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структура.

Введение

В данной статье рассматриваются безградиентные методы выпуклой оптимизации, называемые также методами нулевого порядка [START_REF] Rosenbrock | An Automatic Method for Finding the Greatest or Least Value of a Function[END_REF][START_REF] Brent | Algorithms for Minimization Without Derivatives // Dover Books on Mathematics[END_REF][START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF]. Основной особенностью этих методов является предположение о доступности только значения целевой функции, но недоступности градиента или гессиана. Такая ситуация возникает, например, если значение функции вычисляется с помощью некоторой вспомогательной компьютерной программы и доработка этой программы для вычисления градиента стоит дороже, чем машинное время. Кроме того, в отличие от вычисления значения функции, вычисление градиента может быть вычислительно нестабильным, например, в глубинных нейронных сетях при использовании обратной прогонки (backpropagation) [START_REF] Rumelhart | Learning Representations by Back-Propagating errors[END_REF][START_REF] Schmidhuber | Deep Learning in Neural Networks: An Overview // Neural Networks[END_REF][START_REF] Goodfellow | Deep Learning[END_REF][START_REF] Николенко | Глубокое обучение. Погружение в мир нейронных[END_REF].

В [START_REF] Yu | Random Gradient-Free Minimization of Convex Functions // Université catholique de Louvain[END_REF][START_REF] Yu | Random Gradient-Free Minimization of Convex Functions // Found[END_REF] были предложены ускоренные методы нулевого порядка 2 (безградиентные методы) решения задач гладкой выпуклой безусловной оптимизации. В отличие от известных до [START_REF] Yu | Random Gradient-Free Minimization of Convex Functions // Université catholique de Louvain[END_REF][START_REF] Yu | Random Gradient-Free Minimization of Convex Functions // Found[END_REF] методов ускоренные методы обладают более высокой скоростью сходимости. В рассуждениях [START_REF] Yu | Random Gradient-Free Minimization of Convex Functions // Found[END_REF] существенным образом использовалось то, что был выбран именно евклидов проксимальный оператор (далее будем называть его проксструктурой, это выпуклая гладкая функция, порождающая расстояние, и 1-сильно выпуклая относительно какой-то нормы; строгое определение вводится в разделе 3).

Такой выбор прокс-структуры для задач безусловной оптимизации является вполне естественным (см., например, [START_REF] Гасников | Стохастические градиентные методы с неточным оракулом // Тр[END_REF]). Однако в ряде задач имеется дополнительная информация, которая, например, позволяет рассчитывать на разреженность решения (когда в решении большая часть компонент нулевые). В частности, во многих задачах анализа данных существенным оказывается небольшое число признаков (потому и решения соответствующих задач обучения оказываются разреженными). Кроме 

- 2𝛿 (𝑡 * ) 2 + 𝐿 2 = 0 ⇒ 𝑡 * = 2 √︂ 𝛿 𝐿 . Тогда (3) |𝛿 ∇ (𝑥, 𝑒, 𝑡 * )| 2 √ 𝐿𝛿 def = δ. Везде далее будем использовать параметр 𝑡 = 𝑡 * , поэтому можно писать 𝛿 ∇ (𝑥, 𝑒, 𝑡 * ) = 𝛿 ∇ (𝑥, 𝑒). Кроме того, для упрощения нотации будем использовать обозначение ̃︀ ∇𝑓 (𝑥)
вместо ̃︀ ∇ 𝛿, 𝑡 𝑓 (𝑥).

Ускоренный безградиентный метод

Введем дивергенцию Брэгмана 𝑉 𝑧 (𝑦), связанную с 𝑝-нормой:

𝑉 𝑧 (𝑦) def = 𝑑(𝑦) -𝑑(𝑧) -⟨∇𝑑(𝑧), 𝑦 -𝑧⟩,
где функция 𝑑(𝑥) является непрерывно дифференцируемой и сильно выпуклой с константой сильной выпуклости, равной единице (и называется прокс-функцией, или прокс-структурой, связанной с 𝑝-нормой). Например, для 𝑝 = 1 функцию 𝑑(𝑥) можно взять такой:

𝑑(𝑥) = 1 2(𝑎 -1) ||𝑥|| 2 𝑎 , где 𝑎 = 2 log 𝑛 2 log 𝑛-1 . Кроме того, пусть 𝑞 -такое число, что 1 𝑝 + 1 𝑞 = 1. Введем следующие объекты: Grad 𝑒 (𝑥) def = 𝑥 - 1 𝐿 ⟨ ̃︀ ∇𝑓 (𝑥) , 𝑒 ⟩ 𝑒, Mirr 𝑒 (𝑥, 𝑧, 𝛼) def = argmin 𝑦∈R 𝑛 {︁ 𝛼 ⟨ 𝑛 ⟨ ̃︀ ∇𝑓 (𝑥) , 𝑒 ⟩ 𝑒, 𝑦 -𝑧 ⟩ + 𝑉 𝑧 (𝑦) }︁ , где ⟨ ̃︀ ∇𝑓 (𝑥), 𝑒⟩ 𝑒 def = (⟨∇𝑓 (𝑥), 𝑒⟩ + 𝛿 ∇ (𝑥, 𝑒)) 𝑒.
Также обозначим (см. теорему 1 из [START_REF] Горбунов | О верхней оценке математического ожидания нормы равномерно распределенного на сфере вектора и явлении концентрации равномерной меры на[END_REF], формулировка приведена в Приложении) Выход: точка 𝑦 𝑁 .

(4) 𝐶 𝑛,𝑞 def = √ 3 min{2𝑞 -1,
1: 𝑦 0 ← 𝑥 0 , 𝑧 0 ← 𝑥 0 2: for 𝑘 = 0, . . . , 𝑁 -1

3:

𝛼 𝑘+1 ← 𝑘+2 4𝐿𝐶𝑛,𝑞 , 𝜏 𝑘 ← 1 2𝛼 𝑘+1 𝐿𝐶𝑛,𝑞 = 2 𝑘+2 4:
Генерируется 𝑒 𝑘+1 ∈ 𝑅𝑆 𝑛 2 (1), независимо от предыдущих итераций 5:

𝑥 𝑘+1 ← 𝜏 𝑘 𝑧 𝑘 + (1 -𝜏 𝑘 )𝑦 𝑘 6: 𝑦 𝑘+1 ← Grad 𝑒 𝑘+1 (𝑥 𝑘+1 ) 7: 𝑧 𝑘+1 ← Mirr 𝑒 𝑘+1 (𝑥 𝑘+1 , 𝑧 𝑘 , 𝛼 𝑘+1 )
8: end for Л е м м а 1. [START_REF] Bogolubsky | Learning Supervised PageRank with Gradient-Based and Gradient-Free Optimization Methods[END_REF] (формулировки приведены в Приложении), поэтому минимум достигается на втором 5 Если 𝑁 ∼ √︁ Θ𝐿𝐶𝑛,𝑞 𝜀 (оценивается порядок величины, числовые константы не учитываются), то

