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Abstract—In urgent decision making applications, ensemble
simulations are an important way to determine different outcome
scenarios based on currently available data. In this paper, we will
analyze the output of ensemble simulations by considering so-
called persistence diagrams, which are reduced representations
of the original data, motivated by the extraction of topological
features. Based on a recently published progressive algorithm for
the clustering of persistence diagrams, we determine the optimal
number of clusters, and therefore the number of significantly
different outcome scenarios, by the minimization of established
statistical score functions. Furthermore, we present a proof-of-
concept prototype implementation of the statistical selection of
the number of clusters and provide the results of an experimental
study, where this implementation has been applied to real-world
ensemble data sets.

Index Terms—urgent decision making, ensemble simulation,
topological clustering, statistical model selection

I. INTRODUCTION

To support urgent decision making in the situation of a
catastrophic event, ensemble simulations can be used to quan-
tify uncertainties and to distinguish different possible outcome
scenarios, which may require diverse steps to be taken by
a crisis manager. In practice, modern numerical simulations
are subject to a variety of input parameters, related to the
initial conditions of the system under study, as well as the
configuration of its environment. Given recent advances in
hardware computational power, engineers and scientists can
now densely sample the space of these input parameters,
in order to identify the most plausible crisis evolution. The
European project VESTEC [1] focuses on building a toolchain
combining interactive supercomputing, data analysis and visu-
alization for the purpose of urgent decision making. Through
the VESTEC system, a crisis manager would be able to run
an ensemble of numerical simulations and interactively explore
the resulting data in order to help the decision making process.
Three use cases are to be supported: mosquito-borne diseases,
wildfire monitoring, and space weather forecasting.

The identification of the possible scenarios can be ac-
complished by finding clusters in the simulation results. For
instance, for a time-varying wildfire simulation, the outputs of
all ensemble simulations for each time step could be clustered
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to obtain a time series of clusterings, which can then be further
analyzed. In that way, one can determine points in time at
which significantly different simulations arise in the ensemble
(e. g., there is only one fire vs. the fire has split up into multiple
parts), which is relevant for the decision maker, who can
compare the different clusters with the behavior of the fire
in reality to identify the most plausible crisis evolution.

Unfortunately, the output data sets of large-scale simula-
tion codes are often too big to all fit in memory, which
creates a need for reduced data representations. These can be
provided by topological data analysis [11], [38]. So-called
persistence diagrams have been used in many applications
before (combustion [7], [19], [26], fluid dynamics [8], [22],
material sciences [14], [20], [28], chemistry [6], [17], and
astrophysics [34], [36]) to obtain reduced data representations.
Recently, an efficient technique has been proposed for clus-
tering persistence diagrams instead of the original simulation
data [41]. With the application of urgent decision making in
mind, the algorithm has been designed based on the classical
k-means clustering algorithm to incorporate time constraints.
However, the number of clusters k is still a parameter of the
approach in [41].

In this work, we will investigate so-called information crite-
ria, which have been developed for statistical model selection
[9], [24], to determine the optimal number of clusters. We
will present a proof-of-concept prototype implementation for
the statistical selection of parameters in topological clustering
and perform an experimental study on real-life ensemble data
sets.

II. RELATED WORK

Existing techniques for ensemble visualization and analysis
typically construct, for each member of the ensemble, some
geometrical objects, such as level sets or streamlines, which
are used to cluster the original members of the ensemble and
to construct aggregated views. Several methods have been
proposed, such as spaghetti plots [10] for level-set variability
in weather data ensembles [31], [32], or box-plots for the
variability of contours [42] and curves in general [29].

