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1 Institut Pprime, CNRS-Université de Poitiers, ISAE-ENSMA, Futuroscope Chasseneuil F-86962,
France

(Dated: 17 October 2019)

A theoretical model is developed to determine simultaneously and in different ways thermal diffusivity and
thermal conductivity of thin layers. This is done by using the accurate expression of the temperature dis-
tribution derived from the parabolic heat equation when the front surface of the thin layer is excited by a
periodic heat flux, while the rear surface is maintained at one of three different types of boundary conditions;
modulated periodic heat flux, modulated temperature, or constant temperature. Our approach exploits the
modulation frequencies at which the normalized front surface temperature reaches its first maximum and first
minimum. It is shown that (i) these characteristic frequencies can be used to obtain the thermal diffusivity
of the finite layer under three different types of boundary conditions. (ii) the ratio between the values of the
maxima and minima of the temperature can be utilized to determine the thermal conductivity of the finite
layer. These two thermal properties are sensitive to the nature of the boundary conditions as well as the
modulation frequency of the heat excitation. This paper provides a theoretical basis for the determination
of the thermal diffusivity and thermal conductivity of the finite layer using laser-based heating photothermal
techniques.

I. INTRODUCTION

Frequency-domain and time-domain photothermal
methods have been extensively utilized to determine the
thermal properties of materials by comparing the the-
oretical results to the measured experimental data.1–4

The principle of these spectroscopic methods is based
on the measurement of the thermal profile at one sur-
face of the sample, when the latter is illuminated by
a laser beam of modulated intensity, which is optically
absorbed and converted into heat at the surface of the
sample.5 Two common photothermal techniques for de-
tecting the signal are the photoacoustic spectrometry and
infrared photothermal radiometry.6 Since the pioneering
work of Rosencwaig and Gersho7 in thermal wave phe-
nomena, significant efforts have been devoted to analyze
the amplitude and phase of the photothermal signal in
a wide variety of physical configurations.6,8,9 In general;
the analysis of the photothermal signals may be com-
plicated because they include the transfer function of
the electronic instruments.6 In most applications, it is
convenient to normalize the measured signal in order to
eliminate the transfer function. The thermal properties
are then obtained by fitting the experimental data to
the appropriate theoretical models. A major application
of photothermal experiments is related to measurement
of the thermal diffusivity of materials.10–14 Balderas-
Lopeza and Mandelis6 developed a self-normalization
procedure in order to measure the thermal diffusivity
of thin metallic layers using two photothermal methods:
photoacoustic and radiometric detection. Based on this
self-normalization technique, the authors showed that the
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corresponding measurement procedures involve linear fits
in the photothermally thin and/or thick limits. By us-
ing the photothermal radiometry technique, Depriester
et al.15 proposed a method, which does not involve the
multiparameter-fit to simultaneously obtain the thermal
diffusivity and effusivity of solid materials. This was done
by utilizing the ratio of photothermal radiometry signals
obtained with and without the substrate. They used two
characteristic modulation frequencies at which the nor-
malized amplitude reaches its maximum value and the
normalized phase passes through zero to determine the
thermal diffusivity of vitreous carbon and lead-itanate-
zirconate ceramic samples. More recently, Vales-Pinzon
et al.16 have determined the thermal properties of the
glassy carbon sample using four characteristic modula-
tion frequencies in two-layer systems based on the analy-
sis of the amplitude and phase of the photothermal signal.
In this latter work, the authors showed that these four
characteristic frequencies are independent of the thermal
properties of the layers, and their values can be used to
determine the thermal diffusivity and the thermal effu-
sivity of the illuminated layer. Even though their re-
sults are in good agreement with those reported in the
literature,6,15,16 their approach is however limited to the
two-layer configuration. Therefore, the simultaneous de-
termination of thermal diffusivity and thermal conduc-
tivity of a thin film layer is very desirable. Besides, in
the case of periodic boundary conditions, an interesting
phenomenon comes to play; the occurrence and propa-
gation of thermal waves. Extensive efforts have been de-
voted to analyze the propagation processes of these ther-
mal waves with analytical and numerical methods.17–22