Если 𝜏 𝑘 = 1 2𝛼 𝑘+1 𝐿𝐶𝑛,𝑞 , то для всех 𝑢 ∈ R 𝑛 верны неравенства (5) 
𝛼 𝑘+1 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑧 𝑘 -𝑢⟩ 2𝛼 2 𝑘+1 𝐿𝐶 𝑛,𝑞 (𝑓 (𝑥 𝑘+1 ) -E 𝑒 𝑘+1 [𝑓 (𝑦 𝑘+1 )]) + 𝑉 𝑧 𝑘 (𝑢) -E 𝑒 𝑘+1 [𝑉 𝑧 𝑘+1 (𝑢)]+ + 7 4 𝛼 2 𝑘+1 𝐶 𝑛,𝑞 δ2 + √ 𝑛 δ𝛼 𝑘+1 ||𝑢 -𝑧 𝑘 || 𝑝 , 𝑞 2, 𝑛 8. Л е м м а 2. Для всех 𝑢 ∈ R 𝑛 выполнено (6) 2𝛼 2 𝑘+1 𝐿𝐶 𝑛,𝑞 E 𝑒 𝑘+1 [𝑓 (𝑦 𝑘+1 ) | 𝑒 1 , . . . , 𝑒 𝑘 ]- -(2𝛼 2 𝑘+1 𝐿𝐶 𝑛,𝑞 -𝛼 𝑘+1 )𝑓 (𝑦 𝑘 ) + E 𝑒 𝑘+1 [𝑉 𝑧 𝑘+1 (𝑢)] -𝑉 𝑧 𝑘 (𝑢)- -7 4 𝛼 2 𝑘+1 𝐶 𝑛,𝑞 δ2 - √ 𝑛 δ𝛼 𝑘+1 ||𝑢 -𝑧 𝑘 || 𝑝 𝛼 𝑘+1 𝑓 (𝑢), 𝑞 2, 𝑛 8. Т е о р е м а. Пусть 𝑓 (𝑥) -выпуклая дифференцируемая функция на R 𝑛 с константой Липшица для градиента, равной 𝐿, 𝑑(𝑥) -1-сильно выпуклая в p-норме функция на R 𝑛 , 𝑁 ∈ N. Тогда ACDF на выходе даст точку 𝑦 𝑁 , удовлетворяющую неравенству (7) E[𝑓 (𝑦 𝑁 )] -𝑓 (𝑥 * ) 16Θ𝐿𝐶𝑛,𝑞 𝑁 2 + 35𝑁 𝛿 4 + 16 √ 2Θ𝑛𝐿𝛿 𝑁 2 + 8𝑛𝑁 2 𝛿 𝐶𝑛,𝑞 , где Θ def = 𝑉 𝑥 0 (𝑥 * ), 𝑞 2 
𝛿 = 𝑂 (︂ min {︂ 𝜀 3 2 √ Θ𝐿𝐶𝑛,𝑞 , 𝐶 2 𝑛,𝑞 Θ𝐿 𝑛 , 𝜀 2 𝑛Θ𝐿 }︂)︂ = = 𝑂 (︂ min {︂ 𝜀 3 2 √ Θ𝐿𝐶𝑛,𝑞 , 𝜀 2 𝑛Θ𝐿 }︂)︂ . По определению (см. ( (8) 
)) 𝐶 𝑛,𝑞 = √ 3 min{2𝑞 -1, 32 ln 𝑛 -8}𝑛 2 𝑞 +1 , а в случае 𝑝 = 2, 𝑞 = 2 можно взять 𝐶 𝑛,𝑞 = 𝑛 2 , что видно из теоремы 1 в [17] и леммы B.10 из 4 
7(𝑁 +2)(2𝑁 +3)𝛿 6(𝑁 +1) ∼ 𝑁 𝛿 ∼ √︁ Θ𝐿𝐶𝑛,𝑞 𝜀 𝛿 ⇒ 𝛿 = 𝑂 (︂ 𝜀 3 2 √ Θ𝐿𝐶𝑛,𝑞 )︂ , 16 √ 2Θ𝑛𝐿𝛿 (𝑁 +1) 2 ∼ 𝜀 √ 𝑛𝛿 √ Θ𝐿𝐶𝑛,𝑞 ⇒ 𝛿 = 𝑂 (︁ Θ𝐿𝐶 2 𝑛,𝑞 𝑛 )︁ , 8𝑛𝑁 4 𝛿 𝐶𝑛,𝑞(𝑁 +1) 2 ∼ 𝑛𝑁 2 𝛿 𝐶𝑛,𝑞 ∼ 𝑛Θ𝐿𝛿 𝜀 ⇒ 𝛿 = 𝑂 (︁ 𝜀 2 𝑛Θ𝐿 )︁ . аргументе, т.е. если не учитывать еще и константы Θ и 𝐿, то 𝛿 = 𝑂 (︁ 𝜀 2 𝑛 )︁ и 𝑁 = 𝑂 (︂ √︁ Θ𝐿𝑛 2 𝜀 )︂ . Если же 𝑝 = 1, 𝑞 = ∞, то 𝐶 𝑛,𝑞 = 𝑛 √ 3 (32 ln 𝑛 -8) и 𝑁 = 𝑂 (︁√︁ Θ𝐿𝑛 ln 𝑛 𝜀 )︁ , 𝛿 = 𝑂 (︁ min {︁ 𝜀 3 2 √ Θ𝐿𝑛 ln 𝑛 , 𝜀 2 𝑛Θ𝐿 }︁)︁ .

Неускоренный безградиентный метод

Для сопоставления рассмотрим неускоренный метод

𝑥 𝑘+1 = argmin 𝑦∈R 𝑛 {𝛼⟨𝑛⟨ ̃︀ ∇𝑓 (𝑥 𝑘 ), 𝑒 𝑘+1 ⟩𝑒 𝑘+1 , 𝑦 -𝑥 𝑘 ⟩ + 𝑉 𝑥 𝑘 (𝑦)}.
Можно показать, что данный метод за 𝑁 итераций генерирует последовательность точек 𝑥 0 , 𝑥 1 , . . . , 𝑥 𝑁 , такую что

(9) E[𝑓 (x 𝑁 )] -𝑓 (𝑥 * ) 16Θ𝐿𝐶𝑛,𝑞 𝑛𝑁 + 8 √ 2𝑛Θ𝐿𝛿 𝑁 + 3𝑛𝛿 + 8𝑛 2 𝑁 𝛿 𝐶𝑛,𝑞 , где x𝑁 = 1 𝑁 ∑︀ 𝑁 -1 𝑘=0 𝑥 𝑘 . Оказывается, что нужно брать 𝛿 = 𝑂 (︁ 𝜀 2 𝑛
)︁ (как и в ускоренном случае), чтобы получить 𝜀-решение по функции. Данная статья продолжает цикл работ, открытый публикацией [13] (см. также [START_REF] Гасников | Эффективные численные методы поиска равновесий в больших транспортных[END_REF]). Далее планируется распространить приведенные в настоящей статье результаты на задачи стохастической оптимизации и распространить все эти результаты на случай сильно выпуклой функции.

Численные эксперименты

П Р И Л О Ж Е Н И Е

Д о к а з а т е л ь с т в о л е м м ы 1. Во-первых, (П.1) 

