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Baptiste Saudemont1,2†, Alexandra Popa3,4†, Joanna L. Parmley3,5†, Vincent Rocher3, Corinne Blugeon1,
Anamaria Necsulea3, Eric Meyer1 and Laurent Duret3*

Abstract

Background: Most eukaryotic genes are subject to alternative splicing (AS), which may contribute to the production
of protein variants or to the regulation of gene expression via nonsense-mediated messenger RNA (mRNA) decay
(NMD). However, a fraction of splice variants might correspond to spurious transcripts and the question of the relative
proportion of splicing errors to functional splice variants remains highly debated.

Results: We propose a test to quantify the fraction of AS events corresponding to errors. This test is based on the fact
that the fitness cost of splicing errors increases with the number of introns in a gene and with expression level. We
analyzed the transcriptome of the intron-rich eukaryote Paramecium tetraurelia. We show that in both normal and in
NMD-deficient cells, AS rates strongly decrease with increasing expression level and with increasing number of introns.
This relationship is observed for AS events that are detectable by NMD as well as for those that are not, which
invalidates the hypothesis of a link with the regulation of gene expression. Our results show that in genes with a
median expression level, 92–98% of observed splice variants correspond to errors. We observed the same patterns in
human transcriptomes and we further show that AS rates correlate with the fitness cost of splicing errors.

Conclusions: These observations indicate that genes under weaker selective pressure accumulate more maladaptive
substitutions and are more prone to splicing errors. Thus, to a large extent, patterns of gene expression variants simply
reflect the balance between selection, mutation, and drift.

Keywords: Alternative splicing, Random genetic drift, Selectionist/neutralist debate

Background
The maturation of a primary transcript by the spliceosome
can lead to the production of diverse transcripts, via the
use of different splice sites and/or intron retention (IR).
Alternative splicing (AS) is widespread in eukaryotes and
it has been postulated that it might considerably expand
the functional repertoire of eukaryotic genomes [1–3].
Many case studies have shown that some AS events are
functional, i.e. that they play a physiological role, beneficial
for the fitness of the organism (for review, see [4]). How-
ever, like any biological machinery, the spliceosome is not
100% accurate and the splicing of primary transcripts oc-
casionally leads to the production of spurious messenger
RNAs (mRNAs). These erroneous transcripts represent a

waste of resources and may lead to the production of toxic
protein variants and hence are expected to be deleterious
for the fitness of organisms. Indeed, several quality control
mechanisms exist in eukaryotic cells to mitigate the nega-
tive impact of erroneous transcripts [5]. In particular, the
nonsense-mediated decay (NMD) machinery is able to
recognize and degrade cytoplasmic transcripts containing
premature termination codons (PTCs) [6]. However, these
quality-control processes themselves are not 100% effi-
cient. Hence, any transcriptome necessarily includes a
fraction of variants that correspond to splicing errors and
their frequency relative to functional AS events remains
open for debate.
In a large majority of cases, splice variants contain

PTCs (i.e. encode truncated proteins) and only a very
small fraction (<0.6%) of annotated AS events lead to
the production of a detectable amount of protein [7].
The subset of AS variants that are detected in proteomic
studies shows clear signs of protein functionality: 96% of
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them maintain the reading frame [8]; they rarely disrupt
protein domains [7, 9]; and they are highly conserved,
from mammals to bony fish [7]. This contrasts with the
bulk of AS events detected within transcriptomes: 58%
of them induce frameshifts [10] and 70% disrupt protein
domains [7]. Moreover, comparative transcriptomic ana-
lyses revealed that only 1–3% of exon-skipping events
detected by RNA-sequencing (RNA-seq) are conserved
beyond mammals [11, 12] and alternative splice sites
show no sign of selective constraint [10]. The subset of
exon-skipping events that are strongly tissue-specific
and that preserve the reading frame is generally more
conserved, which clearly suggests that this subset in-
cludes some functional events [11–14]. However, these
cases represent only a small fraction of all AS events
[11–14]. These observations indicate that only a small
minority of AS events are involved in the production of
functional protein variants (for review, see [15]). This
led some authors to conclude that the vast majority of
AS events correspond to splicing errors [10, 16–18] (we
will hereafter refer to this hypothesis as the “noisy spli-
cing” model).
However, this interpretation is contested by other au-

thors who argue that AS might play another important
role, not linked to the production of functional protein
variants, but to the regulation of gene expression. Indeed,
the maturation of primary transcripts into PTC-
containing splice variants, which then get degraded by
NMD, can be used as a way to regulate the amount of
mRNA available for protein production (this post-
transcriptional regulation pathway is termed AS-NMD,
for AS coupled with NMD; for review, see [19, 20]). AS-
NMD notably plays an important role in the regulation of
genes involved in the splicing process itself, presumably to
maintain the homeostasis of splicing factors via auto-
regulatory loops [21, 22]. Interestingly, although the regu-
lation of splicing factors by AS-NMD is well conserved
across animals, the AS events that trigger NMD in these
genes often involve different splice sites [23]. The rapid
evolution of AS events in mammals is therefore not neces-
sarily in contradiction with the hypothesis that many of
them play an important regulatory role. The comparison
of transcriptomes in normal vs NMD-deficient cells re-
vealed that a large fraction of genes produce splice vari-
ants (in a broad sense, i.e. including cases of IR) that are
targeted by NMD [18, 24–27]. This pattern is widespread
in eukaryotes and is not restricted to genes encoding spli-
cing factors. Importantly, patterns of AS vary among tis-
sues and during cell differentiation [28–30]. This led
several authors to propose that AS-NMD might play a
critical role in broadly regulating expression of a large per-
centage of genes [28–33].
Beyond a few case studies that provided clear evidence