In this regard, an interesting work was performed by
Torii and Yang.17 The authors, also used numerical meth-
ods to study the effect of laser heating on the prop-
agation phenomenon of a thermal wave in a very thin
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film subjected to a symmetrical heat excitation on both
sides. Marin23 discussed the heat conduction in solids
excited by a periodically time-dependent source, com-
monly encountered in photothermal experiments. Ther-
mal wave transmission and reflection phenomena induced
by a pulsed boundary heat flux in a two-layer slab with
imperfect interface are studied numerically by Ramadan
and Al-Nimr.24 Ordonez-Miranda and Alvarado-Gil18 in-
vestigated a one-dimensional thermal wave transport in
a semi-infinite layer using the exact solution of dual-
phase-lag heat conduction model. Geiler et al.25 used
double laser beams with different wave lengths in or-
der to generate the differential frequency in the sample
by photothermal modulation of the refractive index. In
this context, Dietzel et al.26 developed the double mod-
ulated thermoreflectance microscopy of semi-conductor
devices based on combined optical and electrical exci-
tation. However, in these latter works, the problem of a
semi-infinite layer has been studied extensively, and those
with a finite layer do not offer analytical solutions.5,27 In
this paper, we solve analytically the parabolic heat equa-
tion (PHE) in order to determine the thermal diffusivity
and thermal conductivity for a thin film layer, in which
both sides are excited with periodic sources.

The purpose of this study is to analytically solve the
PHE for the temperature profile in a finite layer, when
both sides are excited by a modulated heat source. It is
shown from the theoretical analysis of the photothermal
signal that the characteristic frequencies at which the
temperature of the front surface reaches its first maxi-
mum and minimum can easily be determined. It is also
shown that these characteristic frequencies can be used to
obtain the thermal diffusivity of the finite layer. More-
over, the ratio between the values of the maxima and
minima of the temperature can be utilized to extract the
thermal conductivity of the finite layer. Our approach is
applied to a finite layer when the front surface is excited
by a periodic heat flux, while the rear surface is main-
tained at one of three different types of boundary condi-
tions; modulated periodic heat flux, modulated temper-
ature, or constant temperature (see also the supplemen-
tary material). The paper is organized as follows: Sec.
II presents the formulation of the physical problem using
the PHE, while its key features are presented and dis-
cussed in Sec. III. We finish our work with summary and
concluding remarks in Sec. IV.

II. FORMULATION OF THE PROBLEM AND
SOLUTIONS

A. Governing equation and physical problem

Let us consider the configuration shown in Fig. 1, in
which the layer system is confined between x = 0 and
x = l. We assume that the layer has a uniform thick-
ness and constant thermophysical properties. Initially,
the layer is at temperature T (x, 0) = T0 which is the

0 𝑙 𝑥

𝑓1(𝑡) k, 𝛼 𝑓2(𝑡)

FIG. 1: Schematic diagram of the studied finite
thickness layer of thermal conductivity k and thermal
diffusivity α. The modulated thermal excitations are

applied at x = 0 and x = l.

ambient temperature. For time t > 0, the boundaries at
x = 0 and x = l are excited with modulated heat sources
at frequencies ω1 and ω2, respectively. By assuming a one
dimensional propagation through the layer, the thermal
wave field at any position is given by:

∂T (x, t)

∂t
− α

∂2T (x, t)

∂x2
= 0, (1)

where α = k/(ρcp) is the thermal diffusivity, k is thermal
conductivity, ρ is the density, and cp is the specific heat
capacity of the material. For the sake of simplicity, we
introduce the normalized position z, time τ , temperature
θ, heat flux Q, and frequency Ω, respectively, defined as:

z = x/l, τ = t/(l2/α), θ = T/T0, Q = q/(kT0/l),

Ω = ω/(α/l2).

(2)

After some simplifications, Eq. (1) can be written in a
dimensionless form as:

∂θ(z, τ)

∂τ
− ∂2θ(z, τ)

∂z2
= 0. (3)

B. Boundary and initial conditions

The boundary and initial conditions for the physical
problem are:

∂θ(0, τ)

∂z
= f1(τ) = −Q1

2
[1 + cos(Ω1τ)], (4a)

θ(z, 0) = 1. (4b)

where q1 = Fη (1 −R) q0, with F being a parameter
determined by the optical, thermal and geometric prop-
erties of the finite layer,28 η the efficiency at which the
absorbed light is converted into heat, R the reflection
coefficient of the surface at z = 0, and q0 [Wm−2] the
intensity of the laser beam.29–31 The surface z = 0
is illuminated by a modulated heat flux, which is the
case when the opaque surface of a medium is uniformly
excited by a laser beam of modulated intensity.32

