Influence of Surface Defectivity on the Performances of Silicon Heterojunction Solar Cells
V Giglia, J. Veirman, R. Varache, E. Fourmond

To cite this version:
V Giglia, J. Veirman, R. Varache, E. Fourmond. Influence of Surface Defectivity on the Performances of Silicon Heterojunction Solar Cells. European Photovoltaic Solar Energy Conference, Sep 2019, Marseille, France. hal-02321708

HAL Id: hal-02321708
https://hal.science/hal-02321708
Submitted on 21 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
UNDERSTANDING OF THE INFLUENCE OF THE SURFACE DEFECTIVITY ON SILICON HETEROJUNCTION CELL PERFORMANCE.

Context of the study

- Commercially available bulk lifetimes ↑
- Production tools throughputs ↑
- Defectivity importance likely to increase
- Necessary to quantify and understand the defectivity-induced efficiency (\(\eta\)) losses

Approaches used to carry out the study

Experimental approach
- Creation of a controlled defectivity protocol
- Exp. Quantification of defectivity induced losses
- Validation of the modelled structure

Simulation approach
- Identification of physical mechanisms

Presentation of the study

Controlled defectivity on busbarless cells:
- A scratch every 9 pitches (total c-Si surface depassivation).
- Choice of Busbarless metal scheme → easy scratch creation and facilitated simulation.
- On 10 cells: I(V) measurements after each scratch.

Protocol for the creation of a well-defined defectivity

Physical mechanisms:
- Minority charge carrier quasi fermi level \(\varepsilon_{F,K}\).
- Force applied on holes \(\nabla \varepsilon_{F,K}\).

Validation of the modelled 2D structure (ATLAS Silvaco):
- Same defectivity distribution as the actual cells.
- Parametrization based on SHJ cells characterization.
- Defect: locally maximized Dit.

→ Allows to trust the code to investigate the mechanisms behind \(\eta\) losses

Quantification of defectivity-induced efficiency (\(\eta\)) losses
- FF losses = 2/3 of efficiency losses.
- Good scratch-to-scratch repeatability.
- 0.2% surface scratched = -6%rel \(\eta\)!
- Good agreement experiments/simulation

Carriers photogenerated within the affected region (pink) recombine in the depassivated region.

\[1.4\% \text{ of carriers are lost } \Rightarrow J_{sc} \text{ losses } = 1.4\%_{\text{rel}}\]

The same analysis also holds for the other I(V) parameters losses (presented in the article).

The study of \(\varepsilon_{F,K}\) explains the mechanisms behind \(\eta\) losses.

Conclusions:
- Combined experimental-modelisation approach.
- Strong impact of surface defectivity mostly on FF according to [1].
- The depassivated region high recombination rate induces a force increasing with the voltage towards itself leading to important FF losses.

Perspectives:
- Predict the influence of cell parameters on the performance losses (\(\rho\), bulk lifetime).
- Study the influence of defectivity properties (spatial distribution, location (BS/FS), size ...).
- Suggest ways to mitigate losses.