of genes regulated by AS-NMD, we still lack a global

picture of the relative prevalence of functional AS com-
pared to splicing errors. We propose here a test to quan-
tify the fraction of splice variants corresponding to
errors, i.e. having a negative impact on the fitness of or-
ganisms. The basis of this test is that the strength of
splice signals is expected to reflect a balance between se-
lection (which favors alleles that are optimal for splicing
efficiency) and mutation and random genetic drift
(which can lead to the fixation of non-optimal alleles)
[34]. This selection-mutation-drift equilibrium therefore
predicts a higher splicing accuracy at introns where er-
rors are more deleterious for the fitness of organisms.
Hence, if AS events predominantly correspond to spli-
cing errors, one should expect a negative correlation be-
tween the rate of AS events and their cost in terms of
resource allocation (metabolic cost, mobilization of cel-
lular machineries). The noisy splicing model therefore
makes several specific predictions regarding the AS rate
according to whether splice variants are detectable by
NMD and according to the expression level, length, and
number of introns of genes.
We first implemented this test in the ciliate Parame-

cium tetraurelia. The intron density in this organism
(2.3 introns per gene on average) is similar to that ob-
served in many other unicellular eukaryotes, and some
animals, such as drosophila [35]. One major advantage
of this organism is that its introns are very short
(25.1 bp on average, with 99.9% of them in the range of
20–35 bp; Fig. 1a), i.e. much shorter than RNA-seq se-
quence reads, which greatly simplifies the detection and
classification of AS events. In particular, cases of IR can
be identified directly by detecting sequence reads span-
ning the entire intron and its flanking exon boundaries
(Fig. 1c). Moreover, given its high number of genes
(~40,000), this genome allows the analysis of a large
dataset of introns (>90,000 introns). Finally, this organ-
ism already proved to be a good model to reveal import-
ant general features of splicing control in eukaryotes
[36]. Here we present a comprehensive characterization
of AS in the transcriptomes of normal and NMD-
deficient paramecia to test the AS-NMD and noisy spli-
cing models. We then ran the same test using previously
published human transcriptome datasets and we quanti-
fied the fitness cost of mis-splicing in humans by analyz-
ing polymorphism data. Our analyses reveal that the vast
majority of splice variants correspond to errors.

Results and discussion
Quantification of splicing variants in Paramecium
For a given gene, the abundance of splicing variants de-
pends both on the intrinsic strength of splicing signals
and on the relative stability of the different variants.
Thus, to study the determinants of alternative splicing in
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P. tetraurelia, we sequenced the polyadenylated RNA
fraction of cells, either in normal state (hereafter de-
noted wild-type [WT]) or rendered NMD-deficient by
knocking down one of the main components of the
NMD machinery (Upf1, Upf2, or Upf3). The inactivation
of Upf genes leads to stabilization of PTC-containing
transcripts that would normally be degraded by the
NMD machinery, thus providing a proxy for the intrinsic
splicing efficiency of introns.
We generated ten RNA-seq datasets (Additional file 1:

Table S1): six distinct NMD knockdown experiments
and four replicates of WT cell cultures (see “Methods”).
All biological replicates gave similar results (Additional
file 1: Figures S1 and S2). We therefore pooled the se-
quencing datasets, to increase the per gene read depth
(50% of genes have a read depth > 41 and > 85 in WT
and in NMD-deficient samples, respectively). We de-
tected splicing events by mapping sequence reads to the
genome. These splicing events were then compared to
gene models of the reference genome annotation, which
includes 39,642 protein-coding genes, among which
31,632 contain introns (n = 90,287 introns) [37].

We detected three types of AS events (Fig. 1c): IR; al-
ternative splice site variants (ASSV); and splicing of
cryptic introns (i.e. introns with both splice sites located
within an annotated coding exon). It is important to
note that the classification of splice variants relies on the
definition of a canonical form (Fig. 1c): the distinction
between a “cryptic intron” and a “retained intron” de-
pends on which variant is considered as the reference.
For the vast majority of introns (97.8%), we observed
one single major splice form, at least five times more
abundant than other forms (Additional file 1: Figure S3).
We therefore decided to define the canonical form as
the one that is the most abundant in WT cells (see Add-
itional file 1: Text S1). To be able to identify canonical
forms, we restricted all subsequent analyses to genomic
segments covered by at least ten RNA-seq reads in WT
samples. This subset includes 65,159 annotated introns
(which constitute our reference intron dataset).
To compare AS rates between different samples, it is

necessary to normalize variant counts by the sequencing
depth [38]. For introns, we computed the rates of reten-
tion and ASSV, defined as the proportion of variant

a b

c

Fig. 1 Introns and cryptic introns in P. tetraurelia. a Length distribution of introns (n = 65,159). b Length distribution of cryptic introns (n = 20,719
cryptic introns detected in wild-type or NMD-deficient cells). Introns and cryptic introns of length multiple of three (3n) or non-multiple of three
(non-3n) are displayed in blue and red, respectively. c Quantification of splicing variation. For each intron, we identified all RNA-seq reads spanning
both flanking exons and counted the number of reads corresponding to the canonical transcript (n1), to usage of 5′ or 3′ alternative splice sites
(ASSV, n2), and to IR (n3). The IR rate is defined as n3/(n1 + n2 + n3), the ASSV rate is n2/(n1 + n2 + n3). Similarly, for potential cryptic introns (PCIs),
the splice rate is defined as m2/(m1 +m2)
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reads among all reads spanning these reference introns
(Fig. 1c). For cryptic introns, we considered all DNA
segments potentially subject to cryptic splicing, i.e. seg-
ments of length 20–35 nt (matching the size distribution
of observed introns and cryptic introns, Fig. 1), entirely
located within an exon, starting with GT and ending
with AG. These segments will hereafter be referred to as
potential cryptic introns (PCIs). The rate of cryptic in-
tron splicing is defined by the proportion of spliced
reads among all reads spanning PCIs (Fig. 1c).
The average IR rate is about five times higher than the

ASSV rate and 100 times higher than the splice rate of
PCIs (Table 1). However, given the very large number of
PCIs (on average there are 34.9 PCIs per gene vs only
2.3 introns), cryptic introns constitute a substantial frac-
tion (6.9%) of all splice variants. Overall, combining all
samples (WT and NMD-deficient), 95.0% of intron-
containing genes show evidence of splicing variability in
at least one of their introns and 32.3% of genes contain
at least one detected cryptic intron (Additional file 1:
Table S2). IR and ASSV rates are comparable to those
observed in humans (Table 1). We did not observe any
case of exon skipping in paramecia, but we detected
20,719 cryptic introns, 20 times more than reported in
Arabidopsis thaliana and in humans [39]. This probably
reflects the fact that the splicing machinery of parame-
cium only recognizes very short introns, which increases
the risk of excising cryptic introns within exons, but pre-
cludes exon skipping.