Furthermore, the opposite surface at z = 1 considered in
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this work will be studied for three separate cases:

• Case 1: A modulated temperature imposed on the
right-hand side surface

θ(1, τ) = f2(τ) = 1 +mcos(Ω2τ), (5)

where m is a positive constant. The modulated tem-
perature (Eq. (5)) may be fulfilled when the medium at
z = 1 is in contact with a Peltier module producing an
oscillating temperature.18,31In practice, the temperature
oscillations of a surface can be set with a Peltier cell,33

which typically operate with a resolution better than 0.1
K and modulation frequencies from 0.1 up to 100 Hz.34

• Case 2: A modulated heat flux applied on the right-
hand side surface

∂θ(1, τ)

∂z
= f2(τ) =

Q2

2
[1 + cos(Ω2τ)]. (6)

• Case 3: Two independent heat flux centered on two
different frequencies Ω1 and Ω2 are applied at the surface
z = 0. This type of excitation was applied by Grégoire
et al.35 to examine non-linear photothermal and photoa-
coustic phenomena. The opposite side at z = 1, is main-
tained at a constant temperature.

∂θ(0, τ)

∂z
= f1(τ) = −Q1

2
[1 + cos(Ω1τ)] − Q2

2
[1 + cos(Ω2τ)],

(7a)

θ(1, τ) = 1. (7b)

The above physical problem is described by a heat con-
duction equation with nonhomogeneous boundary condi-
tions. In order to determine the temperature distribution
within the layer, we make use of the solution structure
theorem. It is worth mentioning, that this theorem is
applicable only in the case of heat conduction problems
with homogeneous boundary conditions.19,36,37 Hence, to
use this theorem, the homogeneous problem should first
be established.

C. Auxiliary homogeneous conditions

As mentioned previously, the above mathematical
problem includes nonhomogeneous boundary conditions
that need to be converted into a problem with homoge-
neous boundary conditions such that the solution struc-
ture theorem can be applied to determine the temepra-
ture distribution. We assume that θ has the following
form:

θ(z, τ) = v(z, τ) + w(z, τ). (8)

By using this transformation, the original problem can
be expressed in a form which consists of a corresponding
homogeneous problem with the function v(z, τ), and an
auxiliary function, w(z, τ). Note that the auxiliary func-
tion w(z, τ) depends on the type of boundary conditions.

For more details, the readers are referred to reference
[37]. In the present work, we will focus only on case 1;
the other cases are detailed in the supplementary mate-
rial.
According to Eqs. (4a) and (5), w(z, τ) is given by:

w(z, τ) = f1(τ) (z − 1) + f2(τ). (9)

By inserting Eq. (8) into Eqs. (3), (4a), (4b), and (5), we
obtain the following system of equations:

∂v(z, τ)

∂τ
− ∂2v(z, τ)

∂z2
= H(z, τ),

∂v(0, τ)

∂z
= 0,

v(1, τ) = 0,

v(z, 0) = f(z),

(10a)

(10b)

(10c)

(10d)

where

H(z, τ) =
∂2w(z, τ)

∂z2
− ∂w(z, τ)

∂τ

= −Q1

2
Ω1sin(Ω1τ)(z − 1) +mΩ2sin(Ω2τ),

(11)

and

f(z) = θ(z, 0) − w(z, 0) = Q1(z − 1) −m. (12)

Note that after the transformation procedure, the new
function H(z, τ) appearing in Eq. (10a) plays a role sim-
ilar to that of an internal heat source.

D. Complete solution of the non-homogeneous problem

The system of Eqs. (10a)− (10d) is homogeneous, and
the solution can now be determined by utilizing the solu-
tion structure theorem. According to the superposition
principle, we can write Eqs. (10a)− (10d) as two sub-
problems relatives to v1(z, τ) and v2(z, τ), respectively.
• Sub-problem 1: homogeneous equation and bound-

ary conditions.

∂v1(z, τ)

∂τ
− ∂2v1(z, τ)

∂z2
= 0,

∂v1(0, τ)

∂z
= 0,

v1(1, τ) = 0,

v1(z, 0) = f(z).

(13a)

(13b)

(13c)

(13d)

• Sub-problem 2: inhomogeneous equation and homo-
geneous initial and boundary conditions.

