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HYPERGRAPH~DESIGNS

J.C. Bermond, A. Germa and D. Sotteau
¥

Abstract

Let H and K be two given t-uniform hypergraphs,
we shall say that K admits an H-decomposition if we can
partition the edges of K into partial subhypergraphs
isomorphic to H.

Let Ki denote the complete t-uniform hypergraph.
We are interested in the following problem: H being a
given t-uniform hypergraph, for what values of n does
Kz admit an H-decomposition?

If H= Ki this problem is that of existence of
t-design (or Steiner Systems) .

If £t =2 [His a graph G} it is the problem of
existence of G-design.

Here we solve the problem for all 3-uniform hypergraphs
H on 4 vertices and give general methods which could be

used for other values of ¢ and other hypergraphs H.

1. Imtroduction.

1.1. Let K and H be two given t-uniform hypergraphs, we shall

say that K admits an H-decomposition if we can partition the edges of

K into partial subhypergraphs isomorphic to H. Definitions concerning

i hypergraphs can be found in f171.

S 1.2, The H—decoﬁposition problem, where H is a given t-uniform

: hypergraph, is to find the values of n for which the complete t-uniform
: hypergraph Ki admits an H-decomposition. The edges of Ki are all

é the subsets of cardinality t of its vertex set X with §X§ =n, In

~ this case the partition of the edges of Ki will be called an {n,k,1)
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H-design where k is the number of vertices of H.

1.3. Example: Kz admits an Hl—decomposition with
Hl = {abc}u{abd}
K = ({123}0{124]) v ({341}u{342)).
1.4. Two important classes of H-designs have been considered in

the literature:
CASE 1. t = 2; in this case H 1is a graph and Ki the complete graph
with n vertices and we find the definition of a G-design introduced
by P. Hell and A. Rosa [7]. (See [2] for a survey on G-designs).
CASE 2. H = K;iain this case an (n,k,l)K;—design is nothing else than
a classical (n,k,l)t-design or Steiner system (such a system is also
called Sl(n,k,t)). The classical definition, which is equivalent, of
an (n,k,1)t-design is the following:

An (n,k,1)t-design is a family of subsets, called blocks, of a
set X of cardinality =n such that

(1) every block contains k elements

(ii) every subset of t elements of X belongs to exactly

one block.

1.5. Remark: Similarly as an (n,k,))t-design, we could define an
(n,k,\) H-design as a partition of the edges of A Ki (each subset of

t elements of X occurs exactly A times as edge of X Kﬁ) into
partial subhypergraphs isomorphic to H. But, in this paper, we shall
always consider the case A = 1.

In order to establish necessary conditions for the existence of

an H-decomposition of Kz, we need the following definition: let A

by 8

be a subset of X with |A| < t, we define dH(A) as the number of

edges of H which contain A. Thus the following necessary conditions

are easy to prove:

1.6. PROPOSITION: Let H = (X,§) be a given t-uniform hypergraph,
. t .
if Kn admits an H ~decomposition then

@ () =0 mod m(® (m(® = |8

n-i
t-i)

i

ALY, 1 <i<t ( 8 mod (ged{d,(A,)/A; < X, §Ai[ =1i}).

In cases 1 and 2 of 1.4 we find the known necessary conditions for

the existence of an (n,k,1)G-design:

n(n-1)

5 z 0 mod m(G)

- n~-120 mod (ged {degrees of vertices of G})

for the existence of an (n,k,l)t-design:

- V}} 0<i<t (M =0 mod (k:i) .

t-i t
(Indeed, m(K;) = (k) and for 1 € i < t, for every A, d_ 4 (A,) = (kwi))
t iKﬁi [
1.7. The problem is to find when these necessary conditions are also

sufficient.

For t = 2 this problem has been solved for many graphs G and for
n large enough (see [2] for a survey of [5,9] in the particular case
of a BIBD (G = K)).

For t = 3 it has been proved by Hanani [6] that the necessary condi=

tions are sufficient for H = Kzu

For t 2 4 only few examples are known (in theory of Steiner systems).

Four of them have been found by Witt [9]. He has proved that there
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exists a (12,6,1)5~-design, or, in our language a (12,6,1)K2—design

that is to say K5

12 He has also proved that

admits a Kg—decomposition.