𝛼 𝑘+1 ⟨𝑛⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 𝑒 𝑘+1 , 𝑧 𝑘 -𝑢⟩ = = ⟨𝛼 𝑘+1 𝑛⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 𝑒 𝑘+1 , 𝑧 𝑘 -𝑧 𝑘+1 ⟩+ +⟨𝛼 𝑘+1 𝑛⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 𝑒 𝑘+1 , 𝑧 𝑘+1 -𝑢⟩ x x ⟨𝛼 𝑘+1 𝑛⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 𝑒 𝑘+1 , 𝑧 𝑘 -𝑧 𝑘+1 ⟩ + ⟨-∇𝑉 𝑧 𝑘 (𝑧 𝑘+1 ), 𝑧 𝑘+1 -𝑢⟩ y = y = ⟨𝛼 𝑘+1 𝑛⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 𝑒 𝑘+1 , 𝑧 𝑘 -𝑧 𝑘+1 ⟩ + 𝑉 𝑧 𝑘 (𝑢) -𝑉 𝑧 𝑘+1 (𝑢) -𝑉 𝑧 𝑘 (𝑧 𝑘+1 ) z z (︁ ⟨𝛼 𝑘+1 𝑛⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 𝑒 𝑘+1 , 𝑧 𝑘 -𝑧 𝑘+1 ⟩ -
⟨𝛼 𝑘+1 𝑛⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 𝑒 𝑘+1 , 𝑧 𝑘 -𝑧 𝑘+1 ⟩ -1 2 ||𝑧 𝑘 -𝑧 𝑘+1 || 2 𝑝 𝛼 2 𝑘+1 𝑛 2 2 |⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩| 2 ||𝑒|| 2 𝑞 = = 𝛼 2 𝑘+1 𝑛 2 2 (⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ + 𝛿 ∇ (𝑥 𝑘+1 , 𝑒 𝑘+1 )) 2 ||𝑒|| 2 𝑞 x x 𝛼 2 𝑘+1 𝑛 2 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 2 ||𝑒 𝑘+1 || 2 𝑞 + 𝛼 2 𝑘+1 𝑛 2 𝛿 2 ∇ (𝑥 𝑘+1 , 𝑒 𝑘+1 )||𝑒 𝑘+1 || 2 𝑞 y y 𝛼 2 𝑘+1 𝑛 2 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 2 ||𝑒 𝑘+1 || 2 𝑞 + 𝛼 2 𝑘+1 𝑛 2 δ2 ||𝑒 𝑘+1 || 2 𝑞 , где x следует из неравенства (𝑎 + 𝑏) 2 2𝑎 2 + 2𝑏
𝛼 𝑘+1 ⟨𝑛⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 𝑒 𝑘+1 , 𝑧 𝑘 -𝑢⟩ 𝛼 2 𝑘+1 𝑛 2 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 2 ||𝑒 𝑘+1 || 2 𝑞 + 𝛼 2 𝑘+1 𝑛 2 δ2 ||𝑒 𝑘+1 || 2 𝑞 + +𝑉 𝑧 𝑘 (𝑢) -𝑉 𝑧 𝑘+1 (𝑢), что можно записать в виде (П.4) 𝛼 𝑘+1 ⟨𝑛⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 𝑒 𝑘+1 , 𝑧 𝑘 -𝑢⟩ 𝛼 2 𝑘+1 𝑛 2 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 2 ||𝑒 𝑘+1 || 2 𝑞 + 𝛼 2 𝑘+1 𝑛 2 δ2 ||𝑒 𝑘+1 || 2 𝑞 + +𝑉 𝑧 𝑘 (𝑢) -𝑉 𝑧 𝑘+1 (𝑢) + 𝛼 𝑘+1 𝑛⟨𝛿 ∇ (𝑥 𝑘+1 , 𝑒 𝑘+1 )𝑒 𝑘+1 , 𝑢 -𝑧 𝑘 ⟩ 𝛼 2 𝑘+1 𝑛 2 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 2 ||𝑒 𝑘+1 || 2 𝑞 + 𝑉 𝑧 𝑘 (𝑢) -𝑉 𝑧 𝑘+1 (𝑢)+ +𝛼 2 𝑘+1 𝑛 2 δ2 ||𝑒 𝑘+1 || 2 𝑞 + 𝛼 𝑘+1 𝑛|⟨𝛿 ∇ (𝑥 𝑘+1 , 𝑒 𝑘+1 )𝑒 𝑘+1 , 𝑢 -𝑧 𝑘 ⟩|.
В силу теоремы 1 из [START_REF] Горбунов | О верхней оценке математического ожидания нормы равномерно распределенного на сфере вектора и явлении концентрации равномерной меры на[END_REF] и того что 𝐶 𝑛,𝑞 равно √ 3 min{2𝑞-1, 32 ln 𝑛-8}𝑛 2 𝑞 +1 , получаем:

(П.5) 

E 𝑒 𝑘+1 [𝛼 2 𝑘+1 𝑛 2 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 2 ||𝑒 𝑘+1 || 2 𝑞 ] 𝛼 2 𝑘+1 𝐶𝑛,𝑞 𝑛 ||∇𝑓 (𝑥 𝑘+1 )|| 2 2 , E 𝑒 𝑘+1 [𝛼 2 𝑘+1 𝑛 2 δ2 ||𝑒 𝑘+1 || 2 𝑞 ] 3 4 𝛼 2 𝑘+1 𝐶 𝑛,𝑞 δ2 , E 𝑒 𝑘+1 [𝛼 𝑘+1 𝑛|⟨𝛿 ∇ (𝑥 𝑘+1 , 𝑒 𝑘+1 )𝑒 𝑘+1 , 𝑢 -𝑧 𝑘 ⟩|] = = E 𝑒 𝑘+1 [𝛼 𝑘+1 𝑛|𝛿 ∇ (𝑥 𝑘+1 , 𝑒 𝑘+1 )| • |⟨𝑒 𝑘+1 , 𝑢 -𝑧 𝑘 ⟩|] x x 𝛼 𝑘+1 𝑛 δE 𝑒 𝑘+1 [|⟨𝑒 𝑘+1 , 𝑢 -𝑧 𝑘 ⟩|] 𝛼 𝑘+1 𝑛 δ√︀ E 𝑒 𝑘+1 [|⟨𝑒 𝑘+1 , 𝑢 -𝑧 𝑘 ⟩| 2 ] y y 𝛼 𝑘+1 𝑛 δ√︁ ||𝑢-𝑧 𝑘 || 2 2 𝑛 = √ 𝑛 δ𝛼 𝑘+1 ||𝑢 -𝑧 𝑘 || 2 z √ 𝑛 δ𝛼 𝑘+1 ||𝑢 -𝑧 𝑘 || 𝑝 , где x следует из |𝛿 ∇ (𝑥 𝑘+1 , 𝑒 𝑘+1 )| δ,
𝛼 𝑘+1 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑧 𝑘 -𝑢⟩ 𝛼 2 𝑘+1 𝐶𝑛,𝑞 𝑛 ||∇𝑓 (𝑥 𝑘+1 )|| 2 2 + 𝑉 𝑧 𝑘 (𝑢) -E 𝑒 𝑘+1 [𝑉 𝑧 𝑘+1 (𝑢)]+ + 3 4 𝛼 2 𝑘+1 𝐶 𝑛,𝑞 δ2 + √ 𝑛 δ𝛼 𝑘+1 ||𝑢 -𝑧 𝑘 || 𝑝 .
Покажем теперь, что

(П.7) ||∇𝑓 (𝑥 𝑘+1 )|| 2 2 2𝑛𝐿(𝑓 (𝑥 𝑘+1 ) -E 𝑒 𝑘+1 [𝑓 (𝑦 𝑘+1 )]) + 𝑛 δ2 . 7 Пусть 𝑔 𝑥 (𝑝) def = ln ||𝑥|| 𝑝 = ln ( ∑︀ 𝑛 𝑘=1 |𝑥 𝑘 | 𝑝 ) 1 𝑝 = 1 𝑝 ln ( ∑︀ 𝑛 𝑘=1 |𝑥 𝑘 | 𝑝 ). Тогда 𝑑𝑔 𝑥 (𝑝) 𝑑𝑝 = - 1 𝑝 2 ln (︃ 𝑛 ∑︁ 𝑘=1 |𝑥 𝑘 | 𝑝 )︃ + 1 𝑝 • 𝑛 ∑︀ 𝑘=1 ln(|𝑥 𝑘 |) • |𝑥 𝑘 | 𝑝 𝑛 ∑︀ 𝑘=1 |𝑥 𝑘 | 𝑝 .
Так как ln 𝑦 -вогнутая по 𝑦 функция, то по неравенству Йенсена получаем, что

