeobiodiversity and 

Palaeoenvironments, v. 92, p. 309–328, https://doi.org/10.1007/s12549-011-0061-5. 

Somboon, J.R.P., 1990, Palynological study of mangrove and marine sediments of the Gulf of 

Thailand: Journal of Southeast Asian Earth Sciences, v. 4, no. 2, p. 85–97, https://doi.org/10.1016/0743-

9547(90)90008-2. 

Spicer, R.A., Yang, J., Herman, A.B., Kodrul, T., Maslova, N., Spicer, T.E.V., Aleksandrova, G., 

and Jin, J., 2016, Asian Eocene monsoons as revealed by leaf architectural signatures: Earth and 

Planetary Science Letters, v.449, p. 61–68, https://doi.org/10.1016/j.epsl.2016.05.036. 

Stap, L., Lourens, L.J., Thomas, E., Sluijs, A., Bohaty, S., and Zachos, J.C., 2010, High-resolution 

deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2: Geology, v. 38, 

no. 7, p. 607–610, https://doi.org/10.1130/G30777.1. 

Stein, R., Boucsein, B., and Meyer, H., 2006, Anoxia and high primary production in the Paleogene 

central Arctic Ocean: First detailed records from Lomonosov Ridge: Geophysical Research Letters, v. 

33, https://doi.org/10.1029/2006GL026776. 

Stewart, G.R., Turnbull, M.H., Schmidt, S., and Erskine, P.D., 1995, 13C natural abundance in plant 

communities along a rainfall gradient: a biological integrator of water availability: Australian Journal 

of Plant Physiology, v. 22, no. 1, p. 51–55, https://doi.org/10.1071/PP9950051. 

Storme, J.Y., Dupuis, C., Schnyder, J., Quesnel, F., Garel, S., Iakovleva, A.I., Iacumin, P., Di Matteo, 

A., Sebilo, M., and Yans, J., 2012a, Cycles of humid-dry climate conditions around the P/E boundary: 

new stable isotope data from terrestrial organic matter in Vasterival section (NW France): Terra Nova, 

v. 24, no. 2, p. 114–122, https://doi.org/10.1111/j.1365-3121.2011.01044.x. 

Storme, J.Y., Devleeschouwer, X., Schnyder, J., Cambier, G., Baceta, J.I., Pujalte, V., Di Matteo, 

A., Iacumin, P., and Yans, J., 2012b, The Palaeocene/Eocene boundary section at Zumaia (Basque-

Cantabric Basin) revisited: new insights from high-resolution magnetic susceptibility and carbon isotope 

chemostratigraphy on organic matter ( 13Corg): Terra Nova, v. 24, no. 4, p. 310–317, 

https://doi.org/10.1111/j.1365-3121.2012.01064.x. 

Suan, G., Popescu, S.M., Suc, J.P., Schnyder, J., Fauquette, S., Baudin, F., Yoon, D., Piepjohn, K., 

Sobolev, N.N., and Labrousse, L., 2017, Subtropical climate conditions and mangrove growth in Arctic 

Siberia during the early Eocene: Geology, v. 45, no. 6, p. 539–542, https://doi.org/10.1130/G38547.1. 

Sunderlin, D., Loope, G., Parker, N.E., and Williams, C.J., 2011, Paleoclimatic and paleoecological 

implications of the Paleocene–Eocene fossil leaf assemblage, Chickaloon Formation, Alaska: Palaios, 

v. 26, p. 335–345, https://doi.org/10.2110/palo.2010.p10-077r. 

Thomas, E., 2008, Descent into the Icehouse: Geology, v. 36, no. 2, p. 191–192, 

https://doi.org/10.1130/focus022008.1. 

Thomas, E., Zachos, J.C., and Bralower, T.J., 2000, Deep-sea environments on a warm earth: Latest 

Paleocene-early Eocene, in Huber, B., MacLeod, K., and Wing, S., eds., Warm Climates in Earth 

History: Cambridge, Cambridge University Press, p. 132–160, 

https://doi.org/10.1017/CBO9780511564512.006. 

Tramoy, R., Salpin, M., Schnyder, J., Person, A., Sebilo, M., Yans, J., Vaury, V., Fozzani, J., and 

Bauer, H., 2016, Stepwise palaeoclimate change across the Eocene–Oligocene transition recorded in 



continental NW Europe by mineralogical assemblages and δ15Norg (Rennes Basin, France): Terra Nova, 

v. 28, no. 3, p. 212–220, https://doi.org/10.1111/ter.12212. 

Tyson, R.V., 1995, Sedimentary Organic Matter: Organic Facies and Palynofacies: London, 

Chapman and Hall, 615 p., https://doi.org/10.1007/978-94-011-0739-6. 