4 5 4 4 5 4 .

K11 [resp. K24, K23] admits a K5 [resp. K8, K7] decomposition.
Recently some others have been found by Denniston [3].
3.

In this article we shall deal with the case t = We shall prove

that the necessary conditions are sufficent for t = 3 and k = 4, H
being any 3-uniform hypergraph on 4 vertices. We shall give some general

methods which can be used for other values of t and k.

kg

2. Method of Differences.

This method of direct construction is a generalization of Bese's
method (see M. Hall [4]) which is already used for direct constructions
of graph decompositions (see [2]).

2.1. We consider the edges of Ki' as triples (3-subsets) of Zn,
the additive group of residues modulo mn, whose elements are denoted
0,1,...,n~1. We want to characterize the triples of Zn by the

differences of their elements: to the triple {a,b,c} we associate the

six differences =*(b-a), *(c~b), *(c-a). Our aim is to obtain a
systematical classification of all the triples of Zn and to use
methods analogous to Bose's difference method [4].

Exactly let us define on the triples of Zn’ the equivalence relation
®: {a,b,c} R {a',b",c'} if and only if there exists iezn such that
{a',b",c'} = {ati,b+i,cHil}.

The following results will be given without proof.
2.2.

PROPOSITION: If n dis not a multiple of 3, each equivalence

class (for the relation ®) contains exactly n triples. If n is a

~50-

multiple of 3, there exists one equivalence class containing n/3
elements and the other classes contain n elements.

Example: n = 6. We have the classes {i,i+1,i+2}, {i,i+1,i+3},
{i,i+2,i+3} containing each 6 triples and the class containing the two
triples (0,2,4) and (1,3,5).
2.3. If two triples belong to the same equivalence class, then
the 6 differences of their elements are the same. First we shall show
that we can associate to each class an (ordered) triple of differences
and then study in theorem 2.5 how a triple characterize an equivalence
class.
LEMMA:

2.4, To each equivalence class (for the relation ®R), we can

assoctate a triple (o,B8,v) of elements of Z, satisfying

(P) 0<azs B<y<n/2 and vy =a + B or v = ~(at+B)

such that the family {a, #B, v} <s the family of differences of the

elements of any triple of the equivalence class.

2.5. THEOREM: Let be an (ordered) triple such that

(a,8,Y)

(P) 0<as<B=<y<nf2 and ¥ = o+t or y = ~(atB)

then {to,*B,ty} <is the family of the differences of the elements of
the triples

- of exactly 2 equivalence classes if a,B,y are all distinct.

~ of exactly 1 equivalence class if two of the numbers «,B,y are equal.
(If o = B = v, then the equivalence class contains n/3 elements).

Thus by use of theorem 2.5 we shall be able to apply the following

. . 3
lemmas to construct more easily a cyclic H-decomposition of Kn for a

given hypergraph H.-
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2.6.

K3 as elements of 7Z .
n n

Let us suppose n = 1,2 [mod 3] and consider the vertices of
Then the equivalence classes of the edges for
the relation ® defined in 2.1 have the same cardinality n.

Let us consider a family Hl...Hk of hypergraphs isomorphic to H

such that the edges of the Hi form a system of representatives of the

equivalence classes [we shall call these hypergraphs bastis hypergraphs] .

Let us define Hj+i as the hypergraph obtained from Hj by adding

i [mod n] to each vertex of the edges of Hj. Then:

LEMMA: The family {Hj+i]iezn|je[l,k}} is an H-decomposition of Ki.

B

Remark: To verify that the edges of the basis hypergraphs form a system

of representative of the equivalence classes we will use theorem 2.5.
Fxamples: =n =5, H= {a,b,c} u {a,b,d}.

By theorem 2.5. the possible triples of differences are (1,1,2) and

(1,2,2) and the equivalence classes corrésponding are {Bjiji} and

{0,1,3}. We take H = {0,1,2} v {0,1,3} as basis hypergraph and the

family {i,1+i,2+i} u {1,1+1,3+i}, ieZ; is an H-decomposition of Kg by

lemma 2.6

n=11, H= {a,b,c} v {a,b,d} v {a,c,d} = (a,b,c,d).