𝑑𝑔 𝑥 (𝑝) 𝑑𝑝 1 𝑝 ln (︃ 𝑛 ∑︁ 𝑘=1 |𝑥 𝑘 | 𝑝 )︃ -1 𝑝 + 1 𝑝 ln ⎛ ⎜ ⎜ ⎝ 𝑛 ∑︁ 𝑘=1 |𝑥 𝑘 | • |𝑥 𝑘 | 𝑝 𝑛 ∑︀ 𝑘=1 |𝑥 𝑘 | 𝑝 ⎞ ⎟ ⎟ ⎠ = 1 𝑝 ln ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑛 ∑︀ 𝑘=1 |𝑥 𝑘 | 𝑝+1 (︂ 𝑛 ∑︀ 𝑘=1 |𝑥 𝑘 | 𝑝 )︂ 𝑝+1 𝑝 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 1 𝑝 ln ⎛ ⎜ ⎜ ⎝ 𝑛 ∑︀ 𝑘=1 |𝑥 𝑘 | 𝑝+1 𝑛 ∑︀ 𝑘=1 (|𝑥 𝑘 | 𝑝 ) 𝑝+1 𝑝 ⎞ ⎟ ⎟ ⎠ = 0, т.е. функция 𝑔 𝑥 (𝑝) -невозрастающая функция на [1, +∞).
Во-первых, для всех 𝑥, 𝑦 ∈ R в силу ( 2)

𝑓 (𝑦) -𝑓 (𝑥) = 1 ∫︀ 0 ⟨∇𝑓 (𝑥 + 𝜏 (𝑦 -𝑥)), 𝑦 -𝑥⟩𝑑𝜏 = = ⟨∇𝑓 (𝑥), 𝑦 -𝑥⟩ + 1 ∫︀ 0 ⟨∇𝑓 (𝑥 + 𝜏 (𝑦 -𝑥)) -∇𝑓 (𝑥), 𝑦 -𝑥⟩𝑑𝜏 ⟨∇𝑓 (𝑥), 𝑦 -𝑥⟩ + 1 ∫︀ 0 ||∇𝑓 (𝑥 + 𝜏 (𝑦 -𝑥)) -∇𝑓 (𝑥)|| 2 • ||𝑦 -𝑥|| 2 𝑑𝜏 ⟨∇𝑓 (𝑥), 𝑦 -𝑥⟩ + 1 ∫︀ 0 𝜏 𝐿||𝑦 -𝑥|| 2 • ||𝑦 -𝑥|| 2 𝑑𝜏 = = ⟨∇𝑓 (𝑥), 𝑦 -𝑥⟩ + 𝐿 2 ||𝑦 -𝑥|| 2 2 , т.е. -⟨∇𝑓 (𝑥), 𝑦 -𝑥⟩ - 𝐿 2 ||𝑦 -𝑥|| 2 2 𝑓 (𝑥) -𝑓 (𝑦). Беря в последнем неравенстве 𝑥 = 𝑥 𝑘+1 , 𝑦 = Grad 𝑒 𝑘+1 (𝑥 𝑘+1 ) = 𝑥 𝑘+1 - 1 𝐿 ⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 𝑒 𝑘+1 , получим, что 𝑓 (𝑥 𝑘+1 ) -𝑓 (𝑦 𝑘+1 ) 1 𝐿 ⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ • ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩- -1 2𝐿 ⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 2 • ||𝑒 𝑘+1 || 2 2 = = 1 𝐿 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 2 + 1 𝐿 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩𝛿 ∇ (𝑥 𝑘+1 , 𝑒 𝑘+1 )- -1 2𝐿 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 2 -1 𝐿 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩𝛿 ∇ (𝑥 𝑘+1 , 𝑒 𝑘+1 )- -1 2𝐿 𝛿 2 ∇ (𝑥 𝑘+1 , 𝑒 𝑘+1 ) = 1 2𝐿 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 2 -1 2𝐿 𝛿 2 ∇ (𝑥 𝑘+1 , 𝑒 𝑘+1 ), откуда получаем неравенство ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 2 2𝐿(𝑓 (𝑥 𝑘+1 ) -𝑓 (𝑦 𝑘+1 )) + 𝛿 2 ∇ (𝑥 𝑘+1 , 𝑒 𝑘+1 ) 2𝐿(𝑓 (𝑥 𝑘+1 ) -𝑓 (𝑦 𝑘+1 )) + δ2 , так как ∀𝑥, 𝑒 ∈ R 𝑛 ˓→ |𝛿 ∇ (𝑥, 𝑒)| δ. Возьмем от этого неравенства условное математическое ожидание E 𝑒 𝑘+1 [ • ]
, используя лемму B.10 из [START_REF] Bogolubsky | Learning Supervised PageRank with Gradient-Based and Gradient-Free Optimization Methods[END_REF], и получим (П.7).

Наконец, из (П.6) и (П.7) получим, что

𝛼 𝑘+1 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑧 𝑘 -𝑢⟩ 2𝛼 2 𝑘+1 𝐿𝐶 𝑛,𝑞 (𝑓 (𝑥 𝑘+1 ) -E 𝑒 𝑘+1 [𝑓 (𝑦 𝑘+1 )]) + 𝑉 𝑧 𝑘 (𝑢) -E 𝑒 𝑘+1 [𝑉 𝑧 𝑘+1 (𝑢)]+ + 7 4 𝛼 2 𝑘+1 𝐶 𝑛,𝑞 δ2 + √ 𝑛 δ𝛼 𝑘+1 ||𝑢 -𝑧 𝑘 || 𝑝 .
Лемма 1 доказана.

Д о к а з а т е л ь с т в о л е м м ы 2. Запишем цепочку неравенств:

𝛼 𝑘+1 (𝑓 (𝑥 𝑘+1 ) -𝑓 (𝑢)) 𝛼 𝑘+1 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑥 𝑘+1 -𝑢⟩ = = 𝛼 𝑘+1 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑥 𝑘+1 -𝑧 𝑘 ⟩ + 𝛼 𝑘+1 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑧 𝑘 -𝑢⟩ x = x = (1-𝜏 𝑘 )𝛼 𝑘+1 𝜏 𝑘 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑦 𝑘 -𝑥 𝑘+1 ⟩ + 𝛼 𝑘+1 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑧 𝑘 -𝑢⟩ y y (1-𝜏 𝑘 )𝛼 𝑘+1 𝜏 𝑘 (𝑓 (𝑦 𝑘 ) -𝑓 (𝑥 𝑘+1 )) + 𝛼 𝑘+1 ⟨∇𝑓 (𝑥 𝑘+1 ), 𝑧 𝑘 -𝑢⟩ z z (1-𝜏 𝑘 )𝛼 𝑘+1 𝜏 𝑘 (𝑓 (𝑦 𝑘 ) -𝑓 (𝑥 𝑘+1 ))+ +2𝛼 2 𝑘+1 𝐿𝐶 𝑛,𝑞 • (𝑓 (𝑥 𝑘+1 ) -E 𝑒 𝑘+1 [𝑓 (𝑦 𝑘+1 ) | 𝑒 1 , 𝑒 2 , . . . , 𝑒 𝑘 ])+ +𝑉 𝑧 𝑘 (𝑢) -E 𝑒 𝑘+1 [𝑉 𝑧 𝑘+1 (𝑢) | 𝑒 1 , 𝑒 2 , . . . , 𝑒 𝑘 ]+ + 7 4 𝛼 2 𝑘+1 𝐶 𝑛,𝑞 δ2 + √ 𝑛 δ𝛼 𝑘+1 ||𝑢 -𝑧 𝑘 || 𝑝 { = { = (2𝛼 2 𝑘+1 𝐿𝐶 𝑛,𝑞 -𝛼 𝑘+1 )𝑓 (𝑦 𝑘 ) -2𝛼 2 𝑘+1 𝐿𝐶 𝑛,𝑞 E 𝑒 𝑘+1 [𝑓 (𝑦 𝑘+1 ) | 𝑒 1 , 𝑒 2 , . . . , 𝑒 𝑘 ]+ +𝛼 𝑘+1 𝑓 (𝑥 𝑘+1 ) + 𝑉 𝑧 𝑘 (𝑢) -E 𝑒 𝑘+1 [𝑉 𝑧 𝑘+1 (𝑢) | 𝑒 1 , 𝑒 2 , . . . , 𝑒 𝑘 ]+ + 7 4 𝛼 2 𝑘+1 𝐶 𝑛,𝑞 δ2 + √ 𝑛 δ𝛼 𝑘+1 ||𝑢 -𝑧 𝑘 || 𝑝 . Действительно, x выполнено, так как 𝑥 𝑘+1 def = 𝜏 𝑘 𝑧 𝑘 + (1 -𝜏 𝑘 )𝑦 𝑘 ⇔ 𝜏 𝑘 (𝑥 𝑘+1 -𝑧 𝑘 ) = (1 - 𝜏 𝑘 )(𝑦 𝑘 -𝑥 𝑘+1 ), y следует из выпуклости 𝑓 (•) и неравенства 1 -𝜏 𝑘 0, z справедливо в силу леммы 1 и в { используется равенство 𝜏 𝑘 = 1 2𝛼
𝑘+1 𝐿𝐶𝑛,𝑞 . Лемма 2 доказана. Д о к а з а т е л ь с т в о т е о р е м ы. Заметим, что в силу выбора 𝛼 𝑘 = 𝑘+1 4𝐿𝐶𝑛,𝑝 выполняется равенство