Impact of NMD on steady-state levels of splice variants
We classified splice variants in three categories accord-
ing to their impact on the translation reading frame: (1)
PTC-inducing variants; (2) variants that do not intro-
duce frameshift or PTC (3n no PTC); (3) variants that
induce a frameshift but without introducing a PTC
(non-3n no PTC). Variants from the first category are
NMD-visible, whereas the other two are not detectable
by NMD. Among all PCIs, 63.8% are predicted to lead
to NMD-visible transcripts in case of splicing, while
80.1% of introns are predicted to be NMD-visible in case
of retention. As expected, the abundance of NMD-
visible variants is strongly increased in NMD-deficient
cells compared to WT cells (Fig. 2). For NMD-invisible

variants, we observed a weak but significant increase in
NMD-deficient cells compared to WT cells (Fig. 2). This
increase probably reflects an indirect consequence of
NMD inactivation: in many species, genes encoding spli-
cing factors are regulated by AS-NMD [21, 22] and we
observed the same pattern in paramecia (Additional file
1: Text S2, Additional file 1: Figure S4). Hence, the in-
activation of NMD is expected to alter the efficiency of
the splicing machinery, and thereby to indirectly affect
the overall splicing pattern. The variation in AS rate for
NMD-invisible variants is, however, much weaker than
that observed for NMD-visible variants, which indicates
that NMD directly affects the steady state levels of PTC-
containing splice variants.

Lower rate of alternative splicing in long and highly
expressed genes
The previous observations indicate that AS-NMD might
potentially contribute to the post-transcriptional regula-
tion of many genes. However, they are also compatible
with the hypothesis that most splice variants are errors
and that NMD is used as a surveillance mechanism to
degrade erroneous transcripts. This “noisy splicing”
model makes several testable predictions, which are
based on three points. First, the cost of splicing errors is
expected to increase with gene expression level: for a
given splicing error rate, the waste of resources (both in
terms of metabolic cost and of futile mobilization of cel-
lular machineries) will be larger for highly expressed
genes, and hence, the selective pressure on splicing accur-
acy is expected to be stronger. In other words, if AS events
predominantly correspond to errors, the selection-
mutation-drift theory predicts that the AS rate should cor-
relate negatively with gene expression level. To test this
prediction, we classified introns (or PCIs) into ten bins of
equal sample size according to their gene expression level
and computed the AS rate within each bin. In agreement
with the “noisy splicing” model, we observed a strong de-
crease in AS rate with increasing expression level, for IR
(Fig. 3a), ASSV (Fig. 3b), and cryptic intron splicing
(Fig. 3c). This pattern is observed in both WT and NMD-
deficient cells, which indicates that the observed variations
reflect differences in intrinsic splicing efficiency.
The second point is that, for a given splicing error rate

per intron, the rate of production of spurious transcripts
increases with the number of introns present in a gene:
the greater the number of introns, the greater the risk of
having at least one error. The selective pressure on the
strength of splice signals of each intron is therefore ex-
pected to increase with the number of introns in a gene
and hence the AS rate (per intron) should be lower in
genes with more introns. To test this prediction, we
classified introns into three groups according to the
number of introns present in their gene: genes with 1

Table 1 Summary of AS rates in paramecia and human

P. tetraurelia Human

Number of protein-coding genes 39,642 19,919

Mean (median) number of introns per gene 2.3 (2.0) 9.3 (7.0)

Average ASSV rate per intron 0.6% 1.9%

Average IR rate per intron 3.3% 3.4%

Mean (median) number of PCIs per gene 34.9 (26) NA

Average splice rate per PCI 0.026% NA
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intron; with 2–3 introns; and with at least 4 introns
(mean = 5.2 introns) (the three groups correspond to
27.8%, 43.0%, and 29.2% of intron-containing genes, re-
spectively). We then binned each group according to
gene expression level and computed the AS rate per bin.
Again, observations perfectly match predictions: for a
given expression level, the AS rate per intron is higher
in genes with fewer introns, both for IR (Fig. 3d) and for
ASSV (Fig. 3e).
The third point is that the risk of cryptic intron spli-

cing increases with the number of PCIs and therefore
with the length of coding sequences (CDSs). The select-
ive pressure to limit the strength of cryptic splice signals
should therefore increase with CDS length and PCIs in
long CDSs should have a lower splicing rate compared
to PCIs in short CDSs. To test this prediction, we classi-
fied PCIs into three groups according to the length of
the CDS in which they are located (each group corre-
sponds to one-third of all genes) and then binned each
group by gene expression level and computed the PCI
splicing rate per bin. Again, the predictions of the model
fit the observations: for a given expression level, the spli-
cing rate per PCI is lower in genes with longer CDSs
(Fig. 3f ). Thus, all observations fit the three predictions
of the “noisy splicing” model.