The possible triples of differences and the corresponding equivalence

classes are

1,1,2) =+ {0,1,2}
(1,2,3) ~ {0,1,3} et {0,2,3}
(1,3,4) =~ {0,1,4} et {0,3,4}
1,4,5) =~ {0,1,5} et‘{O,A,S}
1,5,5) =  {0,1,6}
(2,2,4) ~ {0,2,8}
(2,3,5) ~» {0,2,5} et {0,3,5}

52—

(294)5) g {0,4,6} et {0,2,6}
(3,3,5) +~ {0,3,6}
(3,4,4) +~ {0,3,7}.

We can take as basis hypergraphs
Hl = (9)132,3), HZ = (9_32’4,5)7 H3 = (9_’3!5)7)5 Hi’ = (9,1!5’8))

’ HS = (0,1,4,6).
By lemma 2.6 an H-decomposition of Kil is given by the following 11 x 5

hypergraphs:

(i, i1, 142,143) (4,142, 1+4,0+5) (1,1+3,145,147) (1, i+1,1+5,1+8) (1,141, i+4,1+6)

16211.

2.7. Let us suppose n = 0 or 2 [mod 6] and consider the vertices of

Ki as elements of Zn~1 U », The edges of Ki are of two kinds

1) the edges whose vertices belong to anl' As n-1%20 [mod 3] we can

partition these edges into equivalence classes of cardinality n-1

- . . . 3
for the equivalence relatlonéQ\deflned on anl'
we can partition these edges into n-2

2) the edges which contain «: 5

equivalence classes, the class Cj (L <3 < 2529 containing the

edges {w,i,i+j} ieZ

-1

As in lemma 2.6, if we can define a family of basis hypergraphs

Hl,...,ﬂk, such that the edges of Hi form a system of representatives

3

of all the classes with H, ~ H, we have an H-decomposition of Kn

i
constituted by {Hj+i{je[l,k] liez ;3.

Example: n = 6, H = {a,b,c} v {a,b,d}.
Basis hypergraphs Hl = {0,1,2} v {0,1,3}, H2 = {®,0,1} u {=,0,2}.

Then an H-decomposition of Kg is given by the following 10 hypergraphs
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(1,441,142} v {1,1+1,1+3} and {=,1i,i+1} U {®,1,1+2} where iecZ,. 3.4. COROLLARY: Let A, 1 <i <k, be k disjoint sets with

i
- . 3
2.8. Let n = 1 or 3[mod 6]. Consider the vertices of Kn as lAi‘ =n, and w» a vertex £ u A Suppose that the following k+2
- I 3 . * 3
elements of Zn-—2 u 1 U ey We can partition the edges of Kn whose hypergraphs admit an H-decomposition: Kni+l’ 1<i<k; K[UAi]'. K[Ai]

elements belong to Z -2 and the edges containing one of the points « ;
n 1 and W' the hypergraph which edges are all the triples containing b

or «, into equivalence classes similarly as in 2.7. The remaining edges . .
B and two vertices of two different sets Ai' Then K

(ml,wz,i) ]‘.ean2 constitute one class.

(Fn.)+1 admits an
i

H-decomposition.

Example: n =9, H = (a,b,c,d).
Proof. Apply lemma 3.2 with Hi = K[A =]’ 1 <i<k,
Basis hypergraphs are (_Q,l,wl,wz)(_Q,Z,Z%,m ),3,5,%,)(0,1,3,6) and an : i

e - _ = fy'
H-decomposition is given by the 4 x 7 hypergraphs Hk+l K[UAi] u K[Ai] and Hoo = H. 0

(L, 31,0 ,,) (1,342,143, ) (1,i+3,145,,) (1,1+1,143,146) where ieZ,.
We shall first use these corollaries in the simplest case k = 2

3. Composition Methods. (that is when we split the set X of vertices of Kz into two sets or

L .3 .
3.1. Notations: We denote by K[A] or more simply by K[A] the two sets plus an extra vertex). We shall see that this is sufficient

complete 3-uniform hypergraph generated by the vertices of A(the edges arl ., solve the H«-décomposition problem for H = H, and HZ'

1
all the triples of elements of A). CASE 1. H = H. = {a,b,c} u {a,b,d}
® 1 3 s s~ h

If H' is a partial hypergraph of H, we denote by H-H' the hypergraph3.5‘ THEOREM: K3 admits an Hl—deaomposition if and only if n # 3
n -
obtained from H by deleting the edges of H'. (mod 4), and n 2 &4
. 2 4.