(П.8) 2𝛼 2 𝑘 𝐿𝐶 𝑛,𝑞 = 2𝛼 2 𝑘+1 𝐿𝐶 𝑛,𝑞 -𝛼 𝑘+1 + 1 8𝐿𝐶𝑛,𝑞 .
Действительно, 

2𝛼 2 𝑘 𝐿𝐶 𝑛,𝑞 = (𝑘+1) 2 8𝐿𝐶𝑛,𝑞 , 2𝛼 2 𝑘+1 𝐿𝐶 𝑛,𝑞 -𝛼 𝑘+1 + 1 8𝐿𝐶𝑛,𝑞 = (𝑘+2) 2 8𝐿𝐶𝑛,𝑞 -𝑘+2 4𝐿𝐶𝑛,𝑞 + 1 8𝐿𝐶𝑛,𝑞 = = (𝑘+1) 2 +2(𝑘+1)+1-2(𝑘+2)+1 8𝐿𝐶𝑛,𝑞 = (𝑘+1) 2 8𝐿𝐶𝑛,𝑞 = 2𝛼
0 (𝑁 +1) 2 8𝐿𝐶𝑛,𝑞 (E[𝑓 (𝑦 𝑁 )] -𝑓 (𝑥 * )) Θ -E[𝑉 𝑧 𝑁 (𝑥 * )] + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 -1 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 𝑛 δ 𝑁 -1 ∑︀ 𝑘=0 𝛼 𝑘+1 E[𝑅 𝑘 ],
откуда следует еще одно полезное неравенство:

(П.12) E[𝑉 𝑧 𝑁 (𝑥 * )] Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 -1 ∑︁ 𝑘=0 𝛼 2 𝑘+1 + √ 𝑛 δ 𝑁 -1 ∑︁ 𝑘=0 𝛼 𝑘+1 E[𝑅 𝑘 ].
Докажем индукцией по 𝑁 неравенство (П.13)

Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 -1 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 𝑛 δ 𝑁 -1 ∑︀ 𝑘=0 𝛼 𝑘+1 E[𝑅 𝑘 ] (︃√︃ Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 -1 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 + √ 2𝑛 𝑁 2 δ 4𝐿𝐶𝑛,𝑞 )︃ 2 .
Для 𝑁 = 1 неравенство (П.13) выполнено, так как

Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝛼 2 1 + √ 𝑛 δ𝛼 1 E[𝑅 0 ] ⏟ ⏞ 𝑅 0 x x Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝛼 2 1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 (︁√︁ Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝛼 2 1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 + √ 2𝑛 δ 4𝐿𝐶𝑛,𝑞 )︁ 2 , где x следует из неравенства 𝑅 0 √︀ 2𝑉 𝑧 0 (𝑥 * ) = √ 2Θ (𝑉 𝑥 (𝑦) 1 2 ||𝑥 -𝑦|| 2 𝑝 в силу сильной выпуклости прокс-функции 𝑑(𝑥)) и равенства 𝛼 1 def = 2 4𝐿𝐶𝑛,𝑞 = 1
2𝐿𝐶𝑛,𝑞 . Таким образом, база индукции доказана. Докажем теперь шаг индукции: предположим, что (П.13) выполнено для некоторого натурального 𝑁 и докажем, что тогда оно выполнено и для 𝑁 + 1. Во-первых, из предположения индукции и (П.12) следует, что

1 2 (E[𝑅 𝑁 ]) 2 1 2 E[𝑅 2 𝑁 ] E[𝑉 𝑧 𝑁 (𝑥 * )] (П.12) (П.12) Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 -1 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 𝑛 δ 𝑁 -1 ∑︀ 𝑘=0 𝛼 𝑘+1 E[𝑅 𝑘 ] (П.13) (П.13) (︃√︃ Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 -1 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 + √ 2𝑛 𝑁 2 δ 4𝐿𝐶𝑛,𝑞 )︃ 2 , откуда следует, что (П.14) E[𝑅 𝑁 ] √ 2 ⎛ ⎝ ⎯ ⎸ ⎸ ⎷ Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 -1 ∑︁ 𝑘=0 𝛼 2 𝑘+1 + √ 2Θ𝑛 δ 2𝐿𝐶 𝑛,𝑞 + √ 2𝑛 𝑁 2 δ 4𝐿𝐶 𝑛,𝑞 ⎞ ⎠ . Тогда получаем оценку Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 𝑛 δ 𝑁 ∑︀ 𝑘=0 𝛼 𝑘+1 E[𝑅 𝑘 ] (︃√︃ Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 -1 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 + √ 2𝑛 𝑁 2 δ 4𝐿𝐶𝑛,𝑞 )︃ 2 + + 7 4 𝐶 𝑛,𝑞 δ𝛼 2 𝑁 +1 + √ 𝑛 δ𝛼 𝑁 +1 E[𝑅 𝑁 ] (П.14) (П.14) Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 + +2 √ 2𝑛 𝑁 2 δ 4𝐿𝐶𝑛,𝑞 √︃ Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 -1 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 + (︁ √ 2𝑛 𝑁 2 δ 4𝐿𝐶𝑛,𝑞 )︁ 2 + + √ 2𝑛 δ𝛼 𝑁 +1 (︃√︃ Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 -1 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 + √ 2𝑛 𝑁 2 δ 4𝐿𝐶𝑛,𝑞 )︃ x x Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 + +2 √ 2𝑛 (𝑁 +1) 2 δ 4𝐿𝐶𝑛,𝑞 √︃ Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 + (︁ √ 2𝑛 (𝑁 +1) 2 δ 4𝐿𝐶𝑛,𝑞 )︁ 2 = = (︃√︃ Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 + √ 2𝑛 (𝑁 +1) 2 δ 4𝐿𝐶𝑛,𝑞 )︃ 2 , где x следует из неравенств 2𝑁 2 4𝐿𝐶𝑛,𝑞 + 𝛼 𝑁 +1 = 2𝑁 2 4𝐿𝐶𝑛,𝑞 + 𝑁 +2 4𝐿𝐶𝑛,𝑞 2(𝑁 +1) 2 4𝐿𝐶𝑛,𝑞 , (︁ √ 2𝑛 𝑁 2 δ 4𝐿𝐶𝑛,𝑞 )︁ 2 + √ 2𝑛 δ𝛼 𝑁 +1 • √ 2𝑛 𝑁 2 δ 4𝐿𝐶𝑛,𝑞 = = (︁ √ 2𝑛 δ 4𝐿𝐶𝑛,𝑞 )︁ 2 (𝑁 4 + (𝑁 + 2)𝑁 2 ) (︁ √ 2𝑛 (𝑁 +1) 2 δ 4𝐿𝐶𝑛,𝑞 )︁ 2 , √︃ Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 -1 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 √︃ Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 .
Итак, неравенство (П.13) доказано.