∂v2(z, τ)

∂τ
− ∂2v2(z, τ)

∂z2
= H(z, τ),

∂v2(0, τ)

∂z
= 0,

v2(1, τ) = 0,

v2(z, 0) = 0.

(14a)

(14b)

(14c)

(14d)
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By using the method of Fourier series, Eq. (13a) has
the following solution:

v1(z, τ) =

+∞∑
n=0

vn(τ) [cos(λnz) + sin(λnz)] . (15)

With the application of the first boundary condition
(Eq. (13b)), Eq. (15) reduces to

v1(z, τ) =

+∞∑
n=0

vn(τ)cos(λnz). (16)

By appling the second boundary condition (Eq. (13c)),
the eigenvalues in Eq. (16) take the form:

λn = (n+ 1/2)π. (17)

Substituting Eq. (16) into Eq. (13a) leads to

dvn(τ)

dτ
+ λ2

nvn(τ) = 0. (18)

The solution of Eq. (18) is straightforward and is given
by:

vn(τ) = ane
−λ2

nτ . (19)

Therefore, Eq. (16) can be expressed as

v1(z, τ) =

+∞∑
n=0

ane
−λ2

nτcos(λnz). (20)

The coefficients an can be calculated by appling the ini-
tial condition (see Eq. (13d)). After some mathematical
manipulations, we obtain:

an = 2

∫ 1

0

f(z)cos(λnz)dz. (21)

Inserting Eq. (12) into Eq. (21), leads to

an = − 2Q1

(1/2 + n)
2
π2

− 2m(−1)n

(1/2 + n)π
. (22)

For the second sub-problem, v2(x, τ), the solution can
be obtained by using the solution structure theorem,37

which takes the form:

v2(z, τ) =

∫ τ

0

∫ 1

0

G (z, ξ, τ − τ ′)H(ξ, τ ′)dξdτ ′, (23)

where G (z, ξ, τ − τ ′) is the Green function, that is de-
fined by:

G (z, ξ, τ − τ ′) =

+∞∑
n=0

2e−λ
2
n(τ−τ ′)cos (λnξ) cos (λnz) .

(24)

By combining Eqs. (11), (23), and (24), we get the fol-
lowing solution for the second sub-problem

v2(z, τ) =

+∞∑
n=0

[Anψn,1(τ) +Bnψn,2(τ)] cos(λnz), (25)

where

An =
Q1

(1/2 + n)
2
π2
(
1 + χ2

n,1

) , (26a)

Bn =
2m (−1)

n

(1/2 + n)π
(
1 + χ2

n,2

) , (26b)

ψn,j(τ) = e−λ
2
nτ − cos (Ωjτ) + χn,jsin (Ωjτ) (j = 1, 2),

(26c)

χn,j =
λ2
n

Ωj
. (26d)

The complete temperature distribution inside the finite
layer is thus the sum of Eqs. (9), (20), and (25), which
leads to:

θ(z, τ) = w(z, τ) + v1(z, τ) + v2(z, τ). (27)

For any of the modulated thermal excitations, the tem-
perature distribution at any point of the medium can be
written as follows28

θ(z, τ) = 1 + θdc(z) + θac(z, τ), (28)

where the unity corresponds to the ambient temperature,
θdc(z) and θac(z, τ) are the stationary and periodic com-
ponents of the temperature, respectively. These last two
terms are associated to the first and second terms of the
thermal source excitation, respectively. The combination
of Eqs. (27) and (28) fully determines the expressions of
θdc(z) and θac(z, τ). Equation (28) satisfies all the im-
posed boundary conditions along with the temperature
differential equation and therefore it is the correct so-
lution for the temperature profile, as established by the
fundamental theorem of differential equations.38 In addi-
tion, in the limit Ω2 = 0 and m = 0, Eq. (27) reduces to
previous results reported by Rodney and Diana.39 Tak-
ing into account that the transient heat conduction is
driven by both the thermal diffusivity and thermal ef-
fusivity (thermal conductivity),6,16,18 their simultaneous
determination is therefore desirable.

