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An ENU-induced splice site 
mutation of mouse Col1a1 causing 
recessive osteogenesis imperfecta 
and revealing a novel splicing 
rescue
Koichi Tabeta  1,10, Xin Du2, Kei Arimatsu1, Mai Yokoji1, Naoki Takahashi3, Norio Amizuka4, 
Tomoka Hasegawa4, Karine Crozat5, Tomoki Maekawa3, Sayuri Miyauchi1, Yumi Matsuda1, 
Takako Ida6, Masaru Kaku6, Kasper Hoebe7, Kinji Ohno8, Hiromasa Yoshie1,  
Kazuhisa Yamazaki9, Eva Marie Y. Moresco10 & Bruce Beutler10

GU-AG consensus sequences are used for intron recognition in the majority of cases of pre-mRNA 
splicing in eukaryotes. Mutations at splice junctions often cause exon skipping, short deletions, or 
insertions in the mature mRNA, underlying one common molecular mechanism of genetic diseases. 
Using N-ethyl-N-nitrosourea, a novel recessive mutation named seal was produced, associated 
with fragile bones and susceptibility to fractures (spine and limbs). A single nucleotide transversion 
(T → A) at the second position of intron 36 of the Col1a1 gene, encoding the type I collagen, α1 chain, 
was responsible for the phenotype. Col1a1seal mRNA expression occurred at greatly reduced levels 
compared to the wild-type transcript, resulting in reduced and aberrant collagen fibers in tibiae of seal 
homozygous mice. Unexpectedly, splicing of Col1a1seal mRNA followed the normal pattern despite 
the presence of the donor splice site mutation, likely due to the action of a putative intronic splicing 
enhancer present in intron 25, which appeared to function redundantly with the splice donor site of 
intron 36. Seal mice represent a model of human osteogenesis imperfecta, and reveal a previously 
unknown mechanism for splicing “rescue.”

Type I collagen is a major structural component of mammalian bone, constituting >90% of bone organic com-
ponents. Biosynthesis of type I collagen is a long and complex process, including intra- and extracellular post-
translational modifications. In brief, two type I collagen α1 chains and one α2 chain supercoil into a triple helix 
structure and are enzymatically cleaved to form mature type I collagen. Intra- and inter-molecular covalent 
cross-links between α chains of mature type I collagen mediate formation of collagen fibrils to organize bone1.

The bulk of each α chain consists of a repeating three-amino acid unit, Gly-X-Y, that is necessary for triple 
helix formation. Mutations in the pro-α1 and -α2 chains, encoded by COL1A1 and COL1A2, can cause defects in 
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type I collagen synthesis or assembly resulting in osteogenesis imperfecta (OI), a genetic disorder characterized 
by bone fragility and deformity, blue sclera, short stature, dentinogenesis imperfecta, and hearing loss. To date, 
more than 1,500 mutations in COL1A1 and COL1A2 have been identified in patients with OI, among which 
nonsense, frame shift, and splicing mutations often cause quantitative deficiency in the pro-α chains, whereas 
missense mutations lead to aberrant pro-α chains that exert a dominant negative effect on collagen synthesis2–4. 
The most common missense mutations are glycine substitutions within the Gly-X-Y in the triple helix. More 
severe clinical phenotypes manifest in OI patients with helical glycine mutations than those with other mutations 
causing quantitative procollagen deficiencies5,6.

COL1A1 and COL1A2 contain approximately 52 intronic sequences that need to be precisely excised to gener-
ate mature mRNA, making these genes particularly susceptible to splicing mutations7,8. Accurate splicing depends 
on splice sites, conserved sequence elements positioned at the 5′ ends (5′ss or splice donor sites) and 3′ ends of 
introns (3′ss or splice acceptor sites) that are recognized by components of the spliceosome9. Greater than 99% 
of mammalian introns, including all of those in COL1A1, are spliced by the major (U2-dependent) spliceosome 
and have as their terminal dinucleotides GU (5′ end) and AG (3′ end)10. These dinucleotides are invariant in 
splice sites of major (U2-type) introns and are therefore considered critical elements of them. In contrast, flank-
ing nucleotides (up to 3 bp into the adjacent exon and 8 bp into the intron for 5′ss) may deviate from consensus 
sequences resulting in variation in splice site strength11. Splice donor and acceptor site mutations can lead to exon 
skipping, use of cryptic splice sites, and/or insertions/deletions; many human diseases stem from such defects 
caused by splice site mutations, and their mechanisms have been well documented12. Importantly, the effects of 
splice site mutations are determined in part by the order and rate of intron removal from the pre-mRNA13,14. Exon 
skipping mutations causing lethal or moderate phenotypes of OI have been identified in both splice donor and 
acceptor consensus sequences in COL1A1 and COL1A2 genes15,16. Novel causative mutations for OI continue to 
be identified17.