Из (П.11), (П.13) и 𝑉 𝑧 𝑁 (𝑥 * ) 0 получаем неравенство (П.15) 

0 (𝑁 +1) 2 8𝐿𝐶𝑛,𝑞 (E[𝑓 (𝑦 𝑁 )] -𝑓 (𝑥 * )) (︃√︃ Θ + 7 4 𝐶 𝑛,𝑞 δ2 𝑁 -1 ∑︀ 𝑘=0 𝛼 2 𝑘+1 + √ 2Θ𝑛 δ 2𝐿𝐶𝑛,𝑞 + √ 2𝑛 𝑁 2 δ 4𝐿𝐶𝑛,𝑞 )︃ 2 x x 2Θ + 7 2 𝐶 𝑛,𝑞 δ2 

1

  Ключевые слова: ускоренные методы оптимизации, выпуклая оптимизация, безградиентные методы, неточный оракул, неевклидов проксимальный оператор, прокс-Исследование в разделе 3 выполнено за счет Российского научного фонда (проект № 17-11-01027). В остальных разделах работа А.В. Гасникова финансировалась в рамках Государственной поддержки ведущих университетов Российской Федерации "5-100" и была поддержана Российским фондом фундаментальных исследований (проект № 18-31-20005 мол-а-вед), работа Э.А. Горбунова была поддержана грантом Президента РФ МД-1320.2018.1, работа П.Е. Двуреченского и Е.А. Воронцовой была поддержана Российским фондом фундаментальных исследований (проект № 18-29-03071 мк).

9 :

 9 return 𝑦 𝑁 Схема доказательства оценки скорости сходимости ACDF близка к схеме доказательства теоремы в [13] и опирается на две следующие леммы, в которых δ определена в (3).

  

  Пусть про шум известно, что ∀ 𝑥 ∈ R 𝑛 ˓→ |𝛿(𝑥)| 𝛿. Оценим |𝛿 ∇ (𝑥, 𝑒, 𝑡)|:

	2 Здесь и далее термин "ускоренный" для безградиентных методов означает точно то же самое, что и для методов первого порядка (градиентных), см., в частности, описание основополагающего и очень популярного в последние годы ускоренного (быстрого, моментного) градиентного метода два условия: 1) нет возможности считать градиент, есть только возможность счи-тать зашумленное значение целевой функции (см., например, [12]); 2) при выборе параметрической модели часто сложно сразу правильно угадать параметрическое представление и часть параметров оказываются малозначимыми (лишними), что и обеспечивает разреженность. Кроме того, тот же эффект наблюдается, если выбирать точку старта так, чтобы разность между точкой старта и решением была разреженным вектором. Наконец, даже если вдруг это не выполняется, полученные прокс-структурой будет работать не хуже, чем в евклидовом случае. В [13] для решения задачи (1) вместо обычного градиента использовалась его стохастическая аппроксимация, построенная на базе производной по случайно выбранному направлению [15] где 𝑒 -случайный вектор, равномерно распределенный на 𝑆 𝑛 2 (1) -единичной сфере в 2-норме в пространстве R 𝑛 (𝑒 ∈ 𝑅𝑆 𝑛 2 (1) -под этой записью будем понимать, что случайный вектор 𝑒 имеет равномерное распределение на 𝑛-мерной единичной евклидовой сфере с центром в нуле), а угловые скобки ⟨•, •⟩ обозначают стандартное скалярное произведение векторов). В отличие от [13], будем использовать не ⟨∇𝑓 (𝑥), 𝑒⟩ 𝑒, а приближенный аналог 𝑓 (𝑥 + 𝑡𝑒) -𝑓 (𝑥) 𝑡 𝑒, 𝑡 > 0. точке, но с некоторым шумом 𝛿(𝑥), т.е. от оракула получаем значения f (𝑥) = 𝑓 (𝑥) + 𝛿(𝑥), поэтому на практике будем вынуждены использовать f (𝑥 + 𝑡𝑒) -f (𝑥) 𝑡 𝑒 вместо ⟨∇𝑓 (𝑥), 𝑒⟩ 𝑒. Итак в силу сделанных предположений теперь работаем не с истинной производ-ной по направлению, а с ее приближенным аналогом 4 ⟨ ̃︀ ∇ 𝛿, 𝑡 𝑓 (𝑥), 𝑒⟩ 𝑒 def = (⟨∇𝑓 (𝑥), 𝑒⟩ + 𝛿 ∇ (𝑥, 𝑡, 𝑒)) 𝑒, где 𝛿 ∇ (𝑥, 𝑡, 𝑒) -ошибка приближения значения ⟨∇𝑓 (𝑥), 𝑒⟩, связанная с вычисли-тельной ошибкой (значения функции известны с некоторым шумом) и с аппрокси-мационной ошибкой метода приближения, т.е. 𝛿 ∇ (𝑥, 𝑡, 𝑒) = 𝛿(𝑥 + 𝑡𝑒) -𝛿(𝑥) 𝑡 ⏟ ⏞ вычислительная ошибка + 𝑓 (𝑥 + 𝑡𝑒) -𝑓 (𝑥) 𝑡 -⟨∇𝑓 (𝑥), 𝑒⟩ ⏟ ⏞ ошибка метода . 3 Здесь и далее под оракулом понимается подпрограмма расчета значений целевой функции и/или градиента (его части), а оптимальность метода на классе задач понимается в смысле Бахвалова-Немировского [16] --как число обращений (по ходу работы метода) к оракулу для достижения заданной точности (по функции). 4 Строго говоря, вектор ̃︀ ∇ 𝛿, 𝑡 𝑓 (𝑥) определяется из приведенного выражения не единственным образом, однако данное обозначение крайне удобно использовать для записи метода и доказа-тельств. Кроме того, нигде в работе авторы не пользуются конкретным выбором ̃︀ ∇ 𝛿, 𝑡 𝑓 (𝑥), везде Ограничимся рассмотрением следующей концепции абсолютной неточности ора-кула. |𝛿 ∇ (𝑥, 𝑒, 𝑡)| |𝛿(𝑥+𝑡𝑒)|+|𝛿(𝑥)| 𝑡 + ⃒ ⃒ ⃒ 𝑓 (𝑥+𝑡𝑒)-𝑓 (𝑥) 𝑡 -⟨∇𝑓 (𝑥), 𝑒⟩ ⃒ ⃒ ⃒ 2𝛿 𝑡 + 𝐿𝑡 2 , где последнее слагаемое в правой части возникает в силу неравенства 𝑓 (𝑥 + 𝑡𝑒) -𝑓 (𝑥) -⟨∇𝑓 (𝑥), 𝑥 + 𝑡𝑒 -𝑥⟩ 𝐿 2 ||𝑥 + 𝑡𝑒 -𝑥|| 2 2 , которое следует из (2). Выберем параметр 𝑡 = 𝑡 * так, чтобы минимизировать Нестерова [10]. Ускоренный метод имеет скорость сходимости, пропорциональную 1/𝑘 того, во многих задачах обучения с подкреплением одновременно выполняются результаты свидетельствуют о том, что предложенный в статье метод с неевклидовой Более того, предположим, что оракул 3 может выдавать значение функции в любой значение верхней оценки на 𝛿 ∇ (𝑥, 𝑒, 𝑡). Параметр 𝑡 * находится из условия
	существенную роль играет выражение ⟨ ̃︀ ∇ 𝛿, 𝑡 𝑓 (𝑥), 𝑒⟩𝑒, которое определяется однозначно.
	𝑔 (𝑥, 𝑒) = 𝑛 ⟨∇𝑓 (𝑥) , 𝑒⟩ 𝑒,

2 

, где 𝑘номер итерации. В отличие от него неускоренный метод имеет скорость сходимости по значению целевой функции, пропорциональную 1/𝑘. В [13] был предложен ускоренный спуск (опирающийся на метод из

[START_REF] Allen-Zhu | Linear Сoupling: An Ultimate Unification of Gradient and Mirror Descent[END_REF]

) по случайному направлению и получена оценка скорости сходимости. В [13] метод использовал проекцию градиента на случайное направление. В данной статье используется не сама проекция градиента на случайное направление, а ее аппроксимация конечной разностью, т.е. приближение, которое не использует градиент. Кроме того, рассматривается случай, когда значения функции известны с некоторым ограниченным по абсолютной величине шумом.