The genome-wide AS pattern is dominated by splicing
errors
The previous results indicate that the level of constraints
against splicing errors is maximal in highly expressed
genes containing many introns and/or encoding long
CDSs (Fig. 3) (we will hereafter refer to this class of
long/intron-rich highly expressed genes as “highly

constrained” genes). The strong relationship between AS
rate and expression level can be used to quantify the
splicing error rate in each bin of expression. The propor-
tion of AS events that correspond to splice errors (Pe) is
given by:

Pe ¼ ASe

ASe þ ASf
ð1Þ

where ASf is the rate of functional AS events and ASe is
the rate of erroneous splicing.
The ratio of the AS rate in a given bin of expression

(i) over the AS rate in highly constrained genes (h) is
given by:

ri ¼ ASi
ASh

¼ ASei þ ASfi
ASeh þ ASfh

ð2Þ

Under the assumption that the rate of functional AS
events is the same for both gene classes (ASh

f = ASi
f = ASf

; see Additional file 1: Text S4 for a discussion about this
assumption), the proportion of splicing errors in expres-
sion bin (i) can be written as:

Pe
i ¼ 1−

ASf

ri ASeh þ ASf
� � ð3Þ

If selection is very strong in the set of highly con-
strained genes, so that the splicing error rate is negligible
compared to the rate of functional AS events in that
gene set (i.e. ASeh≪ASf ), then Eq. 3 simplifies to:

a b

Fig. 2 Impact of NMD on observed AS rates. AS events (IR or cryptic intron splicing) are classified into three groups according to their NMD-
visibility: PTC-inducing events (i.e. NMD-visible); events that do not introduce frameshift or PTC (3n no PTC); events that create a frameshift but
without introducing a PTC (non-3n no PTC). The two latter categories are not detectable by NMD. AS rates in WT and in NMD-deficient cells were
computed globally within each bin, as the proportion of AS reads among all reads spanning introns (or PCIs) from that bin. Error bars represent
the 95% confidence interval (CI) of this proportion. a IR (n = 65,159 introns). b Splicing of PCIs (n = 1,383,067 PCIs)
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Pe
i ¼ 1−

1
ri

ð4Þ

As a reference for highly constrained genes, we con-
sidered genes with a high expression level (top 10%) and
with > 3 introns (for the quantification of erroneous
ASSV and IR events) or with a CDS > 1400 bp (for the
quantification of erroneous cryptic intron splicing). In
WT cells, we observed that the ratio of the AS rate in
genes with median expression level over the AS rate in
highly constrained genes are ri = 12.0, ri = 20.3, and ri =
49.3 for IR, ASSV, and cryptic intron splicing, respect-
ively. According to Eq. 4, this implies that for a median
gene, 92–98% of splice variants detected in WT cells re-
sult from errors and this proportion might even be

higher if the splicing error rate in highly expressed genes
is not negligible (Eq. 3).
These estimates are based on the assumption that, on

average, the rate of functional AS does not vary with
gene expression level (i.e. AShf = ASlf = ASf in Eq. 3). One
may argue, however, that variation in AS rate with ex-
pression level might reflect differences in the propensity
to use AS-NMD: it is in principle possible that weakly
expressed genes are more prone to use AS-NMD to
fine-tune their expression level (i.e. ASlf >AS

h
f ). For in-

stance, one might speculate that highly expressed genes
are preferentially regulated at the transcriptional level, to
avoid the waste of resources caused by the post-
transcriptional AS-NMD pathway. Furthermore, if gene
regulation via AS-NMD requires only one AS-prone

a b c

d e f

Fig. 3 Relationship between AS rate and gene features: expression level, number of introns, or length of coding regions. Introns (n = 65,159) and
PCIs (n = 1,383,067) were classified into ten bins of equal sample size, according to gene expression levels in WT cells. The AS rate was computed
globally within each bin, as the proportion of AS reads among all reads spanning introns (or PCIs) from that bin. Error bars represent the 95% CI
of this proportion. a IR rate. b ASSV rate. c Rate of splicing at potential cryptic introns. d, e same as (a, b), but introns were first classified into
three bins, according to the number of introns of the gene in which they are located: genes with 1 intron (n = 5606 introns), genes with 2–3
introns (n = 24,452 introns), genes with > 3 introns (n = 35,101 introns). f Same as (c), but PCIs were first classified into three bins, according to
the length of the coding region (CDS) in which they are located: CDS < 750 bp (n = 169,030 PCIs), CDS 750–1400 bp (n = 406,460 PCIs), CDS >
1400 bp (n = 807,577 PCIs). a–c AS rates were measured in normal cells (WT, black line) and in NMD-deficient cells (dashed line). d–f AS rates were
measured in NMD-deficient cells. Expression levels (RPKM) are represented in log scale
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intron per gene, then this could explain why the average
AS rates (measured over all introns) decrease with in-
creasing number of introns per gene (Fig. 3). Thus, al-
though all previous observations are consistent with the
predictions of the noisy splicing model, they do not for-
mally invalidate the AS-NMD hypothesis.
One important point to note, however, is that AS

events that do not introduce a PTC cannot contribute to
gene regulation via AS-NMD. Hence, if the correlation
between AS rate and expression level was due to a
higher propensity of lowly expressed genes to be regu-
lated by AS-NMD, then this correlation should be ob-
served exclusively for AS events that can trigger NMD.
To test this prediction, we analyzed splicing variants ac-
cording to their NMD-visibility. We observed a strong
negative relationship between AS rate and gene expres-
sion level, both for NMD-visible and NMD-invisible
splicing variants (Fig. 4 for WT cells and Additional file
1: Figure S5 for NMD-deficient cells). In other words,
weakly expressed genes show a high rate of alternative
splicing events, even for NMD-invisible splicing events,
which, by definition, cannot contribute to the regulation
of gene expression by AS-NMD. Thus, the observed re-
lationships between gene expression level and AS rates
(NMD-visible or not) provide strong evidence against
the AS-NMD model. The most parsimonious explan-
ation is that the excess of AS in weakly expressed genes
compared to highly expressed genes simply reflects dif-
ferences in the selection-mutation-drift equilibrium:
these genes are under weaker selective pressure for spli-
cing accuracy and hence show a higher rate of splicing

error. If this interpretation is correct, then our calcula-
tions imply that for a median gene, at least 92–98% of
splice variants detected in WT cells correspond to
weakly deleterious errors.