III. DETERMINATION OF THE THERMAL
PROPERTIES

In this section, the explicit expressions for the thermal
diffusivity and thermal conductivity are obtained using
the complete temperature distribution inside the mate-
rial (Eq. (27)). Given that this temperature distribution
oscillates in time with respect to the boundaries condi-
tions (Eqs. (4a) and (5)), we calculate the average tem-
perature over a period Γ2 (Γ2 = 2π/Ω2).
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The average temperature over Γ2 is given by:

θ(z) =
1

Γ2

∫ Γ2

0

θ(z, τ)dτ. (29)

Even though most photothermal techniques use lock-
in amplifiers to measure the amplitude and phase
of the temperature field averaged over many heating
periods,6,15 the time variations of the physical temper-
ature and its average value θ can also be visualized and
recorded through an oscilloscope, for different modula-
tion frequencies, as reported by S. Dilhaire et al.40

After inserting Eq. (27) into Eq. (29), the following ex-
pression for θ(z) is obtained

θ(z) = 1 − Q1

2

[
1 +

Ω2

2πΩ1
sin

(
2πΩ1

Ω2

)]
(z − 1)

+
Ω2

2π

+∞∑
n=0

{
an +An +Bn

λ2
n

+
2An
Ω1

sin

(
πΩ1

Ω2

)

·
[
λ2
n

Ω1
sin

(
πΩ1

Ω2

)
− cos

(
πΩ1

Ω2

)]}
cos (λnz) .

(30)

As in the case of the temperature, the average heat flux
over Γ2 at the illuminated surface is straightforward and
is given by:

Q =
Q1

2

[
1 +

Ω2

2πΩ1
sin

(
2πΩ1

Ω2

)]
. (31)

Note that both Eqs. (30) and (31) can be written as
the sum of a steady state and modulated components.
According to Eq. (30), the temperature field expression
depends on the thermal diffusivity α and thermal con-
ductivity k of the material, and therefore this expression
can be used to determine these thermal properties. The
determination of α was already done by using one fre-
quency modulated excitation source applied at the sur-
face z = 0.15,16 In the present work, both thermal dif-
fusivity and thermal conductivity are obtained based on
the expression of the average temperature over a period
Γ2 (Eq. (30)). This is achieved by means of a meticulous
graphical examination of the features of this average tem-
perature at its first maximum and first minimum values.
The normalized average temperature θ and heat flux Q at
the illuminated surface z = 0 as functions of the normal-
ized frequency Ω1 are shown in Figs. 2(a)− 2(b), respec-
tively; for two values of Ω2. Note that the average tem-
perature presents the typical behavior of traditional ther-
mal wave phenomena for Ω2 = 0.1. When the modula-
tion frequency increases (Ω1 � 1), the temperature oscil-
lations manifest a strong attenuation. Furthermore, the
penetration depth of the temperature oscillation (ther-
mal wave) which depends on the modulation frequency

of the heat source (µ1 =
√

2α/ω1) reduces as the exci-
tation frequency increases. These results agree well with
the the work reported by Torii and Yang17 and Ordonez-
Miranda et al.28. In the intermediate regime, the average
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FIG. 2: Normalized average temperature and heat flux
at the illuminated surface z = 0 for Case 1 as functions
of the normalized frequency Ω1 for (a) Ω2 = 0.1 and (b)

Ω2 = 4. The up down arrow corresponds to the
difference between the first minimum and first

maximum of the temperature. Calculations have been
made for l = 10−3m, k = 100 Wm−1K−1, T0 = 300 K,

m = 1/15, and q1 = 2.106 Wm−2.

temperature distribution inside the thin layer oscillates
in time and the values of its first maximum and first min-
imum decrease when Ω2 increases (see Figs. 2(a)− 2(b)).
This was expected, with respect to Eqs. (4a) and (5). For
low frequencies ( Ω1 � 1), the behavior of the temper-
ature and heat flux takes a constant value and becomes
independent of the modulation frequency with respect
to the steady-state conditions. The difference between
the first maximum and first minimum of the tempera-
ture is respectively, 3.43 K and 1.71 K for Ω2 = 0.1 and
Ω2 = 4. Experimentally, this difference is easily mea-
surable with (T1,max − T1,min) ≥ 1 K. We obtain similar
results for the Case 2 and Case 3. We provide more de-
tails in the supplementary material. According to com-
plex the derivations in Sec. II, it is almost impossible to
get analytically the expressions of the first maximum and