2. Постановка задачи

Рассматривается разрешимая задача гладкой выпуклой оптимизации

(1) 𝑓 (𝑥) → min 𝑥∈R 𝑛 , где функция 𝑓 (𝑥), заданная на R 𝑛 , имеет липшицев градиент с константой 𝐿 в 2норме (2) ‖∇𝑓 (𝑦) -∇𝑓 (𝑥)‖ 2 𝐿 ‖𝑦 -𝑥‖ 2 ∀ 𝑥, 𝑦 ∈ R 𝑛 .

При этом в точке минимума 𝑥 * выполнено равенство ∇𝑓 (𝑥 * ) = 0.

  Опишем ускоренный безградиентный метод (Accelerated by Coupling Derivative-Free Method -ACDF) (см. алгоритм 1). Обращение к оракулу целевой функции происходит на шагах вычисления значений Grad 𝑒 𝑘+1 (𝑥 𝑘+1 ) и Mirr 𝑒 𝑘+1 (𝑥 𝑘+1 , 𝑧 𝑘 , 𝛼 𝑘+1 ).

32 ln 𝑛 -8}𝑛 2 𝑞 +1 . Алгоритм 1. 1 ACDF Вход: оракул, выдающий значение функции 𝑓 (выпуклой дифференцируемой функции на R 𝑛 с липшицевым градиентом с константой 𝐿 по отношению к 2-норме) в любой точке 𝑥 с некоторым шумом 𝛿(𝑥); 𝑥 0 -некоторая стартовая точка; 𝑁количество итераций.

  = (1, 0, 0, . . . , 0) ⊤ . Решение этой задачи известно и равно 𝑥 * , 𝑓 (𝑥 * ) = 0. Начальная точка 𝑥 0 для всех экспериментов выбиралась как 𝛿 ′ , где 𝛿 ′ ∈ [-𝛿, 𝛿]. Для различных 𝑛, заданной точности 𝜀 и заданной границы максимального шума 𝛿 были рассчитаны теоретически требуемые значения числа итераций по теореме и проведена проверка сходимости на практике. Для данной задачи во всех случаях практическая скорость сходимости по функции была выше. Так,

	Необходимо минимизировать функцию 6. Заключение	
	(10) В статье предложен ускоренный безградиентный метод и рассмотрен неускорен-𝑓 (𝑥) = 1 2 ный безградиентный метод. Безградиентные методы рассматриваются в условиях наличия малого шума, возникающего при вычислении значения функции. Получен-ные оценки скорости сходимости ускоренного безградиентного метода в условиях ⟨𝑥 -𝑥 Константа Липшица градиента целевой функции 𝐿 = 1. малого шума подтверждены результатами вычислительных экспериментов.
	В отличие от известных вариантов безградиентных методов (см., например,
	[9]) в данной статье рассматриваются безградиентные методы с неевклидовым
	проксимальным оператором. В случае, когда 1-норма решения близка к 2-норме
	решения (это имеет место, например, если решение задачи разрежено -имеет много
	нулевых компонент), предлагаемый подход улучшает оценку на необходимое число
	итераций, полученную оптимальным методом из [9], приблизительно в	√ 𝑛 раз, где
	𝑛 -размерность пространства, в котором происходит оптимизация.	
	ренный безградиентный метод с неевклидовой прокс-структурой работает быстрее
	ускоренного безградиентного метода с евклидовой прокс-структурой. Сравнение
	этого эксперимента для ускоренного безградиентного метода (с неточным оракулом)
	по (8). Код метода и демонстрация вычислительных свойств метода с построением с таким же, но для ускоренного спуска по случайному направлению (с точным
	графиков сходимости доступны как Jupyter Notebook и выложены в свободном оракулом) из [13] (см. рис. 2, б ), показывает, что принципиальный результат тот
	доступе на Github [19]. же, но скорость сходимости оказывается хуже, что вполне естественно для метода
	нулевого порядка с неточным оракулом.	
	Рассмотрим следующую з а д а ч у. Пусть 𝐴 -матрица размеров 𝑛 × 𝑛 со
	случайными независимыми элементами, равномерно распределенными на [0, 1], а В целом, численные эксперименты с ускоренным безградиентным методом под-
	матрица 𝐵 = тверждают теоретические результаты.	

Для практического применения предложенный ускоренный безградиентный метод ACDF был реализован на языке программирования Python. Также была реализована концепция неточно заданного оракула. Был рассмотрен случай, когда неточность порождается только неточностью вычисления целевой функции. Зашумления производились на каждой итерации, независимо от предыдущих, случайным образом из отрезка [-𝛿, 𝛿], где максимально возможная для шума граница 𝛿 вычислялась 𝐴 ⊤ 𝐴 𝜆max(𝐴 ⊤ 𝐴) , где 𝜆 max (𝐴 ⊤ 𝐴) -максимальное собственное значение матрицы 𝐴 ⊤ 𝐴. * , 𝐵(𝑥 -𝑥 * )⟩ , 𝑥 ∈ R 𝑛 , где 𝑥 * например, для 𝑛 = 10, 𝜀 = 10 -4 , 𝛿 = 2, 1715 • 10 -10 заданная точность была достигнута за 1106 итераций (см. рис. 1), а теоретическая оценка числа итераций Рис. 1 дает 17215 итераций. Далее, для 𝑛 = 10 3 , 𝜀 = 10 -4 теоретическая оценка числа итераций дает не более чем 527756 итераций. По факту алгоритм завершил работу за 141476 итераций (см. рис. 2). Рис. 2 При проведении численных экспериментов также были подтверждены результаты зкспериментов в [13]: и для ускоренного безградиентного метода преимущество выбора проксимального оператора, связанного с 1-нормой, возникает только для задач средней и большой размерности (от 𝑛 = 1000). Будет ли иметь преимущество предложенный метод, можно определить, сравнив теоретические оценки числа итераций из теоремы для разных 𝑝. На рис. 2 показаны случаи, когда уско-

  1 2 ||𝑧 𝑘 -𝑧 𝑘+1 || 2 𝑛 , y выполнено в силу равенства треугольника для дивергенции Брэгмана 6 , z выполнено, так как 𝑉 𝑥 (𝑦)

	𝑝 𝑝 в силу сильной выпуклости прокс-)︁ + 2 ||𝑥 -𝑦|| 2 Аналогично доказательству (П.3) из [13] можно показать, что функции 𝑑(𝑥). +𝑉 𝑧 1 (П.2)

𝑘 (𝑢) -𝑉 𝑧 𝑘+1 (𝑢), где x выполнено в силу того, что 𝑧 𝑘+1 = argmin 𝑧∈R 𝑛 {︁ 𝑉 𝑧 𝑘 (𝑧) + 𝛼 𝑘+1 ⟨𝑛⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 𝑒 𝑘+1 , 𝑧⟩ }︁ , откуда следует, что ⟨∇𝑉 𝑧 𝑘 (𝑧 𝑘+1 ) + 𝛼 𝑘+1 𝑛⟨ ̃︀ ∇𝑓 (𝑥 𝑘+1 ), 𝑒 𝑘+1 ⟩ 𝑒 𝑘+1 , 𝑢 -𝑧 𝑘+1 ⟩ 0 для всех 𝑢 ∈ R

  y выполнено в силу леммы B.10 из[START_REF] Bogolubsky | Learning Supervised PageRank with Gradient-Based and Gradient-Free Optimization Methods[END_REF], z получено при помощи следующего факта:∀ 𝑥 ∈ R 𝑛 ∀ 1 𝑝 𝑞 ∞ ˓→ ||𝑥|| 𝑝 ||𝑥|| 𝑞(данное неравенство доказывается, например, при помощи рассмотрения 𝑝-нормы для фиксированного 𝑥 как функции, зависящей от 𝑝, а точнее логарифма 𝑝-нормы 7 ).

