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Abstract 16 

The relationship between litter quality and life strategy of soil microorganisms 17 

(copiotrophy vs oligotrophy) is important for understanding soil processes such as 18 

decomposition. Yet, whether and how this relationship may vary with the addition of 19 

substrates of contrasting quality (i.e., labile vs recalcitrant) has rarely been evaluated 20 

for both bacteria and fungi simultaneously. Using a 3-month incubation experiment 21 

with either maize leaves (enriched in soluble carbon (C)) or roots (enriched in 22 

structural C), we measured changes in litter quality in association with the 23 

composition of bacterial and fungal communities assessed via pyrosequencing after 24 

0, 15, 35 and 91 days. Overall, leaf addition led to a higher differentiation from the 25 

unamended soil for bacterial and early-decomposers fungal communities compared 26 

with root addition. This finding clearly indicates that the differentiation of microbial 27 

communities strongly depends on substrate quality for both bacterial and fungal 28 

communities. Further, the differentiation of bacterial communities after litter addition 29 

remained relatively similar throughout the incubation period. This suggests that many 30 

bacterial taxa are more adapted to complex C compounds than previously thought. 31 

Finally, our study underscores the limits of the copiotroph–oligotroph model at the 32 

phylum level and the necessity to work at a finer taxonomic resolution. 33 

 34 
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In recent decades, the traditional view regarding the shift from bacteria to fungi as 38 

decomposition progresses has been challenged by several studies (Rousk and Frey, 39 

2015; Purahong et al., 2016). At the same time, the ecological attributes of both 40 

bacterial and fungal decomposers have been increasingly used in studies to better 41 

assess changes in carbon- (C) and nutrient-use efficiencies during litter 42 

decomposition: early decomposers (often assimilated to copiotrophs) have high 43 

nutritional requirements and preferentially consume rich and soluble substrates, 44 

whereas late-decomposers (often assimilated to oligotrophs) exhibit low growth rates 45 

and consume poor and complex C compounds (Fanin & Bertrand, 2016; Ho et al., 46 

2017). Most substrates used to assess the validity of the copiotroph–oligotroph model 47 

are synthetic (e.g., glucose and simple carbohydrates) or relatively labile (e.g., leaf 48 

litter) (Goldfarb et al., 2011; Purahong et al., 2016; Tláskal et al., 2016). However, 49 

whether the addition of complex substrates naturally found across various 50 

ecosystems (as roots enriched in structural C compounds) has similar effects on the 51 

microorganisms’ assemblages (copiotrophs vs. oligotrophs) during microbial 52 

succession is still an open question. To assess the importance of substrate quality on 53 

the differentiation of both bacterial and fungal communities in terms of 54 

copiotrophs/oligotrophs successions, we performed a controlled microcosm 55 

incubation experiment with two litters varying strongly in their physicochemical 56 

characteristics (maize leaves and roots), an unamended control (without litter) and 57 

followed microbial community structure by pyrosequencing at four sampling dates (0, 58 

15, 35 and 91 days). We hypothesized that (i) microbial communities will undergo the 59 

copiotrophs/oligotrophs successions for both litters, and (ii) within these successions, 60 

copiotrophic and oligotrophic taxa will be more favored by the amendment with maize 61 

leaves and roots, respectively. 62 
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The soil used for the experiment was a silty loam agricultural soil collected at 63 

an experimental research station (Estrees-Mons, northern France). The soil 64 

contained 8.70 mg C g-1 soil and a mineral N content high enough to prevent N 65 

limitation for the decomposition of both litters (Sauvadet et al., 2016). Microcosms 66 

were built with soil sampled at a depth of 0-20 cm, with either no litter or 1 cm pieces 67 

of maize leaves or roots that were mixed into the soil at a depth of 0-5 cm and a rate 68 

of 4.8 g C kg-1 soil mimicking a common crop residue quantity (about 7 t ha-1) after 69 

the growing season (e.g. Hiel et al., 2018). The microcosms were incubated at 15°C 70 

for 3 months, after which they were destructively sampled at four successive dates: 71 