The composition method is based on the following evident lemma and Proof. The necessary condition follows from proposition 1.6. The

its corollaries, which enable us to use induction. sufficient condition will use corollaries 3.3, 3.4 and the following
3 .. . :
3.2. LEMMA: Let K be an edge disjoint union of hypergraphs qu lemma:
. .. 3 N
If the hypergraphs H, admit an H-decomposition, then K also admits 3.6. LEMMA: Let A and B be two disjoint sets with |A| = n, and
an H-decomposition. ' - - - :
|Bl =n, and n; and n, even . Then Ky g = Kpyq = Kpgy adnits an
3.3. COROLLARY: Let Ai, 1 <ic<k, be k disjoint sets with Hl—decomposition.
B 3 ) .
lAi! =Ry Suppose that Kn,’ l<is<k and K[ va,l ~ v K[A,] admit Proof. The edges of K - K - K containing two vertices of
i ;1 i [AuB] [Aa] [B] n

o . (e b titioned into the (1 2 h hs

an H-decomposition. Then Kfézn , admits an H-decomposition. A and one of B can be partitioned into the (,%) n,/2 hypergrap
i :

isomorphic to Hl: {ai,aj,bzk} u {ai,aj ’b2k+1} where (ai,aj) is any
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pair of elements of A and k = 0,1,2

LR ]

senay (n2/2 - 1). Similarly we

partition the edges containing two vertices of B and one of A.

0

Proof of theorem 3.5 (by induction).

It is true for n = 4, an

H1~decomposition of Kz

For n = 5 it has been proved in 2.6; for n

being {0,1,2} v {0,1,3} and {2,3,0} u {2,3,1}.

6 it has been proved in 2.7.
Let n, # 3 (mod 4), n, 2 0, and suppose that the theorem is true for

all n # 3 (mod 4), n < ng. If o, is even the theorem results from

n, - 4 (24) and n

corollary 3.3 with n, = 4: Ki -4 admits an

0
ﬁ;—Qgcomposition (by induction hypothesis), KZ also and K

2

fave] ~ Fra] ~
2 9 then the theorem

&

- K[B] by the lemma 3.6. If n, is odd, n

0

results from corollary 3.4 with n

0

- 5 (24), n, = 4. admits

1~ " ng
3
an Hl—decomposition (inductiqn hypothesis); K5 K[AUB] = Kay K

hypergraphs isomorphic to

-4

also; K

(8]

by lemma 3.6, and H' also by taking the 2n1

Hls {w,ai,bj} u {w,ai,bj+l} for 1 = 1,2,...,n1 i =1,3.

CASE 2. H HZ = (a,b,c,d) = {a,b,c} v {a,b,d} v {a,c,d}.

We shall use the more coneise notation H, = (a,b,c,d) which means

2
that a is the vertex of Hz belonging to the 3 edges of H2'
3.7. THEOREM: Kz admits an HZ—decomposition if and only if

ns0,1,2 (mod 9) and =n 2 9.

The necassary condition follows from proposition 1.6. The proof

of sufficienty will use the existence of Steiner triple systems and of

Resolvable Steiner triple systems. The ddea is contained in lemma 3.8.

Then the

3.8. LEMMA: Let |X| =ntl, with n= 1 or 3 (mod 6).

3 ., .
hypergraph K consisting of all the edges of K ., containing a given

vertex a admite an Hz—decamposition.

56~

Proof. Recall that if n =1 or 3 (mod 6) there exists a Steiner

triple system that is a partition of the edges of the complete graph Kn
into triples or in another language that we can find n(n-1)/6 triples
of elements of {1,2,...,n} such that every pair of elements appears

in exactly one triple. Then an Hz—decomposition of the hypergraph’ K

is given by the n(n-1)/6 hypergraphs isomorphic to HZ: Hi = (Eﬁai’bi’ci)’

1 £41 < n(n=-1)/6, where (ai’bi’ci) are the triples of the Steiner

0

triple system on n elements.

3

3.9. COROLLARY: If Kn admits an H2~decomposition and 1f n =1l or

3 (mod 6) then K§+ admits an Hg-decomposition.