Here we report the identification and characterization of a novel N-ethyl-N-nitrosourea (ENU)-induced Col1a1 
mutation named seal that causes OI in homozygous mice. Analysis of the effects of the donor splice site mutation led 
to the discovery of a regulatory element for splicing within intron 25, acting on the excision of intron 36.

Results
Identification of the seal phenotype and its genetic cause. The recessive seal phenotype was initially 
recognized as a defect of hind limb movement induced by grasping the loose skin over the nape of the neck, as 
is commonly practiced during routine handling of laboratory mice. Once triggered in this manner, the hind legs 
become paralyzed for a period of about 8 days before they regain function. However, most of the mice still display 
a residual “seal-like” gait after the recovery. Homozygous seal mice show shortened limbs due to a reduction in the 
length of the long bones relative to that of wild-type littermates (Fig. 1A–C). About 50% of seal homozygotes also 
have swollen heels and foot pads, occasionally with deformed feet due to pathologic fracture (Fig. 1D). Necropsy 
of seal mice that showed abnormal locomotion revealed spinal bone fracture that presumably caused hind limb 
paralysis. Body weight of seal mice was reduced 8% compared to those of wild-type mice throughout the period 
of rapid growth between 6 and 12 weeks of age (Fig. 1E). All described phenotypes were transmitted in a recessive 
manner and heterozygotes were indistinguishable from wild-type mice.

The mutation causing the seal phenotype was mapped to chromosome 11 by genome-wide linkage analysis 
using a panel of 59 microsatellite markers (Fig. 2A); 4 additional chromosome 11 markers were used to confine 
the mutation to a 2.1 Mbp critical region containing 81 genes (Fig. 2B). Residing in the critical region, Col1a1 
encoding the type I collagen, α1 chain was considered a promising candidate since type I collagen mutations 
generally result in bone fragility15. Sequencing of Col1a1 identified a single nucleotide transversion (T → A) in 
the donor splice site of intron 36 at position + 2 relative to the exon 36 boundary (Fig. 2C,D).

Defective bone structure, turnover, and collagen network in seal mice. Type I collagen is a key 
structural component of bone, and we therefore examined bone structure in seal homozygotes. Hematoxylin 
and eosin staining revealed fine trabecular bone in the metaphysis of seal tibiae compared to that in wild-type 
controls (Fig. 3A–D), however, the trabecular number was not markedly different between the two groups by 
gross visual evaluation. Moreover, artificial fissures indicative of bone fragility were often discovered in the bone 
sections of seal homozygotes but not in those of wild-type mice (Fig. 3A,B). Micro-computed tomography (CT) 
images showed thinner cortical bone in seal femurs in comparison with wild-type femurs (Fig. 4). Assessment of 
trabecular and cortical parameters revealed significant defects in seal mice compared to wild-type controls. For 
example, cortical thickness and cortical bone area fraction were reduced 14% (P = 0.0016) and 24% (P < 0.0001), 
respectively, in seal homozygotes relative to wild-type mice. Seal mice also showed a significant decrease of tra-
becular bone mineral density (BMD; P = 0.0002), in agreement with the histological observation of fine trabecu-
lae with reduced bone deposition (Table 1). Transmission electron microscopy (TEM) demonstrated many intact 
osteoblasts containing well-developed cellular organelles such as rough endoplasmic reticulum and Golgi appa-
ratus, indicating the active form of osteoblasts in both wild-type and seal tibiae (Fig. 3E,F,I,J). The wild-type bone 
matrix showed densely-deposited collagen fibrils (See black fibrillar structures in Fig. 3G), while seal bone matrix 
contained sparsely-distributed collagen fibrils, consequently including many foci of organic materials (arrows 
in Fig. 3H). The effect of the seal mutation on steady state bone resorption in vivo was determined by measure-
ment of the serum level of the type I collagen α1 chain C-terminal telopeptide (CTX), a biomarker for osteoclast 
activity. CTX levels in seal mice were reduced approximately 65% compared to those in wild-type mice (Fig. 5).