Vandenberghe, N., Hilgen, F.J., Speijer, R.P., Ogg, J.G., Gradstein, F.M., Hammer, O., Hollis, C.J., 

and Hooker, J.J., 2012, The Paleogene period, in Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, 

G. M. eds., The Geologic Time Scale 2012, vol. 1: Elsevier, p. 855–921, https://doi.org/10.1016/B978-

0-444-59425-9.00028-7. 

van der Burgh, J., Collinson, M.E., van Konijnenburg-van Cittert, J.H., Barke, J., and Brinkhuis, H., 

2013, The freshwater fern Azolla (Azollaceae) from Eocene Arctic and Nordic Sea sediments: New 

species and their stratigraphic distribution: Review of Palaeobotany and Palynology, v. 194, p. 50–68, 

https://doi.org/10.1016/j.revpalbo.2013.02.002. 

van Hinsbergen, D.J.J., de Groot, L.V., van Schaik, S.J., Spakman, W., Bijl, P.K., Sluijs, A., 

Langereis, C.G., and Brinkhuis, H., 2015, A paleolatitude calculator for paleoclimate studies: PLoS One, 

v. 10, no. 6, https://doi.org/10.1371/journal.pone.0126946. 

Vavrek, M.J., Evans, D.C., Braman, D.R., Campione, N.E., and Zazula, G.D., 2012, A Paleogene 

flora from the upper Bonnet Plume Formation of northeast Yukon Territory, Canada: Canadian Journal 

of Earth Sciences, v. 49, no. 3, p. 547–558, https://doi.org/10.1139/e11-073. 

Velde, B.B., and Meunier, A., 2008, The Origin of Clay Minerals in Soils and Weathered Rocks: 

Springer Science & Business Media, 406 p., https://doi.org/10.1007/978-3-540-75634-7. 

Walter, H., 1984, Vegetation of the Earth: Stuttgart, Springer-Verlag, 318 p. 

Wang, C.-W., 1961, The Forests of China with a Survey of Grassland and Desert Vegetation: 

Cambridge, Massachusetts, Harvard University Press, Maria Moors Cabot Foundation Publication no. 

5, 313 p. 

Weijers, J.W., Schouten, S., Sluijs, A., Brinkhuis, H., and Damsté, J.S.S., 2007, Warm arctic 

continents during the Palaeocene–Eocene thermal maximum: Earth and Planetary Science Letters, v. 

261, no. 1, p. 230–238, https://doi.org/10.1016/j.epsl.2007.06.033. 

West, C.K., Greenwood, D.R., and Basinger, J.F., 2015, Was the Arctic Eocene ‘rainforest’ 

monsoonal? Estimates of seasonal precipitation from early Eocene megafl oras from Ellesmere Island, 

Nunavut: Earth and Planetary Science Letters, v. 427, p. 18–30, 

https://doi.org/10.1016/j.epsl.2015.06.036. 

Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi , I., Zachos, J.C., and Wilkens, R.H., 2017, 

Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the 

chaotic behavior of the solar system?: Climate of the Past, v. 13, p. 1129–1152, 

https://doi.org/10.5194/cp-13-1129-2017. 

White, J.M., 2006, Palynology, age, correlation and paleoclimatology from JAPEX/JNOC/GSC 

Mallik 2L–38 gas hydrate research well and the significance for gas hydrates: a new approach: 

Geological Survey of Canada, Open File 5088, 75 p., https://doi.org/10.4095/222149. 

Wilf, P., 2000, Late Paleocene–early Eocene climate changes in southwestern Wyoming: 

Paleobotanical analysis: Geological Society of America Bulletin, v. 112, no. 2, p. 292–307, 

https://doi.org/10.1130/0016-7606(2000)112<292:LPECCI>2.0.CO;2. 

Wing, S.L., and Greenwood, D.R., 1993, Fossils and fossil climate: the case for equable continental 

interiors in the Eocene: Philosophical Transactions of the Royal Society of London, Series B, Biological 

Sciences, v. 341, p. 243–252, https://doi.org/10.1098/rstb.1993.0109. 

Wynn, J.G., Bird, M.I., and Wong, V.N., 2005, Rayleigh distillation and the depth profi le of 

13C/12C ratios of soil organic carbon from soils of disparate texture in Iron Range National Park, Far 

North Queensland, Australia: Geochimica et Cosmochimica Acta, v. 69, no. 8, p. 1961–1973, 

https://doi.org/10.1016/j.gca.2004.09.003. 

Zachos, J.C., Stott, L.D., and Lohmann, K.C., 1994, Evolution of early Cenozoic marine 

temperatures: Paleoceanography, v. 9, no. 2, p. 353–387, https://doi.org/10.1029/93PA03266. 

Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms, and aberrations 

in global climate 65 Ma to present: Science, v. 292, no. 5517, p. 686–693, 

https://doi.org/10.1126/science.1059412. 

Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, 

M., Raffi , I., Lourens, L.J., McCarren, H., and Kroon, D., 2005, Rapid acidifi cation of the ocean during 

https://doi.org/10.1007/978


the Paleocene-Eocene thermal maximum: Science, v. 308, no. 5728, p. 1611–1615, 

https://doi.org/10.1126/science.1109004. 