1
3.10. COROLLARY: If Ki and Ki admit an Héadecompasition and if
1 2
1, 21 or 3 (mod 6) and n, =1 or 3 (med 6) then K3 admits
1 2 n1+n2

wmd H2~decompqsition_

roof. Let A and B be two disjoint sets with [A] = o, |B|] = n,.

K is the edge

[A] [B]
[{a}uB] ~ “[B]

where b ¢ B, these

A\pply corollary 3.3 by noticing that K - K

[AuB] ~

{isjoint union of the n hypergraphs K K where a € A

1

ind of the n, hypergraphs K

Kravtsd) ~ %
iypergraphs being all isomorphic to hypergraph K defined in lemma 3.8

vith respectively n =n, and n = n

2 1°
PROPOSITION: It suffices to prove the theorem 3.7 for n

3.11. 1,9

yr 11 (mod 18).

roof. Suppose we can prove theorem 3.7 for n = 1,9, or 11 (mod 18).

fns=2or 10 (mod 18) thenn ~ 1 = 1 or 9 (mod 18) and, by corollary

}.9 K3 admits an H
n 2

mdn -9 = 9 (mod 18) so by corollary 3.10 Ki admits an H

-decomposition. If n = 0 (mod 18), n = 9 + (n=9)

2

w57
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3.12. LEMMA: The edges of K

10
one I-factor and a cycle of length 4.

can be decomposed into 12 triples,

The edges of K,g can be decomposed into 48 triples and one 1-factor.
The edges of K,y can be decomposed into 60 triples and one 1-factor.

Proof. For K

18 and K

20

existence of Steiner triple systems.

it is an immediate consequence of the
Indeed it suffices to consider
a decomposition of K19 (respi K21) into triples and to delete one

vertex. We obtain the required decompositions of K18 (resp. Kzo);

Fo; K such a decomposition is for example:

10
- the 12 triples {1,2,3}, {1,4,5}, {1,6,7}, {1,8,9}, {2,4,6}, {2,7,8},

{2,5,10}, {3,4,9}, {3,5,7}, {3,6,10}, {4,8,10}, {7,9,10}.
- the l-factor {1,10} v {2,9} v {3,8} v {4,7} v {5,6}
- the cycle of length 4 (5 8 6 9).

3.13. THEOREM: (Ray-Chaudhuri and Wilson [3]1). The edges of K

6t+3

can be partitioned into (3t+l) classes of (2t+l) pairwise vertex

disjoint triples (thus each class covers all the vertices of Kg . .).

3.14. LEMMA: Let A and B be two disjoint sets with |A| = 6t+3

and |B| = }0, 18 or 20. Then H = Kipy = Kpgy admits an

Kiavsy ~
Hg—decamposition.

Proof.

into (3t+1l) classes C,, 1 < i < 3t+l, each class consisting of 2t+l

i?

T, . with 1 <3 <

1,3 2t+1, where

pairwise disjoint triples Ci =

123y
1,37 71,37 T1,377

[B| = 18 (or 20), by lemma 3.12 we can partition the pairs of

U
J
T, . = {a

I1f

1 .2 .3
! o= i <k <
elements of B dinto triples Tk (bk, bk, bk) with 1 £k ko where
~58-

By theorem 3.13 the pairs of elements of A can be partitioned

ol

2
admits an Hz—decomposition consisting

ko = 48 (or 60) and a l-factor ¥ = u{bi, bi}, where 1 < & <
2

Then H = K - K

Kiawsy = %ag

[B]

of

1.2

k’bk’
d (bl b2 b3) triple T' defined ab

an 1o Py by any triple T ned above.

1 2 1.2 2 3
the 3(2t+1) !B[/Z hypergraphs: (a1 "al,j’bﬁ’bk)’(al "al,j’
2 83
1,3%1

a) the |Al ko hypergraphs (a,b bi) where a 1s any vertex of A

1.2
) by ,b5)
1 1

)
, 3> 29

1,3 of the

3 2 1 . .
and (a1 Y- bl) where (al,j,a ,j) is any triple T

1,]
. 1.2, .,
first class Cl (see above) and where {bl’bg} is any edge of the l-factor

} (see above).