Type I collagen biosynthesis is a complex process that includes multiple post-translational modifications (e.g. 
hydroxylation of proline) leading to the formation of covalently cross-linked collagen fibrils18. To understand 
the effects of collagen mutations, it is important to analyze collagen quantity as well as collagen components, 
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which are crucial determinants of bone mechanical properties19. To analyze the effect of the seal mutation on the 
collagen amount in bone, hydroxyproline content was evaluated in demineralized bone hydrolysate20. The bone 
samples from seal homozygotes contained significantly less hydroxyproline indicating reduced collagen content 
compared with wild-type bone (Fig. 6A). These data support the conclusion that the seal phenotype is due to 
reduced collagen, rather than accelerated bone turnover.

To examine the composition of type I collagen in bone from seal mice, collagen components from femurs were 
extracted, separated by SDS-PAGE, and visualized by CBB staining (Fig. 6B and Supplementary Fig. S1). Band 
intensities were higher for seal bone samples, reflecting increased collagen extractability relative to wild-type bone 
samples, which was supported by quantitation using densitometric image analysis (Fig. 6C). The quantitation also 
revealed an α1 (I)/α2 (I) chain ratio of 2.0 in control mice, reflecting the formation of a heterotrimer of two α1 (I) 
chains and one α2 (I) chain. Notably, the α1 (I)/α2 (I) chain ratio in seal mice was elevated to 3.6, suggesting the 
formation of some α1 (I) homotrimers (Fig. 6D).

β-chains refer to α-chain dimers in which the two α-chains are linked by intra- or intermolecular covalent 
cross-links, which remain intact under the conditions of SDS-PAGE while non-covalent bonds of the type I col-
lagen triple helix are destroyed. We analyzed the composition of such dimers based on the distinct migration in 
SDS-PAGE of each possible dimer. In control mice, β12 chains [heterodimers of α1 (I) and α2 (I)] predominated, 
whereas β11 chains were the major form in seal mice, consistent with the possible formation of α1 (I) homotri-
mers in seal mice (Fig. 6E). These findings indicate that both the amount and the composition of collagen were 
altered in seal homozygous mice.

Reduced Col1a1 transcripts in seal mice but normal splicing. Donor splice site mutations often result 
in exon skipping, and the seal mutation was predicted to cause skipping of the 108-nucleotide exon 36, resulting in 
an in-frame deletion of 36 amino acids near the middle of the α1 chain helical domain. Using quantitative RT-PCR, 
we confirmed that Col1a1 transcripts were significantly reduced in total RNA, nuclear RNA, and cytoplasmic RNA 

Figure 1. Phenotype of seal mutant mice. All the specimens were from male mice. (A) Wild-type and seal 
homozygous mice (12 weeks of age). (B) Femur and tibia of a 12-week-old seal homozygous mouse. They are 
abnormal in shape and shorter than the corresponding wild-type bones. Bone marrow is visible through thin 
cortical bone of seal homozygous animals. Scale: length of smallest grid square, 5 mm. (C) Femur length. N = 5 
mice per genotype. (D) Swollen and deformed foot of a seal homozygote. (E) Body weight of age-matched mice. 
N = 5 mice per genotype. In C and E, results are expressed as mean ± SD.
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from seal femurs relative to wild-type femurs based on two separate amplification analyses targeting exons 36–37 
and 40–41 (Fig. 7A–C), consistent with the observation of reduced collagen fiber content in the bone matrix by 
TEM. However, the ratio of exon 36–37/exon 40–41 Col1a1 mRNA in the nucleus, but not the cytoplasmic or total 
RNA, was reduced in seal mice relative to wild-type mice (Fig. 7A–C, right) due to greatly reduced levels of exon 
36–37 transcript compared to exon 40–41 transcript in the nuclear fraction of seal femurs (Fig. 7B, left and middle).

Sequencing of Col1a1 transcripts across the junction between exon 35 and the next exon revealed normal 
splicing of exon 35 to exon 36 in RNAs isolated from seal femurs; normal splicing between exon 36 and exon 
37 was also observed (Fig. 8A), although we cannot exclude the possibility that minor amounts of abnormal 
transcripts were present below the level of detection. The recessive nature of the seal phenotype suggests that the 
quantity of aberrant type I collagen α1 chains produced, if any, is insufficient to exert a dominant negative effect. 
These data suggest that the seal mutation slows the rate of splicing such that Col1a1 mRNA levels are diminished 
in seal bone compared to those in wild-type bone, despite correct splicing of exon 35 to 36 and exon 36 to 37.