	Беря от (П.4) математическое ожидание по 𝑒 𝑘+1 и пользуясь неравенствами (П.5),
	получим, что
	(П.6)

  2 𝑘 𝐿𝐶 𝑛,𝑞 . для любого 𝑢 ∈ R 𝑛 , здесь также δ определена в (3). Положим 𝑢 = 𝑥 * . Так как ∑︀ 𝑁 𝑘=1 𝛼 𝑘 = 𝑁 (𝑁 +3) 8𝐿𝐶𝑛,𝑞 , E[𝑓 (𝑦 𝑘 )] 𝑓 (𝑥 * ) и 𝑉 𝑧 0 (𝑥 * ) = 𝑉 𝑥 0 (𝑥 * ) = Θ, то из (П.9) следует, что

			(𝑁 +1) 2 8𝐿𝐶𝑛,𝑞 E[𝑓 (𝑦 𝑁 )] -	(︁	𝑁 (𝑁 +3) 8𝐿𝐶𝑛,𝑞 -𝑁 -1 8𝐿𝐶𝑛,𝑞	)︁	𝑓 (𝑥 * )
	(П.10)	Θ -E[𝑉 𝑧 𝑁 (𝑥 * )] + 7 4 𝐶 𝑛,𝑞	δ2	𝑘=0 𝑁 -1 ∑︀		𝛼 2 𝑘+1 +	√	𝑛	𝑘=0 δ 𝑁 -1 ∑︀	𝛼 𝑘+1 E[𝑅 𝑘 ],
	где 𝑅 𝑘	def = ||𝑥 * -𝑧 𝑘 || 𝑝 . После простых преобразований неравенство (П.10) запишется в
	виде								
	(П.11)								
	Возьмем для 𝑘 = 0, 1, . . . , 𝑁 -1 математическое ожидание по 𝑒 1 , 𝑒 2 , . . . , 𝑒 𝑁 от
	неравенств (6) и сложим получившиеся неравенства, учитывая (П.8):
	(П.9)	-7 4 𝐶 𝑛,𝑞	2𝛼 2 𝑁 𝐿𝐶 𝑛,𝑞 E[𝑓 (𝑦 𝑁 )] + 𝑘=0 δ2 𝑁 -1 ∑︀ 𝛼 2 𝑘+1 -√ 𝑛 δ 𝑁 -1 ∑︀	𝑁 -1 ∑︀ 𝑘=1	E[𝑓 (𝑦 𝑘 )] 8𝐿𝐶𝑛,𝑞 + E[𝑉 𝑧 𝑁 (𝑢)] -𝑉 𝑧 0 (𝑢)-𝑘=0 𝑁 -1 ∑︀ 𝛼 𝑘+1 𝑓 (𝑢)

𝑘=0 𝛼 𝑘+1 E[||𝑢 -𝑧 𝑘 || 𝑝 ]

  где x следует из неравенства (𝑎 + 𝑏) 22𝑎 2 + 2𝑏 2 ∀ 𝑎, 𝑏 ∈ R, y получается из неравенства Поделим неравенство (П.15) на (𝑁 +1) 2 8𝐿𝐶𝑛,𝑞 и получим окончательно, чтоE[𝑓 (𝑦 𝑁 )] -𝑓 (𝑥 * ) 16Θ𝐿𝐶𝑛,𝑞 (𝑁 +1) 2 + 7(𝑁 +2)(2𝑁 +3)𝛿 + 8𝑛𝑁4 𝛿 𝐶𝑛,𝑞(𝑁 +1) 2 . где под знаком || • || 𝑞 понимается векторная 𝑞-норма. Кроме того, приводим формулировку леммы B.10 из [18]. Отметим, что в доказательстве нигде не использовалось, что второй вектор в скалярном произведении (помимо 𝑒) есть градиент функции 𝑓 (𝑥) (поэтому утверждение леммы остается верным для произвольного вектора 𝑠 ∈ R 𝑛 вместо ∇𝑓 (𝑥)). Рис. 1. Сходимость метода ACDF для функции (10), размерность 𝑛 = 10. Показана практическая зависимость точности нахождения минимума 𝑓 (𝑦 𝑁 ) -𝑓 (𝑥 * ) от числа итераций N алгоритма -темный график и теоретическая оценка Сходимость метода ACDF для функции (10), размерность 𝑛 = 10 3 , точность 𝜀 = 10 -4 . Показана практическая зависимость точности нахождения минимума 𝑓 (𝑦 𝑁 ) -𝑓 (𝑥 * ) от числа итераций 𝑁 алгоритма (а), график 1). Также для сравнения на рис. 2, а приведены результаты работы метода при других 𝑝 (евклидова норма -график 2; 𝑝 = 1, 8 -график 3; 𝑝 = 1, 9 -график 4) при одних и тех же генерируемых 𝑒 𝑘 и точке старта 𝑥 0 . На рис. 2, б приведены результаты сравнения на той же задаче работы метода ACDF (пунктирная линия) и ускоренного неевклидового спуска ACDS [13] (сплошная линия, график 1), предназначенного для работы с точным оракулом первого порядка.
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, а z верно в силу
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.

Т е о р е м а П.1. Пусть 𝑒 ∈ 𝑅𝑆 𝑛 2 (1), 𝑛 8, 𝑠 ∈ R 𝑛 , тогда (П.16) E[||𝑒|| 2 𝑞 ] min{𝑞 -1, 16 ln 𝑛 -8}𝑛 2 𝑞 -1 , 2 𝑞 ∞, 2 𝑞 -2 , 2 𝑞 ∞, Л е м м а П.1. Пусть 𝑒 ∈ 𝑅𝑆 𝑛 2 (1) и вектор 𝑠 ∈ R 𝑛 -некоторый вектор. Тогда E 𝑒 [⟨𝑠, 𝑒⟩ 2 ] =

Также на рис. 2, б приведены результаты работы указанных методов при 𝑝 = 2

(график 2, штрихпунктирная линия -ACDF, сплошная линия -ACDS).

Рис. 1.

а б

Рис. 2.

Действительно, ∀𝑥, 𝑦 ∈ R 𝑛 ⟨-∇𝑉 𝑥 (𝑦), 𝑦 -𝑢⟩ = ⟨∇𝑑(𝑥) -∇𝑑(𝑦), 𝑦 -𝑢⟩ = (𝑑(𝑢) -𝑑(𝑥) -⟨∇𝑑(𝑥), 𝑢 -𝑥⟩)--(𝑑(𝑢) -𝑑(𝑦) -⟨∇𝑑(𝑦), 𝑢 -𝑦⟩) -(𝑑(𝑦) -𝑑(𝑥) -⟨∇𝑑(𝑥), 𝑦 -𝑥⟩) = 𝑉 𝑥 (𝑢) -𝑉 𝑦 (𝑢) -𝑉 𝑥 (𝑦).