¢) the ]B{ 3t (2t+1) hypergraphs (h,ai 2 ) with 1 =2 2 where

3
; ,37%1,57%,

. 1
b is any vertex of B and
b y (ai,j’ai,j’ai,j) is any triple T

i,3°
with i > 2 (defined above) that is which does not belong to the class
Cl.

If |B| = 10 by lemma 3.12 (see the proof) we can partftion the

pairg of elements of B X

and a cycle of length 4 (bl’bZ’bB’bé)' Then H admits an Hz—

into 12 triples T', 1 < k < ko = 12, a l=factor

lecomposition similar to cases IB[ = 18 or 20 which contains the hypergraphs

lefined in a) and b) but the class c) has to be replaced by

1 2
c,) the 6 (2t+1) h :
) 1; e 6 ( ) zpergraphs (a5 > 2,50 bis byig)s
r 2 1 . 1 2 3
‘\az "az,j’bk’bk'f'l), (aZ i’az,j’bk’bkﬂ'l) with {aZ,j’az,j ,az’j} any

2,3 of the class 02

two disjoint edges of the cycle).

ird T =
riple and {bk’bk+l} {bl’bz} or {bB’bh}

.12
CZ) the 6 (2t+l) hypergraphs: (33,”33,j’bk’bk+1>’

2

.2 3 3 1 1 3
ay "aB,j’b b, ..) (33 i’a3,j’bk’bk+1) with {a35j,33’j,a3’j} any triple

kP kHLT?
é,j of the class C3 and {bk’bk+l} = {bz,b3} or {blibé} (the two other

dges of the cycle).

Y



2

1
c3) the ]B[ (3t-2) (2t+1) hypergraphs (E’ai,j’ai,j

. .) with
1,7
i 2 4, where b is any vertex of B and {a% ;2@ .,a> .} any triple

1,37 1,37 1i,]

Ti 3 with 1 2 4 (that is which does not belong to the classes C ,C
»

1’727
C3). That is possible because t > 1 implies that the number of classes
3t+124,

3.15. End of the proof of the theorem:

The proof is by induction. The theorem is true for n = 9: gee

2.8, for n = 11: see 2.6. Let n, = 0,1,2 (mod 9). Suppose the theorem

true for all n < no, n = 0,1,2 (mod 9). By proposition 3.11 we can

0 2 19. Then if oy

with h = 1,9 or 11, we write n, = (18t - 9) + (h + 9) where h + 9 = 10,

suppose n, =1,9,11 (mod 18) and n =18t + h (t = 1),
18 or 20. Then corollary 3.3 with n, = (18t = 9) =2 9, n, = h+9

can be applied. Indeed by lemma 3.14 K K - K ] admits an

[AuB] © “[a] T “[B
Hz—decomposition, and so do K[A] and K[B] by induction hypothesis.
3.16. Other Methods.

The proofs given above use the splitting into two parts. But for
other hypergraphs than Hl or Hz, this may not be sufficient to solve
the H~decomposition problem. Furthermore for H2 we have used the
solution of Kirkman's school girl problem and it seems interesting to
obtain a more elementary proof.

3.17. LEMMA. Let H be a 3-uniform hypergraph. Let A,B,C,Q be

four disjoint sets with |Al= |B| = |C| =m and |Q] =h. Let A be

1 2
hypergraphs admit and H-decomposition:

the disjoint union of A, and A.. Suppose that the following

-60=

R i K[Alusz]
ii) K[AlUQ] - K[Q]
111) K. . =K. -K

“ravsuer ™ Xra1 T ¥rep T X

iv) the hypergraph consisting of all the edges containing one
vertex in Q and the two others in #wo different sets of
A,B,C.

_ , ~ tiom.
Then K[AUBUCUQ] K[AlUQ] admits an H-decomposition

Proof. We apply lemma 3.2. K[AUBUCUQ} - KfAlUQ] is the edge disjoint
union of the hypergraphs i) 111) iv) and-of the hypergraphs

K[BUQ] - K[Q] and K[0uQ] - K[Q] which are isomorphic to K[AUQ] - K[R];

the later is the edge disjoint union of the hypergraphs 1) and ii) and

thus admits an szdecomposition. 0

3.18. We apply lemma 3.17 for Hz. The fact that i) and ii) admit an
Hz—decomposition will follow by induction hypothesis or direct construction
for 1i) and thus the lemma will apply for m+h = 0,1,2 (mod 9), h = 0,1,
2 (mod 9) and [All 2 0,1,2 (mod 9). We will deal with the szdecomposition

of the hypergraphs iii) and iv) in the following lemmas.,

3.19. LEMA: The hypergraph iv) of lemma 3.17 admits always an

HZ—decomposition.

