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ON A CONJECTURE OF CHVATAL ON m-INTERSECTING
HYPERGRAPHS

J. C. BERMOND AND P. FRANKL

Let X be a finite set of cardinality n. A hypergraph (X, ̂ ) is called m-intersecting
if for any Flt ..., Fmz2F the condition F 1 n . . . n F f f l # 0 holds.

An (n, h, m)-hypergraph is a hypergraph H = (X, J5") satisfying

(i) |* | = n;

(ii) H is A-uniform, that is, SF consists of A-subsets of X;

(iii) every m-intersecting partial hypergraph of H is (m-f-l)-intersecting.

Let/(«, h, m) denote the maximum number of edges in an {n, h, m)-hypergraph.

Using this terminology the Erdos-Ko-Rado theorem says that

f(n, h, 1) = I ) whenever n ^ 2h.
\h-\J

Erdos [3] conjectured that

(n-\\
f(n, h, 2) = whenever 3 < A < 2«/3.

V/ -1 /

In [1] Chvatal made the more general conjecture:

/ « - l \
f(n, h, m) — I I whenever m < h ̂  mn/(m+l).

In [2] he proved this conjecture for h = m + 1.
The aim of this paper is to prove this conjecture in some special cases.

DEFINITION. A (v, k, 1) t-design {called also a Steiner system S^t, k, v)) 2) is a set of

different subsets, called blocks, of a set Y of v elements, such that:

(i)' \Y\ = v.

(ii)' For any atY, there are exactly h blocks of 2) containing a.

(iii)' For any t-tuple of elements {ax, ...,a^ of Y, there is exactly one block of
containing {au ..., a,}.

(iv)' Every block of 3) consists of k elements.

Received 24 January, 1977; revised 9 July, 1977.

[BULL. LONDON MATH. SOC, 9 (1977), 310-312]



ON A CONJECTURE OF CHVATAL ON m-INTERSECTING HYPERGRAPHS 311

LEMMA. Suppose that there exists a (v, k, 1) t-design for some v, k, t. Let

v{v-l)...(v-t + l) ( „ - ! ) . „ („
\X = n = and h =

k(kl)(kt + \) (kl)(k

Then there exists a family si of subsets of X such that

(i) \J*\ = v.

(ii) for Aestf, we have \A\ = h.

(iii) For Au ..., Ates4, we have |/4X n ... r\At\ = 1.

(iv) For x e X, there are exactly k members of s$ which contain x.

Proof. Let Q) = {Xl} ..., X,,} be a (v, k, 1) /-design on a set Y = {ay, ..., av}.
Let us define the dual system stf = {Au ..., Av} on the set X = {xlt ..., xn} by xt e Aj
if and only if ai e Xr Then it follows from conditions (i)', (ii)', (iii)', (iv)' that sf
satisfies the four conditions of the lemma.

Remark. The condition (ii) (resp. (ii)') is a consequence of the three other
conditions.

THEOREM If for some v, k, t, there exists a (v, k, 1) t-design (called also Steiner
system S^t, k, v)), then the conjecture of Chvatal is true for the triple

v(v-\)... (v-t + \) (v-l)... (v-t+l)
n = ; h = ; m = t.

k(k-l)... (fc-/+l) (k-\) ... (k- + l)

Proof of the theorem. Let (X, #") be an (n, h, /w)-hypergraph. We apply a method
of proof due to G. O. H. Katona [6]. Suppose that there exists a (v, k, 1) f-design
and let $0 be the family denned in the lemma. If P is a permutation of the elements
of X, then the system P(s/) = {P(Ai), ..., P{AV)} satisfies the conditions (i), (ii),
(iii), (iv) as well. (P(A) is the set consisting of the images of the elements of A by the
permutation P.) We count the number of pairs (P, F), where P is a permutation of
the elements of X, F an element of #" and F e P(sf). From properties (i) to (iv) it is
clear that P(st) is m-intersecting and that if Au ...,Aq is an (m + l)-intersecting
sub-family of P($4) then Av n ... n Aq # 0 , entailing q^k. Thus the number of
pairs (P, F) is at most kn\.

On the other hand to any F e F and any Aest, there are exactly h\ (n—h)\
different permutations P such that F = P(A). Hence the number of pairs (P, F) is
exactly: h\ {n-h)\ v\&\. Thus we have \&\h\ {n-h)\ v < kn\. Thus taking into

(n—\\
account that nk = vh,we obtain \SF\ ^ I I .

\h-V

COROLLARY. The conjecture of Chvatal is true for the following triples of integers:

v-l(v \ (v-l\
(a) m arbitrary, n = \ \ , h — I 1 for any integer v

\mj \m-lj > m.
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(b) m - 2, h = pa +1, n = h2-h +1 or n = h2 -h (p is a prime and a an integer).

(c) m = 2,handn = h(2h + l)/3 (h > 3)

(d) m = 2,handn = h(3h +1)/4 (h ^ 4)
}n is an integer

(e) m = 2,h and n = h(4h + l)/5 (h $* 5)
(f) m = 2,handn = h(((k- l)h + l)lk) (h ^ ho(k))

(v\ (v-l\
(g) m = 3, « = I I , h = I I for any integer v = 2 or 4 (mod 6), v > 4.

.P/-0O/. It follows from the existence of: for (a) trivial /-designs; for (b), (c), (d),
(e), (f), known (v, k, 1) 2-designs (see [4] or [7]): (b) corresponds to projective and
affine planes, (c), (d), (e) to k = 3, 4, 5 and (f) follows from the results of Wilson [7]
for large v. (g) is just the case k = 4, t = 3 of [3] and follows from [5].
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