To examine the effect of the seal mutation on Col1a1 pre-mRNA splicing, we constructed four Col1a1 mini-
genes containing the seal mutation and assessed mRNA splicing following transfection into HEK293 cells 
(Fig. 8B). Minigenes exon 26–39 (Fig. 8C, right) and exon 34–43 (Fig. S2, right) yielded transcripts in which 
exon 36 was mostly skipped; we noted that normally spliced transcripts of these minigenes were detected by 
DNA sequencing but not by staining in gels, likely due to a low abundance of normally spliced transcripts below 
the level of detection by ethidium bromide staining. In contrast, minigene exon 25–45 (Fig. S2, left) produced 
properly spliced transcripts. We hypothesized that the presence of intron 25 promoted inclusion of exon 36 in the 
spliced minigene mRNAs. To test our hypothesis, we constructed a minigene in which intron 25 was included in 
minigene exon 26–39 (exon 26–39 + intron 25; Fig. 8B), and examined splicing upon expression in HEK293 cells. 
Addition of intron 25 promoted inclusion of exon 36 in the majority of transcripts, although residual transcripts 
lacking exon 36 were still produced (Fig. 8C, left). These data suggest that Col1a1 intron 25 may contain elements 
that compensate for the splicing error caused by the splice site mutation and support normal splicing of exon 36.

Figure 2. Genetic mapping and identification of the seal mutation. (A) The seal mutation was mapped to 
chromosome 11 on 34 meioses with peak LOD score of 6.9. Phenotypic classification was based on the inducible 
defect in hind limb movement. (B) Fine mapping of the mutation on chromosome 11 using microsatellite markers. 
The seal mutation was confined to a critical region marked by D11mit289 and D11mit67 with five crossover events 
proximal and three crossovers distal to the mutation. (C) DNA sequence chromatograms of the region containing 
the seal mutation. (D) Illustration of the position of the seal mutation relative to exons 36 and 37 of Col1a1.

http://S2
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Figure 3. Abnormal bone structure and collagen network in seal homozygotes. Light microscopic (A–D) 
or TEM imaging (E–J) of the tibial sections from wild-type and seal homozygous mice. (A, B) The proximal 
region of the tibia. (C, D) Enlargement of the regions boxed in A and B, the metaphysis. Many thin trabeculae 
(arrowheads in D) were found in seal metaphysis (meta) compared with those (arrowheads in C) in wild-type 
mice. (E, F) Osteoblasts (ob) of the tibia. (G, H) Enlargement of the regions boxed in E and F, the bone matrix. 
Wild-type bone matrix demonstrated dense collagen fibrils (black fibrillar structures), whereas seal bone matrix 
contained sparsely-distributed collagen fibrils featuring organic materials (arrows). (I, J) Both wild-type and 
seal homozygous osteoblasts in the metaphyses of tibiae were cuboidal in shape, and showed developed rough 
endoplasmic reticulum (rER) and Golgi apparatus (Go). Scale bars, A, B: 500 μm, C, D: 100 μm, E, F: 2 μm, G-J: 
0.5 μm.
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Discussion
The helical domain of murine type I collagen α1 chain is encoded by 43 of the 51 total exons of Col1a1; these 43 
exons encode the repeating sequence Gly-X-Y, and each begins with a glycine codon and ends with a Y-position 
codon. Because a glycine residue at every third position of the chain is critical to the formation of the triple helix 
of mature type I collagen21, frameshifts or premature termination caused by aberrant splicing can be detrimental 
for type I collagen synthesis15,16. We speculate that multiple redundant mechanisms have evolved to ensure proper 
splicing of collagen mRNAs. In support of this hypothesis, only normal Col1a1 transcripts were detected in bone 
tissue of seal mice, despite the presence of a mutation in the invariant GU dinucleotide of the intron 36 donor 
splice site. Results of splicing analyses using minigenes suggested that either an intact 5′ss in intron 36 or the pres-
ence of a putative intronic splicing enhancer in intron 25 was necessary for proper splicing of exon 36 in minigene 
26–39. An implication of this finding is that removal of intron 36 precedes removal of intron 25. However, the 
intron 25 regulatory element appeared to be less efficient than the 5′ splice site of intron 36 in directing splicing, 
as evidenced by the overall reduction in Col1a1 transcript abundance in bone from seal mice relative to wild-type 
mice, which was also observed in the minigene analysis. The observation of a low frequency of spliced transcripts 
lacking exon 36 among intron 25-containing seal minigene transcripts (Fig. 8C, left), as well as a low frequency of 
normally spliced seal minigene transcripts lacking intron 25 (Fig. 8C, right), suggests that other cis-acting splic-
ing regulatory elements outside intron 25, or trans-acting regulators, also contribute to normal exon 36 splicing. 
Further studies are necessary to identify the critical element(s) in Col1a1 intron 25 and their mechanism(s) of 
action in supporting proper splicing of exon 36 and possibly other exons.