Proof. It is well known that the complete 3-partite graph Km mm ©P
s |

AuBuc

admits a K3-dec0mposition. To each triple (ai,bj,ck) of
such a decomposition and to each vertex w of we can associate a

hypergraph isomorphic to HZ: (w, ai,bj,ck). Then all these hypergraphs

-1
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Km o m) form an Hz—decomposition of the hypergraph iv) of lemma 3.17.
9ty

3.20. DEFINITION: Let H be a 3-uniform hypergraph (X,§), we denote

by H ® SP the 3-uniform hypergraph with vertex set X x Zp and with

edges all the triples {(x,i);(y,3) ;(z,k)} where (x,y,z) is an edge of H.

H@ Sp is the lexicographic product of H by the hypergraph Sp with no

edges. H® Sp can be seen as obtained from H by replacing each

vertex by p independent vertices and each edge by p3 edges. [Note

that Kz ® S is the complete n partite 3-uniform hypergraph denoted
p

3

usu&ll{ by Knx 1.

P The following lemma and its corollary are important:

3.21. LEMMA. H, ® Sp admits an HZ—decomposition.

Proof. Let HZ = (a,b,c,d) then an Hz—decomposition of HZ (] Sp is

given by the following P3 hypergraphs: ((a,1) (b,i+k)(c,3),(d,i+k))

with 1 = 1,2,...,p3 § = 1,2,...,p5 k = 1,2,...,p.

3.22. COROLLARY: If H admits an Hz—decomposition, then H ® Sp
admits an Hz—decomposition.

3.23. admits an

LEMMA: Let . |a] = |B] = m. g[AuB] - Kpay ~ Kig
Hz—decompasition if and only if m = 0 or 1 (mod 3).

Proof. The necessity follows from the fact that the number of edges of

m .
K[AUB] - K[A] - K[B]’ which is equal to 2m(2) must be a multiple of
3.
Ifm=1or 3 (mod 6) the sufficiency follows from lemma 3.8.
Let m = 0 (mod 6) and suppose that we have prove the lemma for

all m', m' < m,m' % 0 (mod 6).

congruent to 0 or 3 (mod 6). Let A = Al u A2 and B = Bl ] B2 with
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BN L L ' -
(disjoint union of

rthe edge

T

AUB]  T[A] T “[m] *°

the four hypergraphs K K

[Aiqu] - {Ai]

- K[Bj] with 1 = 1,2;
which admit an Hz—decomposition (the lemma being true for m/2).

the complete 4-partite 3-uniform hypergraph
3 3 3

K = ] = = 3
w/2,0/2,m/2,m/2 " ¥4 @ Snyp = G OSY®s =K L @8

It is easy to find - iti 3
y to fin an4H2 decomposition of K3’3’3’3 and thus, by corollary

3
3.22 Km/Z,m/Z,m/Z,m/Z admits an Hz—decompositionu

Let m = 4 (mod 6), m = 6t+4. It is well known that the complete

‘graph K6t+4 admits a decomposition into (3t+1) hamiltonian cycles and

and a l=factor (a perfect matching). By splitting ¢t hamiltonian cycles

into 2t I1-factors we obtain
a decomposition of K6t+4 into (2t+1) hamiltonian

cycles C, and (2t+l) 1-factors Ma’ @ =1,2,...,2t+l., Let C_ = (a
o 1’

:..,ai,...,an). Then to the edge {ai,ai+1} of Cu and to the l-factor

i
?a we associate m hypergraphs isomorphic to

HQ: (a ,a

md (b, ,b_
«, 1 %41

,aj,aj,) where {j,j'} is any one of the m/2 edges of Ma

We th
We denote by a, the r element of A and by br the rth element

£ B). Thus to the
; m edges of Cu {mi’ai+l} i=1,2,...,m and to Ma

: . 2 .
@ associate m  edge-disjoint hypergraphs isomorphic to H If we
9°

0 this construction for every a = 1,2,..., 2t+l (=n/3) we obtain m3/3

ypergraph i
yp graphs isomorphic to HZ which are by construction edge~disjoint

ad thus form an H ~decomposition of K -
2 (avBl ~ Xpay " Kppr O

Then the lemma is true for m/2 which is
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3.24. LEMMA: Let |A| = |B] = |c| =m and m=0 or 3 (mod 9) then {and apply lemma 3.17 with