6

minimum of the temperature as well as the frequencies
at which they occur. The numerical solution of Eq. (30)
makes it possible to calculate the frequencies at which the
temperature reaches its first maximum and minimum,
as shown in Fig. 3. In this figure, we plot the frequen-
cies at which the temperature reaches its first maximum
and minimum as functions of the normalized frequency
Ω2. We note these frequencies Ω1,max and Ω1,min, re-
spectively. These frequencies increase linearly as func-
tions of Ω2 which is consistent with the results shown in
Figs. 2(a)− 2(b). Furthermore, the relationship between
Ω1 and Ω2, where the normalized average temperature
reaches its first maximum and first minimum values can
be obtained through fitting. Given that for small values
of Ω2 (0.001 ≤ Ω2 < 1), Ω1,max and Ω1,min varies linearly
with Ω2 (see Fig. 3 (a)). The results obtained through
fitting lead to Ω1,max ≈ (9/7)Ω2 and Ω1,min ≈ (3/4)Ω2.
Therfore, the proposed method based on subtracting the
minimum and maximum frequencies cannot be used to
determine α. By contrast, in the high frequency regime
(Ω2 > 1), the first minimum and maximum of θ occur for
a linear dependence between Ω1 and Ω2 (see Fig. 3 (b))
and we can write

Ω1,min ≈ 9

11
Ω2 −

1

17
, θ = θ1,min,

Ω1,max ≈ 15

11
Ω2 −

2

35
, θ = θ1,max,

(32a)

(32b)

where Ωj = l2ωj/α.
Given that the Eqs. (32a) and (32b) are derived for the

modulated components of the applied heat flux and tem-
perature in Eqs. (4a) and (5), they are valid for high fre-
quency regime (Ω2 > 1). Note that Eqs. (32a) and (32b)
are independent of the particular values of m and Q1.
The variation of these parameters changes the tempera-
ture θ1,max and θ1,min but not the modulation frequencies
of their minima and maxima. One can obtain the ther-
mal diffusivity of the sample by combining Eqs. (32a)
and (32b), as follows:

α ≈ πl2 (48.9f1,max − 81.5f1,min) , (33)

where ωj = 2πfj . Therefore, Eq. (33) will lead to ob-
taining the thermal diffusivity of the sample, by perform-
ing a simple frequency scan to determine the modulation
frequencies where the average temperature at the illu-
minated surface z = 0 reaches its first minimum and
maximum values. According to Eq. (33), the thermal
diffusivity α is highly sensitive to the frequencies f1,max

and f1,min at which the maximum and minimum values
of the temperature field occur, respectively. In practice,
the accurate determination of α will thus need to repeat
the required experiments a number of times to measure
representative values of these two frequencies together
with their uncertainties.
According to Eq. (30), the average temperature over a
period Γ2 at the illuminated surface z = 0 can be conve-
niently rewritten as follows:

θ(0) = 1 +Q1F1(Ω1,Ω2) + F2(Ω2), (34)
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S l o p e 1 . 3 5 7 6 3  ±  0 . 0 0 1 5 5 0 . 8 2 6 9 1  ±  0 . 0 0 2 4 8
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( b )

FIG. 3: Behavior of Ω1,max and Ω1,min as functions of
Ω2 for Case 1. Calculations have been made for

l = 10−3m, k = 100 Wm−1K−1, T0 = 300 K, m = 1/15,
and q1 = 2.106 Wm−2. Dashed lines correspond to the

linear fit and solid one correspond to the numerical
solution of Eq. (30).

where

F1(Ω1,Ω2) =
1

2

[
1 +

Ω2

2πΩ1
sin

(
2πΩ1

Ω2

)]
+

Ω2

2π

+∞∑
n=0

{
a′n +A′n
λ2
n

+
2A′n
Ω1

sin

(
πΩ1

Ω2

)

.

[
λ2
n

Ω1
sin

(
πΩ1

Ω2

)
− cos

(
πΩ1

Ω2

)]}
, (35)
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FIG. 4: The computed behavior of the ratio(
θ1,max/θ1,min

)
between the first maximum and

minimum values of the temperature for Case 1 as a
function of thermal conductivity k for three values of

Ω2. Calculations have been made for l = 10−3m,
T0 = 300 K, m = 1/15, and q1 = 2.106 Wm−2.

and
F2(Ω2) =

Ω2

2π

+∞∑
n=0

1

λ2
n

[
Bn − 2m(−1)n

(1/2 + n)π

]
,

a′n = − 2

(1/2 + n)
2
π2

and A′n = An/Q1.