0, 15, 35 and 91 days later (three replicates by treatment and sampling date). Carbon 72 

mineralization was measured in all the incubated microcosms using a CO2 trap (1 M 73 

NaOH) titrated by continuous flow colorimetry using an autoanalyzer (TRAACS 2000, 74 

Bran and Luebbe). The litter was hand-sorted then washed in water and dried for one 75 

week at 37°C before soluble, cellulose, hemicellulose and the Klason lignin contents 76 

were measured (Sauvadet et al., 2016). The soil bacterial and fungal community 77 

structures were determined on soil alone (after leaves and roots were separated) at 78 

each sampling date by 454 pyrosequencing using 16S rRNA and 18S rRNA genes, 79 

respectively, as described by Terrat et al. (2012). Diversity analyses were performed 80 

on 5000 and 7500 reads for the 16S and 18S rRNA gene sequences of the bacterial 81 

and fungal communities, respectively, using the GnS-PIPE pipeline developed for the 82 

GenoSol platform (Institut National de la Recherche Agronomique [INRA], Dijon, 83 

France).  84 

The microbial communities were then analyzed using the Bioconductor suite 85 

package and R software (https://www.bioconductor.org). Dissimilarities between the 86 

bacterial and fungal communities of each treatment at each sampling date were first 87 
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calculated using the Poisson distance at the genus level (after exclusion of genera 88 

who were unique across all samples), and then depicted graphically with nonmetric 89 

dimensional scaling (NMDS). Significant differences in Poisson distances between 90 

amended and unamended treatments were tested by analysis of variance (ANOVA) 91 

followed by post hoc tests using Fisher’s least significant difference (LSD). In a 92 

second phase, we focused on the genera that were the most affected by litter 93 

amendments. To do so, the data were log-transformed (rlog function of the DESeq2 94 

R package) to obtain normality and minimize the differences between taxa with low 95 

abundances. We then performed a differential expression analysis (DESeq function 96 

of the DESeq2 R package) between soil communities that did not receive litter 97 

(unamended soil) and soil communities that did receive either leaves or roots at the 98 

corresponding sampling date. In this analysis, we considered only the genera that 99 

differed significantly in relative abundance from the community in unamended soils 100 

(P-value < 0.05 adjusted with Benjamini-Hochberg corrections), which could be 101 

distinguished as either enriched (greater abundance than that in the unamended 102 

community) or depleted (lower abundance than that in the unamended community). 103 

More details of the DESeq analyses were reported by Edwards et al. (2015).  104 

The leaf and root additions influenced the structure of both the bacterial and 105 

fungal communities at all sampling dates relatively to the unamended soils (Fig. 1a 106 

and 1b). Poisson distances between unamended and amended treatments were 107 

higher with leaves than roots addition for fungal communities at the earliest stage of 108 

decomposition (i.e., before 400 mg C kg-1 soil mineralized, Fig. 1d) and for bacterial 109 

communities at all sampling dates (Fig. 1c). These results highlight that the structure 110 

of bacterial and early-decomposers fungal communities depends directly on 111 

substrate quality (Table S1), and confirm previous reports demonstrating that many 112 
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bacterial and fungal taxa are strongly dependent upon C availability (van der Wal et 113 

al., 2013; Purahong et al., 2016; Ho et al., 2017). This further suggests that taxa 114 

feeding on recalcitrant C substrates are closer to communities living in unamended 115 

soils than opportunistic taxa feeding on freshly added labile C substrates. On the 116 

other hand, fungal community differentiation peak after 15 days of leaf 117 

decomposition, suggesting that these early-decomposers (presenting copiotrophic 118 

characteristics) could only develop when litter soluble content was high enough 119 