) o0 = _ _ P - = - | = N
the hypergraph iii) of lemma 3.17, K[AUBUC] K[A] K[B] K[C] admits n = 54k+l, m = 18k, h =1, lAl, 18;
an Hg—decomposition. o n = 54k+19, m = 18k, h = 19, ‘AII = 0;
Proof. 1f m = 3, let us denote this hypergraph by T,: an Hz—decompositioy n = 54k+37, m = 18k+9, h = 10, \Al§ = 9

is given by the 27 hypergraphs: The hypothesis of the lemma 3.17 are satisfied; indeed the hypergraphsv

) 1) 44) 444) div) admit an Hz—decomposition, i) by induction hypothesis as

3 3

(853547904564 (81585 4755475549) (ag534415P34926447) (P39 1419C5410% 141
. 3 ) o
v @] = 19; ii) because Kig = Ko and K g admit an H,~decompositionj

‘lAl
iii) by lemma 3.24 as m = 0 (mod 9); iv) by lemma 3.19. [

(bysb5490C549021) PyoPigg 2C102549) (eg€54102542°P542) (100141721 P1a0)

(fi’:idﬂl’ai-i-l’bi)’ for 1 = 1,2,3.

3 3 ,
= ] - K
If'm > 3, let m = 3p and A = Al u Az U A3, B = Bl U B2 U BB’ 3.26. PROPOSITION. Let n = 9 (mod 18) then Kn 18 admits an

’HZ—decomposition (n#9).

C=c¢C,ucC, uC, with |A | = |B,| = |c,| = w/3 for i =1,2,3. Then 3 3 3 3
1 2 3 . i i + ",Proof. Similar to 3.25. First K9, K18 and K27 - K18 admit an sz
K - K - K - K is the edge disjoint wuniom of: |
[AuBUC] [A] [B] el & J - decomposition (done in 3.14) and thus we use lemma 3.17 with
= 54k + 9 = 18k = = 9
i) T3 ] SIJ which admits an Hz—decomposition by corollary 3.22. ne ’ " ’ b= |A1‘ %
n = 54k + 27, m =18k + 9,h =0, lAl} = 18;
i1) the 27 hypergraphs K - K, 4 - K K - K .
[A,UB,] (a1 [B;1” “IBjuC,] [8,] } n = 54k + 45, m = 18k + 9,h = 18, lal = 0. O
- K[cj]’ K[ciuAj] ~ Xre,1 T K[Aj] with 4 =1,2,3; j = 1,2,3; these 3,27, PROPOSITION. et n = 11 (mod 18), n # 11, then Ki - Kgo
: ]

' admits an Hj-decomposition.
hypergraphs admit an H,-decomposition by lemma 3.23, indeed m = 0 or 3 @ g-decompostiion

K3 K3 and K3 - If(3 admit an

29 20 20~ 711
Hz—decomposition. Then we apply lemma 3.17 with;

Proof. Similar to 3.25. First K3

(mod 9) implies m/3 = 0 or 1 (mod 3). 0 1’

3.25. PROPOSITION: Let n = 1 (mod 18) then Ki - Kl39 admits an :

i -decomposiion. } n = 54k + 11, m = 18k, h = 11, lagl =9;
Proof. (by induction). Kig - Kio and thus KiQ admits an Hz—decompositi% B = 34k + 29, m = 18k + 9, h=2, ‘Ali = 18;
apply lemma 3.14 with t = 1 (note that we use only the existence of a n T e AT S, R0 ‘Ali w00
partition of edges of Ky into 4 classes containing 3 vertex disjoint By propositions 3.11 and 3.25, 3.26, 3.27, we obtain a second
triples). Now let n = 1 (mod 18) and suppose that the proposition is proof of theorem. u

true for all m, m < n, m £ 1 (mod 18). Then we distinguish 3 cases

o4 6s-
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