A dual strategy to limit the cost of splicing errors
In NMD-deficient cells, the IR rate is much higher for
NMD-visible introns than for NMD-invisible introns,
which indicates that the former has a lower intrinsic
splicing efficiency (Fig. 2a). The difference in intrinsic
splicing efficiency results, at least in part, from a differ-
ence in the strength of splice signals: on average, 77.4%
of NMD-invisible introns match the consensus splicing
signals [GTA..TAG], compared to only 69.8% for NMD-
visible introns (Chi-squared test = 289.1, p < 10–15).
However, in WT cells, the observed AS rate is similar for
both categories of introns. This implies that the efficacy
of NMD to eliminate transcripts with retained introns is
strong enough to compensate the lower intrinsic splicing
efficiency of NMD-visible introns.
The same pattern is observed for PCIs: in WT cells,

NMD-visible and NMD-invisible PCIs show similar rates
of splicing (Fig. 2b, Additional file 1: Figure S6A), des-
pite the fact that the intrinsic rate of splicing of PCIs
(observed in NMD-deficient cells) is about five times
higher for NMD-invisible compared to NMD-visible
PCIs (Fig. 2b, Additional file 1: Figure S6B). Thus, again,
the higher intrinsic propensity of NMD-visible PCIs to
be spliced out is compensated by the activity of NMD in
WT cells.

a b

Fig. 4 Relationship between AS rate and expression level, for NMD-visible or NMD-invisible AS events. a Introns were first classified into two
groups according to their NMD-visibility in case of retention events (n = 52,163 NMD-visible introns, in red, and n = 12,996 NMD-invisible introns,
in blue), and then further grouped into ten bins of equal sample size, according to gene expression levels in WT cells. IR rates (in WT cells) were
measured globally in each bin. Error bars represent the 95% CI of the proportion of AS reads. b Same as (a), but for the splicing of PCIs: n = 882,579
NMD-visible PCIs and n = 500,488 NMD-invisible PCIs. Expression levels (RPKM) are represented in log scale
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Patterns of alternative splicing in humans are consistent
with the noisy splicing model
To test whether the observations that we made in a uni-
cellular organism (P. tetraurelia) hold true in multicellu-
lar eukaryotes, we quantified ASSV in human introns,
using previously published RNA-seq datasets coming
from 25 different tissues or cell types (Additional file 1:
Table S3). Note that the ASSV events that we detected
in humans include not only alternative 3′ or 5′ splice
site usage (as in paramecia, Fig. 1c), but also exon skip-
ping, alternative initial/terminal exons, or mutually
exclusive exons [40]. We also re-analyzed a dataset pub-
lished by Braunschweig et al. [29], which provides a
quantification of IR rates of human introns in 52 differ-
ent tissues and cell types. In agreement with previous re-
ports [29], we observed that the IR rate (averaged over
the 52 samples) decreases with increasing gene expres-
sion level. According to the authors, this observation
supports their conclusion that gene expression is regu-
lated through NMD acting on transcripts with retained
introns [29]. However, the negative relationship between
IR rate and expression level is observed both for NMD-
visible events and for NMD-invisible events (Additional
file 1: Figure S7A), which is not consistent with the AS-
NMD model. Moreover, we observed that for a given
expression level, the IR rate (per intron) decreases with
increasing number of introns in the gene (Fig. 5a). We
observed exactly the same patterns for ASSV rates
(Fig. 5b and Additional file 1: Figure S7B). Thus, in
humans as in paramecia, variations in ASSV and IR rates
fit with the predictions of the noisy splicing model.

As a reference dataset of highly constrained human
genes, we considered genes with a high expression level
(top 10%) and with > 21 introns (top 33%). The ratio of
the AS rate in genes with median expression level over
the AS rate in highly constrained genes are ri = 3.1 and
ri = 3.6 for IR and ASSV, respectively. According to Eq.
4, this implies that for median genes, at least 68% of IR
events and 72% of ASSV events correspond to errors.
These estimates are lower than in paramecium (92% for
IR, 95% for ASSV), which might reflect a higher propor-
tion of functional AS events in mammals than in ciliates.
One noticeable difference between AS patterns in these
organisms is that exon-skipping is common in mam-
mals, but absent in paramecium. Interestingly, in mam-
mals, exon-skipping events that preserve the reading
frame are more conserved than other AS events, which
indicates that this subset includes a higher fraction of
functional events [14]. However, it should be noted that
this subset represents only ~ 15% of ASSV events in hu-
man [14]. In fact, the difference between human and
paramecium estimates might simply result from a limita-
tion of our methodology. Indeed, these estimates are
based on the assumption that the error rate in the set of
highly constrained genes is negligible. In paramecia, AS
rates tend to plateau at high expression levels (Fig. 3),
which is compatible with the hypothesis that this basal
rate might correspond to functional splice variants.
However, in human, contrary to paramecia, there is no
sign that AS rates reach a basal value at high expression
levels, both for IR and ASSV events (Fig. 5). It is there-
fore likely that the splicing error rate is substantial, even

a b

Fig. 5 Relationship between AS rate, expression level, and number of introns in human genes. a IR rate (n = 118,703 introns). b ASSV rate (n = 102,697
introns). In both panels, introns were first classified into three groups of equal sample size, according to the number of introns of the genes in which
they are located (genes with < 12 introns, genes with 12–21 introns, genes with > 21 introns), and then further grouped into ten bins of equal sample
size, according to gene expression levels. We computed the average AS rate (IR or ASSV) over all introns within each bin. Error bars represent the 95%
CI of the mean. Expression levels (RPKM, averaged over the 52 samples) are represented in log scale

Saudemont et al. Genome Biology  (2017) 18:208 Page 8 of 15



in the reference dataset of highly constrained genes.
Hence, the above estimates are certainly an underesti-
mate of the true splicing error rate in humans.