A comparison of the nuclear and cytoplasmic abundance of Col1a1 transcripts as measured across the exon 
36–37 junction versus the exon 40–41 junction revealed a reduction of the ratio of exon 36–37/exon 40–41 
Col1a1 mRNA in the nuclear fraction of seal femurs relative to wild-type femurs, whereas similar exon 36–37/

Figure 4. Thin cortical bone in seal femurs. Representative micro-CT images for wild-type mice (left) and seal 
homozygotes (right). (A) Sagittal sections. (B) Cross section of mid-diaphysis.
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exon 40–41 ratios were found in seal and wild-type cytoplasmic fractions. These data suggest that the effect of the 
seal mutation may be to slow down splicing of the exon 36–37 junction compared to the exon 40–41 junction, 
resulting in greatly reduced levels of Col1a1 exon 36–37 transcript compared to exon 40–41 transcript in nuclei 
of seal femurs. In the cytoplasm, the difference was reduced, presumably because only fully spliced transcripts 
are allowed to exit the nucleus; hence the ratio of exon 36–37/exon 40–41 Col1a1 mRNA in the cytoplasm of seal 
femurs is not significantly different from the ratio in wild-type femurs.

Human OI manifests a wide spectrum of severity as well as variability of causative mutations. Administration 
of bisphosphonates was shown to effectively increase vertebral areal bone mineral density and height. However, 
concerns have been raised as to its efficacy for fracture reduction22–25. This suggests that understanding the rela-
tionship between clinical manifestation and underlying pathogenesis is necessary for the development of effective 
therapy, and animal models mimicking various types of human OI are pivotal to these studies. Seal mutant mice, 
showing short limbs with short undermineralized long bones and sporadic limb deformity, model human type 
III OI. Oim, a spontaneous mutation of Col1a2 encoding the type I collagen pro-α2 chain26, causes a phenotype 
similar to seal. However, the underlying mechanisms are different. The oim mutation causes aberrant pro-α2 (I) 
collagen synthesis that inhibits assembly of a normal type I collagen trimer26,27. In contrast, type I collagen in seal 
mice was greatly reduced due to a decrease in transcription of the α1 chain, and that which was produced con-
sisted, at least in part, of α1 (I) homotrimers, which have been associated with impaired bone strength leading to 
increased risk of bone fracture26,28–31. In normal type I collagen, the hydrophobicity of the α2 (I) chain is thought 
to promote the stability of the heterotrimer by increasing the hydrophobic interactions between the heterotri-
meric molecules, and increasing the binding of the molecules in the fiber32. Therefore, the elevated α1 (I)/α2 (I) 
chain ratio of type I collagen from seal mice may signify a reduced efficiency of self-assembly and loose-packing 
collagen fibers. In addition, it has been shown that each tissue has a unique collagen cross-link pattern that sup-
ports the tissue′s mechanical features. An abnormal pattern of collagen cross-linking is often observed in aged 
and diseased bone, making it brittle or fragile33. Our results showed that the composition of β-chains differed 
between type I collagen in bone from seal versus wild-type mice; this abnormal collagen cross-link pattern may 
also contribute to decreased fracture strength of bone in seal mice. Seal mice provide a valuable disease model of 
human OI, in which Col1a1 splicing regulation and its effects on transcript and protein abundance, and on type I 
collagen fiber formation may be investigated.

Methods
Mice. C57BL/6 J and C3H/HeN mice were obtained from The Jackson Laboratory (Bar Harbor, ME) and 
Taconic Biosciences (Germantown, NY) and maintained under specific pathogen-free conditions in The Scripps 
Research Institute vivarium and Niigata University animal facility. All male mice used in the experiments were 

Parameters

Wild-type seal

Mean SD Mean SD P value

Cortical BMDa (mg/cm3) 983.225 18.442 975.175 9.879 0.4780

Trabecular BMDa (mg/cm3) 161.85 26.65 16.825 4.325 0.0002**

Cortical thickness (mm) 0.196 0.007 0.168 0.003 0.0016*

Mean total cortical bone areab (mm2) 1.051 0.052 1.037 0.031 0.7283

Mean total tissue areab (mm2) 2.572 0.064 3.317 0.049 <0.0001**

Mean total tissue perimeterb (mm) 6.359 0.089 7.161 0.066 <0.0001**

Cortical bone area fraction (%) 0.409 0.012 0.312 0.007 <0.0001**

Table 1. Trabecular and cortical parameters from micro-CT analysis. aBone mineral density. bCrossectional 
area was analyzed. N = 4 mice per genotype.