Related to our work, clustering techniques have been used
to analyze the main trends in ensembles of streamlines
[15] and isocontours [16]. Favelier et al. [13] introduced an



Fig. 1. The persistence diagram (right insets) reduces a data set (top left, bottom left: terrain view) to a 2D point cloud where each off-diagonal point
represents a topological feature. In this diagram, the X and Y axes denote the birth and death of a topological feature, respectively. In these examples, points
which stand out from the diagonal represent large features (the two hills, (a) and (b)), while points near the diagonal correspond to noisy features in the data.

approach, relying on spectral clustering, to analyze critical
point variability in ensembles. Lacombe et al. [25] introduced
an approach to cluster ensemble members based on their
persistence diagrams. More relevant to our context of urgent
decision making, Vidal et al. [41] introduced a method for
the progressive clustering of persistence diagrams, supporting
computation time constraints. However, this approach, which
extends the seminal k-means algorithm [27], is subject to an
input parameter, the number of output clusters k, which is
often difficult to tune in practice.

III. BACKGROUND

This section presents the technical background of our work.

A. Topological Data Analysis

Topological Data Analysis is a recent set of techniques [11],
[38], which focus on structural data representations. We review
in the following the main ingredients for the computation of
topological signatures of data, for their comparison, and for
their clustering. This section contains definitions taken from
Vidal et al. [41], reproduced here for self-completeness.

a) Persistence diagrams: The input data is an ensemble
of n piecewise linear (PL) scalar fields f : M → R defined
on a PL d-manifold M, with d ≤ 3 in our applications. We
note f−1

−∞(w) = {p ∈ M | f(p) < w} the sub-level set of
f . When continuously increasing w, the topology of f−1

−∞(w)
can only change at specific locations, called the critical points
of f . Critical points are classified according to their index I :
0 for minima, 1 for 1-saddles, d− 1 for (d− 1)-saddles, and
d for maxima.

Each topological feature of f−1
−∞(w) (e. g., connected com-

ponents, independent cycles, voids) can be associated with
a unique pair of critical points (c, c′), corresponding to its
birth and death. Specifically, the Elder rule [11] states that
critical points can be arranged according to this observation
in a set of pairs, such that each critical point appears in only
one pair (c, c′) such that f(c) < f(c′) and Ic = Ic′ − 1.
Intuitively, this rule implies that if two topological features of
f−1
−∞(w) (e. g., two connected components) meet at a critical

point c′, the youngest feature (i. e., created last) dies, favoring
the oldest one (i. e., created first). Critical point pairs can be

visually represented by the persistence diagram, noted D(f),
which embeds each pair to a single point in the 2D plane at
coordinates

(
f(c), f(c′)

)
, which respectively correspond to the

birth and death of the associated topological feature (Figure 1).
The persistence of a pair, noted P(c, c′), is then given by its
height f(c′) − f(c). It describes the lifetime in the range of
the corresponding topological feature.

b) Wasserstein distance between persistence diagrams:
To cluster persistence diagrams, a first necessary ingredient
is the notion of distance between them. Given two diagrams
D(f) and D(g), a pointwise distance can be introduced in the
2D birth/death space between two points a = (xa, ya) ∈ D(f)
and b = (xb, yb) ∈ D(g) by

d(a, b) =
(
|xb − xa|2 + |yb − ya|2

)1/2
= ‖a− b‖2. (1)

By convention, d(a, b) is set to zero if both a and b exactly
lie on the diagonal (xa = ya and xb = yb). The Wasserstein
distance between D(f) and D(g) can then be introduced as

W
(
D(f),D(g)

)
= min

φ∈Φ

 ∑
a∈D(f)

d
(
a, φ(a)

)21/2

,

where Φ is the set of all possible assignments φ mapping
each point a ∈ D(f) to a point b ∈ D(g), or to its
projection onto the diagonal, (xa+ya

2 , xa+ya
2 ), which denotes

the removal of the corresponding feature from the assignment.
The Wasserstein distance can be computed by solving an op-
timal assignment problem, for which efficient approximation
algorithms exist [5], [23].