Fitness impact of mis-splicing in humans
One strong assumption of the noisy splicing model is
that the fitness impact of splicing errors increases with
expression level. To test this hypothesis, we analyzed
patterns of polymorphism in the vicinity of human splice
sites. Splicing imposes strong constraints on donor and
acceptor sites (defined as the first and last 2 nt of in-
trons): 99.1% of human introns start with GT and 99.8%
end with AG. As expected, these sites show evidence of
strong purifying selection: the SNP density is 4.5-fold
lower at splice sites than in flanking third codon posi-
tions (Fig. 6a). We quantified this selective pressure by
measuring the ratio πspl/π3, where πspl is the SNP dens-
ity at splice sites and π3 is the SNP density at flanking
third codon positions. We binned introns by gene ex-
pression level and computed this ratio in each bin. Inter-
estingly, the πspl/π3 ratio is strongly correlated to gene
expression level (R2 = 0.89, p < 10–9), with a fivefold dif-
ference between lowly and highly expressed gene sets

(Fig. 6b). Note that contrarily to πspl, π3 does not correl-
ate with gene expression level (Additional file 1: Figure
S8), which confirms that variation in πspl/π3 reflects dif-
ferences in the intensity of selection on splice sites. It
should be stressed that the fraction of introns matching
the GT..AG consensus does not vary with gene expres-
sion level (Fig. 6d). This implies that mutations occur-
ring at donor and acceptor sites are ultimately counter-
selected, even in weakly expressed genes. However, our
observations (Fig. 6b) show that these mutations are
more rapidly purged in highly expressed genes. This
demonstrates that the fitness cost of mis-splicing in-
creases with gene expression level.
To test whether IR rate co-varies with the fitness im-

pact of mis-splicing, we binned introns according to
their IR rate and computed πspl/π3 in each bin. We ob-
served a positive correlation between πspl/π3 and the
average IR rate per bin (R2 = 0.76, p < 10–6), with a two-
fold increase between bins of low IR compared to bins
of high IR (Fig. 6c). Again, it is important to stress that
the frequency of introns matching the GT..AG consen-
sus does not vary with IR rate (Additional file 1: Figure
S9). This implies that mis-splicing is deleterious, even in

a

b c d

Fig. 6 Variation in selective constraints on splice signals in human genes. a SNP density was measured in the vicinity of exon-intron boundaries
(first and last 30 bp of introns and 20 bp of flanking exons), over all introns located between coding exons (n = 170,015). Splice sites (first and last
2 bp of introns) are displayed in dark blue, other intron positions in light blue. Within coding regions, the SNP density at each site was computed
separately for the three codon positions (gray: position 1, red: position 2, yellow: position 3). b The level of selective constraints on splice signals
increases with gene expression level. Introns were classified into bins of equal sample size, according to gene expression levels. Within each bin,
the fitness impact of mutations on splice sites was estimated by measuring the ratio πspl/π3, where πspl is the SNP density at splice sites and π3 is
the SNP density at flanking third codon positions. c The level of selective constraints on splice signals decreases with increasing IR rate. Introns
were classified into bins of equal sample size according to their average retention rate and the ratio πspl/π3 was measured in each bin. d The
fraction of introns with consensus splice signals does not vary with gene expression level. The proportion of introns matching the consensus
splice donor (GT) and the proportion of introns matching the consensus splice acceptor (AG) was computed for each bin of expression level. Error
bars represent the 95% CI of this proportion. b, d Mean expression levels (RPKM) are represented in log scale
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introns with high IR rate. However, in agreement with
the noisy splicing model, introns that show a high IR
rate correspond to introns where mis-splicing is rela-
tively less deleterious.

Conclusions
The efficiency of excision of introns by the spliceosome
is affected by different signals, located within introns
and flanking exons (splice sites, branch point, polypyri-
midine tract, splicing enhancers, or silencers). Besides
the two splice sites that are critical for the splicing reac-
tion (almost always GT for the donor and AG for the
acceptor), all other signals tolerate some sequence flexi-
bility. The probability for a mutation affecting a splicing
signal to reach fixation depends on its fitness impact (i.e.
the selection coefficient, s) and on the power of random
genetic drift (i.e. the effective population size, Ne) [34].
There is therefore necessarily a limit to the point up to
which selection can optimize the strength of splice sig-
nals: if the splicing error rate is already low, any muta-
tion that further improves splicing efficiency will
necessarily have a weak fitness impact and hence will be
subject to random drift (the so-called drift barrier effect
[41]). This drift barrier therefore determines a basal spli-
cing error rate, which depends on the mutation rate, on
Ne, and on the fitness cost of splicing errors (s).
For a given error rate, errors are expected to be more

costly (in terms of metabolic resources and mobilization
of cellular machineries) in highly expressed genes. Hence
the fitness cost of mis-splicing is expected to increase
with increasing expression level. Indeed, this is precisely
what we observed in humans: the strength of selection
against deleterious mutations at splice sites is strongly
correlated to gene expression level (Fig. 6b). Since the
risk of producing erroneous transcripts increases with
the number of introns, this implies that all else being
equal, there should be a stronger selective pressure
against mis-splicing in intron-rich genes. The mutation-
selection-drift theory therefore predicts that introns
from weakly expressed/intron-poor genes should accu-
mulate more non-optimal substitutions in their splice
signals and therefore should show a higher splicing error
rate. The relationships that we observe between AS rate,
expression level, and intron number are perfectly con-
sistent with these predictions, both in human (Fig. 5)
and in paramecia (Fig. 3).
There are two possible ways to limit the deleterious

impact of erroneous splicing: (1) improve the strength of
splicing signals to increase intrinsic splicing efficiency
and avoid the use of cryptic signals (error prevention);
or (2) ensure that transcripts are degraded by NMD in
case of splicing error (error mitigation). We observed
that both strategies are used: there is a deficit of introns
and cryptic introns that cannot trigger NMD in case of

splicing error; and the rare introns that are not NMD-
visible show stronger splicing signals (Additional file 1:
Text S3, Additional file 1: Figure S10). The analysis of
AS rate in NMD-deficient cells shows that NMD-
invisible introns have a much higher intrinsic splicing
accuracy than NMD-visible ones. This difference dem-
onstrates that the biophysical limits of splicing accuracy
have not been reached and that it would be possible to
further improve splicing accuracy of NMD-visible in-
trons by genetic engineering. However, the mutation-
selection-drift theory predicts that once the basal spli-
cing error rate has been reached, by error prevention or
by error mitigation, then selection cannot further im-
prove splicing efficiency. Thus, this model predicts that
the steady state level of erroneous transcripts (after qual-
ity control by NMD) should be the same for NMD-
visible and NMD-invisible introns. And this is precisely
what we observed: in WT cells, NMD-visible and NMD-
invisible AS events show similar rates (Fig. 2).
The fitness cost of splicing errors depends on the fre-