Figure 5. Metabolic balance of type I collagen in bone. CTX level in serum. N = 3 mice per genotype.
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4–12 weeks in age. Animals were to be excluded from analysis only if they displayed obvious illness or death; these 
conditions were not observed and no animals were excluded. No randomization of the allocation of animals to 
experimental groups was performed.

Data availability. All data generated or analyzed during this study are included in this published article 
(and its Supplementary Information files). The seal strain (Col1a1m1Btlr; MGI: 3776559) is described at http://
mutagenetix.utsouthwestern.edu and is available from the Mutant Mouse Regional Resource Center (MMRRC: 
030348-UCD).

Ethics Statement. All experimental procedures using mice were approved by and conducted in accord-
ance with The Scripps Research Institute Institutional Animal Care and Use Committee, and Niigata University 
institutional guidelines for animal care and use. The protocol to perform euthanasia by cervical dislocation after 
intraperitoneal injection of chloral hydrate and to obtain specimens was approved by the animal ethics commit-
tee for animal experimentation of Niigata University (Permit Number: 39). Any unnecessary grasping of seal 
homozygous mice by the scruff of the neck was avoided and all efforts were made to minimize suffering.

ENU Mutagenesis, phenotypic screens, and linkage analysis. Random germline mutagenesis of 
C57BL/6 J mice using ENU was described previously34. Phenotypic screening including was applied to G3 and 

Figure 6. Collagen quantification and component assay. (A) Hydroxyproline content in demineralized bone 
hydrolysate was measured as an indicator of collagen content. (B) Representative gel image of femur type I 
collagen components separated by SDS-PAGE and visualized by CBB. For β-chains, numbers following the β 
designation indicate the identity of the two α-chain components [e.g. β12 is a heterodimer of α1 (I) and α2 (I)]. 
Band intensity represents collagen extractability. (C) Gel bands from B were quantitated by densitometric image 
analysis. Sum of quantitated band intensities of all type I collagen chains, representing collagen extractability, 
was plotted (normalized to wild-type). (D) Ratio of band intensities of α1 (I) and α2 (I) chains (α1 (I)/α2 
(I) chain ratio). (E) Quantitation of β-chains by densitometric image analysis of CBB-stained SDS-PAGE gel 
containing type I collagen components from an independent extraction from femur samples. N = 3 mice per 
genotype. Data are expressed as mean ± SEM.

http://mutagenetix.utsouthwestern.edu
http://mutagenetix.utsouthwestern.edu
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G1 mice. Phenotypic screens included casual inspection for immunodeficiency and dysmorphologies affecting 
limbs, tail, eyes, teeth, or other aspects of body form; coat color and/or coat quality anomalies, abnormal body 
size35–40. Homozygous seal mice were mated to wild-type C3H/HeN mice, and their progeny were backcrossed to 
the homozygous mutant stock. 34 F2 mice were scored for phenotype and genomic DNA was prepared from tail 
tips for genotyping. 59 microsatellite markers were used for genome-wide linkage analysis.

Figure 7. Reduced type I collagen gene expression in seal mice. Col1a1 gene expression relative to Gapdh in 
the femur were measured by quantitative RT-PCR using primer sets targeting sequences in exons 36 and 37, 
or exons 40 and 41. The ratio of Col1a1 exon 36–37/40–41 was analyzed for total RNA (A), nuclear RNA (B), 
and cytoplasmic RNA (C). P-values, (A) P = 0.007, P = 0.002, and n.s. from left, (B) P = 0.036, P = 0.040, and 
n.s. from left, and (C) P = 0.002, P = 0.027, and n.s. from left. N = 3 mice per genotype. Data are expressed as 
mean ± SEM.
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In vitro pre-mRNA splicing assay. Col1a1 mRNA processing was analyzed using a minigene assay. Briefly, 
Col1a1 exon 25–45, 26–39 + intron 25, 26–39, and 34–43 were amplified from genomic DNAs prepared from 
wild-type and homozygous seal mice and cloned into vector pcDNA3.1/V5-His-TOPO (Invitrogen, Carlsbad, 
CA) as minigene constructs. Primers are listed in Supplementary Table S1. HEK293 cells (DS Pharma Biomedical 
Co., Ltd, Osaka, Japan) transiently transfected with purified minigene plasmids were harvested 48 h post trans-
fection, and then total RNA was extracted using TRIzol® reagent (Invitrogen). The RNA was reverse transcribed 
by M-MLV reverse transcriptase (Invitrogen) in to cDNA using random primers (Takara Bio Inc., Shiga, Japan). 
Sequence analysis was performed using primer covering exon 36 and 37 to analyze the exon skipping.