It can often be useful to geometrically lift the Wasserstein
metric by also taking into account the geometrical layout
of critical points [35]. Let (c, c′) be the critical point pair
corresponding to the point a ∈ D(f). Let pλa = λc′ +
(1 − λ)c ∈ Rd be their linear combination with coefficient
λ ∈ [0, 1] in M. Our experiments (section V) only deal
with extrema, and we set λ to 0 for minima and 1 for
maxima (to only consider the extremum’s location). Then,
the geometrically lifted pointwise distance d̂(a, b) is given as
d̂(a, b) =

√
(1− α)d(a, b)2 + α||pλa − pλb ||22.



The parameter α ∈ [0, 1] quantifies the importance given to
the geometry of critical points and it must be tuned on a per
application basis.

c) Fréchet mean of persistence diagrams: Once a dis-
tance metric is established between topological signatures, a
second ingredient is needed, namely the notion of barycenter,
in order to leverage typical clustering algorithms.

Let D be the space of persistence diagrams. The discrete
Wasserstein barycenter of a set {D(f1),D(f2), . . . ,D(fn)}
of persistence diagrams can be introduced as the Fréchet
mean of the set under the metric W . It is the diagram D∗
that minimizes its distance to all the diagrams of the set
(i. e., the minimizer of the so-called Fréchet energy), that is,
D∗ = arg minD∈D

∑n
i=1W

(
D,D(fi)

)2
. The computation of

Wasserstein barycenters involves a computationally demand-
ing optimization problem, for which the existence of at least
one locally optimum solution has been shown by Turner et
al. [40]. Efficient algorithms have been proposed to solve this
optimization problem [25], including the progressive approach
by Vidal et al. [41], which can return relevant approximations
of Wasserstein barycenters, given some user defined time
constraint tmax, which is relevant for our urgent decision
making context.

d) Topological clustering: Once barycenters between
topological signatures can be computed, traditional clustering
algorithms, such as the k-means [27], can be revisited to sup-
port topological data representations. Based on their efficient
and progressive approach for Wasserstein barycenters, Vidal et
al. [41] revisit the k-means algorithm as follows. The k-means
is an iterative algorithm, where each Clustering iteration is
composed itself of two sub-routines: (i) Assignment and (ii)
Update. Initially, k cluster centroids D∗j (j = 1, . . . , k) are
initialized to k diagrams D(fi) from the input set. Then, the
Assignment step consists of assigning each diagram D(fi) to
its closest centroid D∗j(i). This requires the computation of the
Wasserstein distances W , of every diagram D(fi) to all the
centroids D∗j . Next, the Update step consists of updating each
centroid’s location by placing it at the Wasserstein barycenter
of its assigned diagrams D(fi). The algorithm continues these
Clustering iterations until convergence, that is, until the as-
signments i 7→ j(i) between the diagrams and the k centroids
do not evolve anymore. Since Wasserstein barycenters can
be approximated under user-defined time constraints with
Vidal’s approach [41], the above algorithm also supports time
constraints (see [41] for further details). Of course, a larger
time constraint will, in general, result in a better clustering of
the input set of persistence diagrams.

B. Statistical scores

The previously described method assumes that the number
of clusters k is known a priori. If the number of clusters is not
known in advance, so-called information criteria can be used
to select a number of clusters a posteriori after the k-means
algorithm has been applied for several values of k.

In our application, we will use the Akaike Information
criterion (AIC, [2], [3]) and the Bayesian information criterion

(BIC, [33]), which are based on the minimization of a score
function of the form

IC(k) = 2L(k) + p(k), (2)

where L(k) is the value of the log-likelihood function of the
clustering result, when k clusters are detremined, and the term
p(k) penalizes the number of parameters differently for AIC
and BIC. The criteria can be interpreted as a way to balance
the goodness of fit (represented by the log-likelihood function)
and the number of parameters: on the one hand, the goodness
of fit is minimal if the number of clusters and the number of
data points coincide, but the number of parameters is high in
this situation. On the other hand, if the number of clusters is
minimal, then the goodness of fit is, generally, very large. The
minimum value of the information criterion will, consequently,
be somewhere inbetween.