quency of transcripts subject to at least one erroneous
splicing event. Owing to the short length of RNA-seq se-
quence reads, it is not possible to directly quantify AS
rates per transcript. However, given that AS rates (per
intron) are similar in human and in paramecia (Table 1)
and that human genes contain on average 3–4 times
more introns than paramecia, this implies that the fre-
quency of transcripts subject to at least one erroneous
splicing event must be much higher in human than in
paramecia. This is consistent with the drift-barrier hy-
pothesis, which predicts that humans should have a
higher splicing error rate (per gene), owing to their lar-
ger mutational targets (more introns) and to their
smaller effective population size [41, 42].
There is clear evidence that some AS events are func-

tional [4]. Notably, we observed that AS-NMD probably
plays an important role in the regulation of genes encod-
ing splicing factors in paramecia (Additional file 1: Text
S3), as previously shown in other eukaryotes [21, 22].
However, AS-NMD cannot explain the strong relation-
ship between AS rate and expression level that is ob-
served for NMD-invisible splicing variants (Fig. 4,
Additional file 1: Figure S7). It has been recently shown
that the retention of introns in nuclear transcripts (the
so-called “detained” introns) might also contribute to
the regulation of gene expression, independently of
NMD [43]. If weakly expressed genes were more prone
to use this regulatory pathway, this might explain the re-
lationship observed between expression level and IR
rate. However, this model does not explain the relation-
ship between IR rate and intron number (Figs. 3d and
5a) and, most importantly, cannot explain the relation-
ship between expression level and other classes of AS
events (ASSV or cryptic intron splicing; Figs. 3 and 5).
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The most parsimonious explanation is that the excess of
AS in weakly expressed/intron-poor genes results from
the accumulation of maladaptive substitutions, driven by
random genetic drift in genes where the selective pres-
sure is weaker. Our observations indicate that for me-
dian genes, the vast majority of observed splice variants
correspond to errors, in contradiction with the pangloss-
ian view of a widespread role of AS-NMD in fine-tuning
the expression of genes. Of course, this does not negate
the importance of AS-NMD in the regulation of some
genes. However, our results highlight the necessity of a
careful consideration of non-adaptive hypotheses before
concluding about the functionality of AS events.

Methods
Paramecium strain, cell culture, and inactivation of NMD
The entirely homozygous strain 51 of P. tetraurelia was
grown in a wheatgrass powder infusion medium bacte-
rized with Klebsiella pneumoniae the day before use and
supplemented with 0.8 mg.L-1 ß-sitosterol. NMD was
inactivated either by RNAi-mediated silencing of UPF
genes during vegetative growth of WT cells or by gener-
ating somatic knockouts, i.e. clones in which these genes
are deleted from the macronucleus. RNAi treatment was
based on the double-stranded RNA feeding technique
[44]: briefly, cells were fed for seven days with E. coli
(HT115) producing double-stranded RNA homologous
to the target gene. Sequences used for silencing of
UPF1A, UPF1B, UPF2, UPF3, and ICL7a (which encodes
a cytoskeletal protein), were segments 1885–2289,
1887–2285, 1143–1546, 18–422, and 1–580 of the genes
(from the ATG), respectively. These genes can be
accessed with ParameciumDB (http://paramecium.cgm.
cnrs-gif.fr/) under accession numbers GSPATG0003
4062001, GSPATG00037251001, GSPATG00017015001,
GSPATG00001393001, and GSPATG00021610001, re-
spectively. Somatic knockouts were generated by apply-
ing RNAi treatment during the development of a new
somatic macronucleus, which results in the deletion of
the targeted genes [45, 46]: WT conjugating pairs were
transferred to “UPF” RNAi medium and, following their
separation, individual exconjugants were isolated in the
same medium. After 24 h of growth, cells were transferred
to standard growth medium. Among the viable exconju-
gants obtained, somatic UPF deletions were screened for
based on the slow growth phenotype and the inability to
undergo autogamy, and later confirmed by Southern blots
and PCR (Additional file 1: Figure S11).

RNA-seq
Total RNA was extracted from cells grown on K. pneu-
moniae or the relevant feeding E. coli strains with the
TRIzol (Invitrogen) procedure, modified by the addition
of glass beads. All RNA samples were treated with

DNase prior to library construction to minimize DNA
contamination. For the first four RNA-seq datasets in
Additional file 1: Table S1, poly(A) RNAs were purified
from 100 μg of total RNA with the MicroPoly(A)purist
kit (Ambion). Of the output, 25% was used for mRNA
reverse transcription, using the SuperScript III kit (Invi-
trogen) and the anchor-oligo(dT) primer 5′-GCCCAC
CAGAGCCGGCGGATTTTTTTTTTTTTTTTT-3′. After
alkaline lysis of RNA and removal of the oligo(dT) primer
with G-50 columns (GE Healthcare), a poly(G) tail was
added to single-stranded complementary DNAs (cDNAs)
with terminal transferase (NEB) following the producer’s in-
structions. After phenol purification and ethanol precipi-
tation, cDNAs were made double-stranded using the
Phusion PCR enzyme (Finnzymes) and the anchor-
oligo(dC) primer 5′-GCCCACCAGAGCCGGCGGACCC
CCCCCCCCCCCCCC-3′. Double-stranded DNA was
then purified using the Qiagen PCR purification kit and
cDNA libraries were amplified by 15 cycles of PCR with
the anchor primer. cDNA libraries were digested by EciI
restriction enzyme (NEB) and purified (Qiagen) before
addition of Illumina adaptors. For the last six RNA-seq
datasets, library preparation and Illumina sequencing were
performed at the ENS Genomic Platform (Paris, France).
Poly(A) RNAs were purified from 1 μg of total RNA using
oligo(dT). Libraries were prepared using the strand non-
specific RNA-seq library preparation TruSeq RNA Sample
Prep kit (Illumina) and multiplexed by 3 on 2 flowcell
lanes. 101-bp paired-end read sequencing was performed
on a HiSeq 1500 device (Illumina).