Quantitative reverse transcription RT-PCR. Femurs RNA was extracted using TRIzol® reagent 
(Invitrogen) to obtain total RNA or cytoplasmic and nuclear RNA purification kit (Norgen, ON, Canada) to 
obtain cytoplasmic and nuclear RNA according to the manufacturer’s instructions. Total RNA (1 μg) was reverse 
transcribed by M-MLV reverse transcriptase (Invitrogen) using random primers (Takara Bio Inc., Shiga, Japan). 

Figure 8. Minigene assay for Col1a1seal pre-mRNA splicing. (A) DNA sequence chromatograms of femur RT-
PCR amplification products generated using primers complementary to sequences in exons 26 and 39.  
(B) Schematic illustration of Col1a1seal exons used in minigenes exon 25–45, 26–39 + intron 25, 26–39, and 
34–43. Red and blue coloring denotes minigenes spliced without or with exon 36, respectively. (C) Sequence 
analyses and gel images of spliced transcripts of Col1a1seal minigene exon 26–39 (right). The major splice 
product from Col1a1seal minigene exon 26–39 lacked exon 36 and gel image showed corresponding band was 
shifted down compared with wild-type minigene band. In contrast, the majority of transcripts from Col1a1seal 
minigene exon 26–39 + intron 25 (left) were correctly spliced, with a minor fraction having exon 36 completely 
skipped which was not observed in vivo.

http://S1
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Grinded specimens for femurs RNA extraction were prepared using SK-mill, after removing bone marrow and 
subsequent deep freezing in liquid nitrogen. TaqMan Probe® Mm01302046_g1 (Exon 36–37) and Mm00801658_
g1 (Exon 40–41) for real-time PCR were purchased from Applied Biosystems (Foster City, CA). Reactions were 
carried out in the ABI PRISM 7900HT Sequence Detection System (Applied Biosystems) using TaqMan Gene 
Expression Assays (Applied Biosystems) containing 900 nM primer and 250 nM probe in a 25 µl mixture. The 
reactions consisted of a 10 min incubation at 95 °C, followed by 40 cycles of a two-step amplification procedure of 
annealing/extension at 60 °C for 1 min and denaturation for 15 s at 95 °C. ABI PRISM SDS 2.0 software (Applied 
Biosystems) was used to carry out the quantifications. The relative quantity of each mRNA was normalized to 
glyceraldehyde-3-phosphate dehydrogenase (Gapdh) mRNA.

Histological Analysis. 12-week-old seal mice and their wild-type littermates were fixed with 4% paraform-
aldehyde in a 0.1 M phosphate buffer (pH 7.4) under appropriate anesthesia (intraperitoneal injection of chloral 
hydrate). Tibiae were removed en bloc and immediately immersed in the same fixative for 12 h, then decalcified 
with 10% ethylenediamine tetraacetic disodium salt (EDTA-2Na) solution for light microscopic observation for 
4 weeks, or 5% EDTA-2Na solution for electron microscopic analysis for 6 weeks. Staining of tissue sections were 
carried out using hematoxylin-eosin for light microscopy. Some undecalcified tibiae were post-fixed with 1% 
osmium tetroxide with a 0.1 M cacodylate buffer for 4 h at 4 °C, dehydrated in ascending acetone solutions, and 
embedded in epoxy resin (Epon 812, TAAB Laboratories Equipment Ltd., Berkshire, UK). Ultrathin sections pre-
pared with an ultramicrotome, were stained with 1% tannic acid, uranyl acetate and lead citrate for observation 
under transmission electron microscope (Hitachi H-7100; Hitachi Co. Ltd, Tokyo, Japan) at 80 kV.