Under the so-called identical spherical assumption (see
[30]), it can be shown (originally, for data from a Euclidean
space) that the log-likelihood term has the form

L =

k∑
j=1

nj log nj − n log n− nd

2
log(2π σ̂2)− d

2
(n− k),

(3)

where nj is the number of diagrams mapped to the centroid
D∗j , n is the total number of diagrams, d is the dimension
of D, and σ̂ is an estimation of the in-cluster variance, for
example,

σ̂2 =
1

d (n− k)

n∑
i=1

W (D(fi),D∗j(i))
2. (4)

Since the dimension of D cannot be easily determined, we
choose a value for d in our prototype implementation such
that the information criteria show the expected behavior (ap-
proximately convex, being monotonically decreasing for small
k and monotonically increasing for large k).

The penalty term p in (2) for the AIC is given by

pAIC(k) = 2 k d,

whereas for the BIC it is given by

pBIC(k,N) = k d log(N)

(cf. [12], Sect. 13.3), where the term k d encodes the number of
effective parameters of the statistical model, particularly, the d
coordinates of the k cluster centers. Note that for a comparison
of different clusterings of a fixed data set, pAIC and pBIC

do indeed only depend on k, since both the dimension d of
the underlying space as well as the number N of samples is
constant.

IV. PROTOTYPE IMPLEMENTATION

This section details the implementation of our prototype.



Fig. 2. Clusters automatically identified by our topological clustering approach (tmax: 10 seconds) on the Sea Surface Height data-set. Left to right, top to
bottom: pointwise mean of each cluster. Inset diagram: cluster centroid computed by the algorithm of Vidal et al. [41] (in the diagrams, the X and Y axes
denote the birth and death of the topological features, respectively). Barycenter extrema are scaled in the domain by persistence and colored by critical index
(spheres). In this example, the four clusters correspond to the four seasons.

Fig. 3. Clusters automatically identified by our topological clustering approach (tmax: 10 seconds) on the Isabel data-set. Left to right: pointwise mean of
each cluster. Inset diagram: cluster centroid computed by the interruptible algorithm of Vidal et al. [41] (in the diagrams, the X and Y axes denote the birth
and death of the topological features, respectively). Barycenter extrema are scaled in the domain by persistence and colored by critical index (spheres). In
this example, the three clusters correspond to the three hurricane configurations (from left to right: formation, drift and landfall).

A. Topological clustering

For each ensemble data set, given a user time constraint
tmax, we systematically run the progressive topological clus-
tering algorithm of Vidal et al. [41] for a range of k values
(typically, 1 to 10). For this, we used the companion C++
implementation provided by Vidal et al. [41], available in
the Topology ToolKit (TTK) [39]. Since the computation is
independent for distinct k values, this step can be trivially
parallelized (one k-clustering per process/thread).

B. Statistical scores

Once the clustering has been performed for different values
of k, the computation of the statistical scores (AIC and
BIC) is straight-forward if the Wasserstein distances of each
persistence diagram to its nearest centroid are extracted from
the clustering process. Inserting these distances in (4) results
in an estimation of the in-cluster variance, which can then be
used in (3) to compute the value of the log-likelihood function.
Combined with the computation of the penalty terms pAIC and
pBIC, one obtains a value of the statistical score for the given
clustering.

V. RESULTS

This section presents experimental results obtained with a
C++ implementation. The input persistence diagrams were
computed with the algorithm by Gueunet et al. [18], which
is available in the Topology ToolKit (TTK) [39].

Our experiments were performed on a variety of simulated
and acquired 2D and 3D ensembles, taken from Favelier
et al. [13], following the experimental setup of Vidal et
al. [41]. The Gaussians ensemble contains 100 2D syn-
thetic noisy members, with 3 patterns of Gaussians. The
Sea Surface Height ensemble (Figure 2) is composed of 48
observations taken in January, April, July and October 2012
(https://ecco.jpl.nasa.gov/products/all/). Here, the features of
interest are the center of eddies, which can be reliably esti-
mated with height extrema. Thus, both the diagrams involving
the minima and maxima are considered and independently
processed by our algorithms. Finally, the Isabel data set
(Figure 3) is a volume ensemble of 12 members, showing key
time steps (formation, drift and landfall) in the simulation of
the Isabel hurricane [21]. In this example, the eyewall of the
hurricane is typically characterized by high wind velocities,

https://ecco.jpl.nasa.gov/products/all/
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(a) Gaussians ensemble
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(b) Sea Surface Height ensemble
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(c) Isabel ensemble