(Table S1). Interestingly, only fungal community presented such a peak; we could 120 

assume that bacterial differentiation occurred earlier (between 3 and 7 days in Tardy 121 

et al., 2015), yet our results support that fungi, and not only bacteria, takes an active 122 

part in early decomposition process. Further, the constant differentiation level of 123 

amended bacterial communities from their unamended counterpart supports the 124 

emerging idea that bacterial taxa can be better able to increase with the proportion of 125 

complex C compounds than previously thought (Rousk and Bååth, 2007; Rousk and 126 

Frey, 2015). However, as expected, high level of soluble C favor the differentiation of 127 

bacterial taxa which may also feed on products originating from fungal degradation 128 

(Purahong et al., 2016; Tláskal et al., 2016).  129 

When studying microbial community composition, we found that only 6 out of 130 

59 genera (e.g., Arthrobacter or Variovorax for bacterial community, Table S2) and 131 

11 out of 57 genera (e.g., Ascobulus or Heterobasidion for fungal community, Table 132 

S3) were impacted by both litter types (Fig. 2).The idea that many microbial genera 133 

depend upon substrate quality is reinforced by the low redundancy between microbial 134 

genera at different sampling dates (Fig. 2); only a few bacterial genera remained 135 

enriched at all sampling dates (e.g., Pseudomonas during both leaves and roots 136 

decomposition, Table S2) and no fungal genus was consistently enriched or depleted 137 
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over time (Table S3). These results highlight the strong specificity of microbial genera 138 

to both litter quality and decomposition stage, which is partly overlooked when 139 

focusing only at the phylum level. Indeed, the bacterial genera impacted during litter 140 

decomposition belonged mainly to the three same phyla (i.e., Proteobacteria, 141 

Bacteroidetes and Actinobacteria), which are often regarded as copiotrophic in the 142 

literature (Ho et al., 2017). However, most phyla as Proteobacteria, had both 143 

enriched (e.g., Variovorax) and depleted genera (e.g., Geobacter) after litter 144 

additions, and this regardless of litter quality or sampling date (Table S2). This clearly 145 

indicates that different taxa within a phylum may present contrasting metabolic 146 

status. This further underscores the limits of the copiotroph–oligotroph model at the 147 

phylum level and the necessity to work at a finer taxonomic resolution (Philippot et 148 

al., 2010; Purahong et al., 2016; Ho et al., 2017).  149 

We conclude that high quality substrate induces greater differentiation of early 150 

decomposers fungal communities and bacterial communities than low quality 151 

substrate. Further, both early- and late-decomposers showed a strong specificity to 152 

litter quality and decomposition stage at the genus level. Our results challenge the 153 

traditional concept of bacterial/fungal shift during decomposition and underline the 154 

necessity to identify more accurately life strategies of soil microbes at different 155 

taxonomic levels in order to improve our understanding of structure-function 156 

relationships and the role of microbial communities in ecosystem functions such as C 157 

mineralization and decomposition rates.  158 
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Figure captions 221 

Fig. 1. Microbial community structure during the experiment represented by NMDS 222 

plots (a, b) and Poisson distances from the unamended community (c, d) using 223 

bacterial (a, c) or fungal (b, d) data. All figures are based on the Poisson distance 224 

calculated at the genus level. Abscissa axis of Fig. 1c and 1d are expressed as the 225 

cumulated amount of C mineralized, presented in Table S1. Significant differences 226 

between all sampling dates and litters were tested by ANOVA followed by post hoc 227 

Fisher tests and are represented by different letters for each graph.  228 

Fig. 2. Phylum identification of the enriched and depleted genera with maize leaf or 229 

root addition relative to the unamended soils for bacteria (a) and fungi (b). 230 

Abundance changes are expressed as log2fold (i.e., log2[sample] - log2[unamended 231 

community]). Only the genera which exhibit significant differences with the 232 

unamended community are considered (P-values < 0.05). 233 
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