Zachos, J.C., Dickens, G.R., and Zeebe, R.E., 2008, An early Cenozoic perspective on greenhouse 

warming and carbon-cycle dynamics: Nature, v. 451, no. 7176, p. 279–283, 

https://doi.org/10.1038/nature06588. 

Zaporozhets, N.I., and Akhmetiev, M.A., 2013, The Middle and Upper Eocene sections of the Omsk 

Trough, West Siberian Platform: palynological, stratigraphic, hydrologic and climatic aspects: 

Stratigraphy and Geological Correlation, v. 21, no. 1, p. 107–130, 

https://doi.org/10.1134/S0869593813010061. 
 
 
 
  



FIGURES 

 
Figure 1. (A) Simplified geological map of the Mackenzie Delta with location of the studied sections (red stars) (modified 

from Norris and Whitman, 1981). (B) Map of the Arctic Basin with location of the Mackenzie Delta shown in the red box 

(Jakobsson et al., 2012). (C) Paleogeographic map of the Arctic during the Eocene and location of the studied sites referred to 

in Table 4 (red stars) (modified from Brinkhuis et al., 2006). The cross represents the North Pole. 
 

 

 

 
 
Figure 2. Composite section of the Caribou Hills outcrop showing the sections studied in the past 30 years by various authors 

and the interpreted long-term sedimentary sequences (after Parsons, 2000; Price et al., 1980). 



 
 
Figure 3. Results of U-Pb zircon analyses (ID-TIMS) of the bentonite layer (sample CASE15_YU067) in section CaH1. 

Cathodoluminescence photograph illustrates the zircons from analyzed bentonite layer. 

 

 

 

 

 

 

 

 

 

 
 
Figure 4. Rock Eval results of the two Caribou Hills sections. HI—Hydrogen Index in mg HC/g TOC; OI—Oxygen Index in 

mg CO2/g TOC; S2—mg HC/g rock; Tmax—degree of thermogenic maturation of the kerogen in °C. Type I— lacustrine 

organic matter. Type II—marine organic matter. Type III—terrestrial organic matter. Filled circles—CaH1; Open circles—

CaH2. For the two sections, the organic matter corresponds to a Type III and is immature. 

 

 

 

 

 

 



 

 
 

Figure 5 (A) From left to right, for the two sections of Caribous Hills: results of Rock Eval pyrolysis, clay mineralogy, and 

stable carbon isotope geochemistry. (B) From left to right, for the two sections of Caribou Hills: results of palynofacies, 

stable carbon isotope geochemistry, palynology, and climatic parameters. b—bentonite; p—Pediastrum; A—Avicennia; 

stars—dinoflagellate cysts; dots—Azolla microspores.  



 
 

Figure 6. Photographs of pollen grains using a scanning electronic microscope (CaH2 section, sample 8). (A–D) Avicennia 

(Acanthaceae). (A) Equatorial view showing an aperture (scale bar = 2 μm). (B) Detail of the reticulate ornamentation in the 

mesocolpium (scale bar = 1 μm). (C) Polar view showing the small polar area (scale bar = 2 μm). (D) Detail of the reticulate 

ornamentation at the pole (scale bar = 1 μm). (E–F) Alfaroa-type (Juglandaceae). (E) Polar view showing the three pores 

(scale bar = 2 μm). (F) Sculpture made of dense spinules (scale bar = 1 μm). (G–H) Engelhardia (Juglandaceae). (G) Polar 

view showing the three pores (scale bar = 2 μm). (H) Sculpture made of scattered and uniformly distributed spinules (scale 

bar = 1 μm). (I–J) Glyptostrobus-Taxodium–type (Glyptostrobus) (Cupressaceae). (I) Pollen showing a small papilla (scale 

bar = 2 μm). (J) Detail of its composite heteromorphic ornamentation (large verrucae integrated within numerous smaller 

ones) (scale bar = 1 μm). (K–L) Cathaya (Pinaceae). (K) Proximal view showing the haploxylonoid outline of sacci and 

corpus (scale bar = 8 μm). (L) Low spinules on the corpus (scale bar = 1 μm). (M–N) Pinus haploxylon–type (Pinaceae). (M) 

Profi le view showing the haploxylonoid outline of sacci and corpus (scale bar = 8 μm). (N) Verrucae on the corpus (scale bar 

= 1 μm). 



 
 
Figure 7. Proposed stratigraphic correlation of the two studied sections (green lines) based on bentonite dating, the pollen 

assemblages, and the climatic clues of the total set of analyses. The Paleocene–Eocene hyperthermal events are indicated in 

red on the stable isotopes curve. PETM—Paleocene–Eocene Thermal Maximum; ETM2—Eocene Thermal Maximum 2; 

ETM3—Eocene Thermal Maximum 3; EECO—Early Eocene Climatic Optimum; MECO—Middle Eocene Climatic 

Optimum. The Azolla event is indicated in black. 
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