Micro-CT analysis. Micro-computed tomographic scans were performed on excised femurs and morpho-
logical analysis was performed using micro-CT (SkyScan 1174, Bruker microCT, Kontich, Belgium) with an 
X-ray tube voltage of 50 kV and current of 800 μA, as described by Cano et al.41. The angular rotation was 185°, 
and the angular increment was 0.45° for scanning. The voxel size was set at 6.5 μm isotropically. A modified 
Feldkamp algorithm was used for reconstruction of data sets and segmentation into binary images (8-bit BMP 
images) was carried out using adaptive local thresholding. The microarchitectural properties of trabecular and 
cortical bone regions were evaluated within a conforming volume of interest (VOI). A VOI in the trabecular bone 
region was started at a distance of 1 mm from the distal growth plate, extending a further 2 mm of longitudinal 
distance in the proximal direction (96 image slices). The regions of trabecular bone were consisted of cylindri-
cal segments (radius 0.86 mm). A VOI included in the middiaphyses (96 images) was selected in the cortical 
bone region. Cortical bone regions were selected by free drawing regions of interest. Cortical thickness (mm), 
mean total crossectional cortical bone area (mm2), mean total crossectional tissue area (mm2), mean total cros-
sectional tissue perimeter (mm), cortical bone area fraction (%) were analyzed. Cortical bone mineral density 
(Cortical BMD) and trabecular bone mineral density (Trabecular BMD) were calculated using the conforming 
VOI. Reconstructed 8-bit BMP images have a grey value between 0 and 255 in every pixel. 255 was assumed to 
be white (void space), whereas 0 is black, the densest part of the image. Hydroxyapatite phantom rods (2 mm of 
diameter) immersed in pure water, equivalent to BMD of 0.25 g/cm3 and 0.75 g/cm3 were employed for calibration 
to express grey values as mineral content.

Metabolism of bone type I collagen. Degradation of bone type I collagen was evaluated, measur-
ing C-terminal cross-linking type I collagen fragments (CTX) in serum by RatLaps™ (CTX-I) ELISA kit 
(Immunodiagnostic Systems Limited, Boldon, UK) according to the manufacturer’s protocol.

Quantification and qualification of collagen. Quantification of collagen contents in femurs was evalu-
ated by hydroxyproline assay. Femurs were collected from 10-week-old mice. After completely remove the con-
nective tissues, both ends of femurs were cut off, and bone marrow was washed out by ice cold phosphate buffer 
saline. The cleaned bone samples were demineralized with 10% EDTA for 1 week, dialyzed against water using 
Spectra/Por (MWC 3,500 Da, Spectrum Laboratories, Inc., Milipitas, CA) for 4 days, and lyophilized. Sample 
preparation was performed below 4 °C unless otherwise specified. Equal weight of samples were hydrolyzed by 
12 M HCl for 20 h at 95 °C. Quantification of hydroxyproline, representing total collagen amount, was performed 
by a Total collagen assay kit (QuickZyme Biosciences, Leiden, Netherlands), according to the manufacturer’s 
instruction.

Collagen components were analyzed using demineralized and lyophilized bone samples. Samples of equal 
weight were directly resolved in sodium dodecyl sulfate (SDS) sample buffer (Life Technologies, Carlsbad, CA), 
heated for 10 min at 80 °C, and centrifuged at 13,000 × g for 20 min. Equal volume of supernatants were loaded 
onto the NuPAGE 3–8% Tris-Acetate Gel (Life Technologies), and the electrophoresis was performed at constant 
voltage of 150 V for 60 min. Gels were stained with Coomassie Brilliant Blue R (CBB, Sigma-Aldrich, St Louis, 
MO). Digital images were taken by Image Scanner GT-X970 (Epson, Nagano, Japan). Each band, corresponding 
α-, β- and γ-chains of type I collagen were quantified by ImageJ software. Collagen extractability (α + β + γ), α1/
α2 chain ratio and composition ratio of β-chains were calculated.

Statistical analysis. Comparisons of differences were between two unpaired experimental groups in all 
cases. An unpaired t-test (Student’s t-test) is appropriate and was used for such comparisons. The phenotypic per-
formance of mice (C57BL/6J) is expected to follow a normal distribution, as has been observed in large datasets 
from numerous phenotypic screens conducted by our group. Variation within each dataset obtained by measure-
ments from mice was assumed to be similar between genotypes since all strains were generated and maintained 
on the same pure inbred background (C57BL/6J); experimental assessment of variance was not performed.
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The statistical significance of differences between experimental groups was determined using GraphPad Prism 
5 (GraphPad Software Inc., La Jolla, CA,) and the Student’s t-test (unpaired, two-tailed). P < 0.05 was considered 
statistically significant and indicated by *P < 0.05 and **P < 0.001. No pre-specified effect size was assumed, and 
in general 3–5 animals or replicates for each genotype or condition were used in experiments; this sample size 
was sufficient to demonstrate statistically significant differences in comparisons between two unpaired experi-
mental groups by unpaired t-test. The investigator was not blinded to genotypes or group allocations during any 
experiment.
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