Fig. 4. Values of the AIC (solid line) and BIC (dashed line) for k = 1, . . . , 10 for the three ensemble data sets for tmax = 1 s, 10 s, 100 s (left-to-right).
The values have been normalized to the value for k = 1 for each diagram. Therefore the Y axes are not labeled. The X axes denote the number of clusters.

well captured by velocity maxima. Thus we only consider di-
agrams involving maxima. Unless stated otherwise, all results
were obtained by considering the Wasserstein metric W based
on the original pointwise metric in (1) without geometrical
lifting (i. e., α = 0, subsection III-A).

In Figure 4, we have depicted the values of the statistical
score functions for these three data sets for three different
values of tmax, where the number of clusters is characterized
as the minimizer of the score functions. We have marked the
number of clusters, determined with the most accurate clus-
tering (that is, tmax = 100 s) with a vertical line. We observe
that for the less accurate clusterings (tmax = 1 s, 10 s), we
may obtain either a just slightly different number of clusters
(Gaussians ensemble) or a number nearly doubling the optimal
number of clusters (Sea Surface Height ensemble). This might
seem to be a drawback with regard to the application of urgent
decision making, where small values of tmax are desirable.
However, in practice, when comparing the identified clusters
with the crisis situation in reality to determine the most likely
outcome, it is very helpful if the number of clusters is much
lower than the number of ensemble simulations. This is still
the case both for slightly different numbers of clusters and
also for a twice as high number of clusters. Additionally, when
determining the number of clusters in time-varying ensemble
simulations, as described in the introduction, it is especially
interesting if the number of clusters changes at a specific time
step. We expect that these changes will also take place with
the less accurate numbers of clusters. Of course, this will
be analyzed in more detail in the future, when the presented

method will be applied to data sets from the pilot applications
used in the VESTEC project [1].

Figure 2 shows our results for the Sea Surface Height
ensemble, where our statistical analysis estimates an optimal
number of clusters of k = 4 and where the topological cluster-
ing [41] automatically identifies four clusters, corresponding
to the four seasons: winter, spring, summer, fall (left-to-right,
top-to-bottom). As shown in the insets, each season leads to
a visually distinct centroid diagram.

As discussed by Vidal et al. [41], geometrical lifting is
particularly important in applications where feature location
bears a meaning, such as the Isabel ensemble (Figure 3).
For this example, our statistical analysis estimates an optimal
number of clusters of k = 3 and the clustering algorithm
with geometrical lifting [41] automatically identifies the right
clusters, corresponding to the three states of the hurricane
(formation, drift and landfall).

VI. CONCLUSION

Motivated by urgent decision making applications, which
require the clustering of ensemble simulation outputs for
the determination of different crisis scenarios, we proposed
a statistical technique to determine the number of clusters
based on a recently published progressive clustering method
for so-called persistence diagrams. We presented a proof-of-
concept prototype implementation, which provided meaningful
results for real-world ensemble data sets. In our upcoming
research, we will incorporate the parameter selection within
the clustering approach directly based on this prototype. Us-
ing Paraview Catalyst [4], [37], our approach can easily be



integrated into any simulation code. It then allows to carry
out in-situ clustering operations on a statistically determined
number of clusters at chosen iterations of the simulation, while
respecting the time constraints of an urgent decision making
situation. Furthermore, in the context of the European project
VESTEC [1], we will apply our approach to other real-life use
cases (wildfire, mosquito-borne diseases, space weather) and,
especially, in an in-situ context to allow for an interaction of
the decision maker with the ensemble simulations.
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