(36a)

(36b)

Given that the detected photothermal signal is propor-
tional to the modulated temperature defined in Eq. (34),
it is convenient to normalize the measured maximum sig-
nal by the minimum one. By doing so, we can write:

θ1,max

θ1,min

=
1 +Q1F1 (Ω1,max,Ω2) + F2 (Ω2)

1 +Q1F1 (Ω1,min,Ω2) + F2 (Ω2)
, (37)

where Ω1,min and Ω1,max are related to Ω2 by Eqs. (32a)
and (32b), respectively. After simplifications, Eq. (37)
yields

k =
q1.l

T0

F1 (Ω1,max,Ω2) −
(
θ1,max/θ1,min

)
F1 (Ω1,min,Ω2)((

θ1,max/θ1,min

)
− 1
)

(1 + F2 (Ω2))
.

(38)
Note that k depends on the ratio

(
θ1,max/θ1,min

)
and

the absorbed heat flux q1, which can be considered
nearly constant and independent of the modulation
frequency, as is usually done in similar problems.29,31

Equations (33) and (38) indicate that the simulta-
neous determination of both the thermal diffusivity
and thermal conductivity of a layer only requires the
measurement of two characteristic frequencies of the
temperature signal. This fact represents one of the

advantages of the proposed method with respect to
other photothermal ones, such as thermoreflectance,
which requires recording the amplitude and phase of
the temperature field over wide intervals of modulation
frequencies to retrieve the same properties.41

The determination of Ω1,max and Ω1,min and their

corresponding temperature magnitudes θ1,max and

θ1,min allows therefore the extraction of the thermal
conductivity k of the thin film layer trough application
of Eq. (38). The precision of k will depend on the
precision of these input parameters as well as the
number of terms considered in functions F1 and F2. We
report in Fig. 4 the computed behavior of the thermal
conductivity k as a function of the ratio between the first
maximum and first minimum values of the temperature(
θ1,max/θ1,min

)
. Note that k depends strongly on the

ratio
(
θ1,max/θ1,min

)
as well as the normalized frequency

Ω2. k decreases as the ratio
(
θ1,max/θ1,min

)
increases

and when the latter approaches unity, k tends to infinity.
We notice also that the ratio

(
θ1,max/θ1,min

)
takes

higher values for low frequencies Ω2; the determination
of the thermal conductivity k becomes more precise.

Taking into account that the Biot number Bi = hl/k
represents the fraction of the thermal resistance (l/k) of
the material that opposes the heat convection charac-
terized by the heat transfer coefficien h, the convective
losses are expected to be negligible for good thermal
conductors Bi � 1 excited with relatively high modula-
tion frequencies, as demonstrated by Martinez et al.42

In addition, given that the proposed method involves
temperature gradients of a few degrees only (see Fig. 2),
the radiation effects can also be neglected during the
realization of the required experiments, as established by
the Stefan-Boltzmann law of heat radiation. Finally, it
is worthwhile to mention that even though all our results
have been obtained for a heating with a sinusoidal profile,
the developed analytical methodology is also expected
to be valid for other profiles, as is the case of the square-
wave one that is commonly used in chopped experiments.

IV. CONCLUSION

A simple method for determining simultaneously
the thermal diffusivity and thermal conductivity of a
thin layer has been developed, based on the analytical
solution of the one-dimensional parabolic heat equation.
This is achieved by using the exact expression of the
normalized temperature at the illuminated front surface
of a thin layer when a periodic heat flux is applied at this
surface, while the rear surface is maintained at one of
three different types of boundary conditions; modulated
heat flux, modulated temperature, or constant temper-
ature. We have determined the frequencies at which
the normalized surface temperature reaches its first
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maximum and first minimum. It has been demonstrated
that these characteristic frequencies can be used to
determine the thermal diffusivity of the finite layer.
Furthermore, the combination of these frequencies and
their corresponding temperature magnitudes, can easily
lead to the determination of the thermal conductivity of
the thin layer. Once the thermal diffusivity and thermal
conductivity are known, one could extract the specific
heat per unit volume. Therefore, application of the
suggested method to a single photothermal experiment
would allow determination of a set of three thermal
properties of the thin layer.

SUPPLEMENTARY MATERIAL

For more details are provided in the supplementary
material.
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