Read mapping
The sequencing of these ten samples yielded a total of
40.8 Gb (from 247,653,027 fragments), 25.1 Gb from
NMD-deficient cells, and 15.7 Gb from control cells
(Additional file 1: Table S1). Reads were mapped against
the P. tetraurelia reference genome assembly (accession
number: CAAL01000000) [37], using TopHat (version
1.4.1) [47]. The minimal and maximal intron lengths
were set to 10 nt and 500,000 nt, respectively. Reads that
mapped at multiple positions on the genome were ex-
cluded from further analyses. Read coverage along tran-
scription unit was obtained using annotated gene models
from the reference genome [37]. The expression level of
genes was measured in reads per kilobase per million
mapped reads (RPKM).

Detection of splicing events
For each annotated intron, we counted the number of
mapped reads spanning both extremities (Fig. 1c). Reads
aligning to the genome sequence without any gap were
counted as IR. Reads showing a deletion corresponding
exactly to the annotated intron were counted as splice
events. Reads with a deletion that does not match the
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annotated intron (at one or both extremities) were
counted as ASSV. Reads showing a deletion entirely lo-
cated within an annotated coding exon were counted as
cryptic intron splicing events (Fig. 1c).
The cell cultures that we analyzed are totally homozy-

gous. However, it is important to note that in paramecia,
the macronuclear genome is highly polyploid and that
the different copies of a same gene may differ due to
heterogeneity in the process of excision of internal elimi-
nated sequences (IESs) [48]. Thus, a fraction of the di-
versity detected in the transcriptome may in fact result
from this macronuclear genomic heterogeneity. Among
all alignment gaps detected by TopHat, > 97% match the
consensus intron boundaries (GT/AG), which indicates
that most of them correspond to bona fide splice events.
To avoid any confusion between splice variants and IES
excision variants, we counted as splice variants only
those matching the GT/AG consensus.
The classification of splice variants (IR, ASSV, or cryp-

tic intron splicing) was based on the comparison with
the canonical form, defined as the major form observed
in WT cells. Among the 90,287 annotated introns, we
selected those that are spanned by at least 10 reads in
WT samples (n = 70,242). Among those ones, 4045 were
never observed as spliced and 1038 correspond to minor
splice forms. Thus, our reference dataset includes 65,159
introns (72% of the initial dataset).

Quantification of AS rate
One important goal of this study was to analyze the rela-
tionship between AS rate and gene expression level. The
AS rate at a given intron is defined by the proportion of
splice variant reads among all reads spanning that intron
(Fig. 1c). One difficulty is that the precision of this
metric is strongly dependent on the sequencing read
depth and, hence, the measure of the AS rate is much
less accurate in weakly than in highly expressed genes.
To circumvent this problem, we binned introns (or
PCIs) by expression level and then measured the global
AS rates in each bin (defined by the proportion of splice
variant reads among all reads in that bin).
The measure of IR rate might potentially be biased by

the presence of contaminant genomic DNA in the RNA-
seq library. We checked that our results are robust to
this possible artefact (see Additional file 1: Text S5).

Analysis of intron retention in humans
Braunschweig et al. [29] analyzed 52 RNA-seq samples
from different tissues and cell types to quantify intron
retention in human genes. For each gene, they selected
one representative transcript, based on Ensembl annota-
tions. Their initial dataset includes 202,973 introns from
20,959 protein-coding genes (Additional file 1: Tables S6
and S8 from Braunschweig et al. [29]). We computed

the average gene expression level of each gene over
the 52 samples, using data provided by the authors.
We excluded data from genes that are not mapped
on chromosomes of the reference genome assembly
(n = 18,546 introns from 2185 genes annotated on un-
mapped contigs or additional haplotypes) or for which
expression data were not available (n = 4844 introns
from 871 genes).
To analyze the AS rate according to NMD visibility,

we also excluded from their dataset all introns located
within UTRs or within truncated CDS (i.e. CDS lacking
start or stop codon or containing an internal stop
codon): n = 10,780 introns from 912 genes. The final
dataset includes 170,015 introns from 16,991 genes.
For each intron, Braunschweig et al. [29] quantified re-

tention rates in all samples where it showed sufficient
read depth (>10 reads spanning each flanking exon
boundary). Among the 170,015 introns, we excluded
those corresponding to minor splice forms (i.e. with an
IR rate ≥ 50%, n = 580 introns), and selected all those for
which the retention rate had been quantified in at least
ten samples. For each of the selected introns (n =
118,703), we computed the average retention rate over
all available samples (median = 38 samples).

Analysis of ASSV in humans
We estimated ASSV frequencies in 25 human tissues
and cell lines, using 110 publicly available RNA-seq sam-
ples (Additional file 1: Table S3), corresponding to a
representative subset of the samples analyzed by Braun-
schweig et al. [29]. To increase comparability among
samples, for paired-end data we analyzed only the first
read of the pair and stranded samples were treated as
unstranded. We aligned the RNA-seq data on the hu-
man genome (hg38 assembly, downloaded from Ensembl
release 84) using TopHat 2.0.4 with the following op-
tions: minimum intron size for junction discovery = 40
nucleotides (nt), maximum intron size = 1 million nt,
maximum one mismatch per read segment, anchor size
8 nt, no mismatches allowed in the anchor region, no
coverage search. To aid the spliced read mapping
process, we provided as an input for TopHat the set of
introns annotated in Ensembl release 84, with the –j op-
tion. We re-estimated the splice junction frequencies
using uniquely mapping reads, annotated with the
NH:i:1 tag in the original TopHat alignments. For each
tissue/cell line, we combined read counts from all avail-
able samples.
For each intron from Braunschweig dataset (see

above), we evaluated whether its 5′ or 3′ splice site were
connected with alternative splice sites. We note E1 and
E2 the annotated splice sites that border the intron, in
5′-3′ orientation. In a given tissue (i), we note nE1E2i
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the number of spliced reads corresponding to the anno-
tated splicing event, nEaE2i the number of spliced reads
that connect other 5′ splice sites of the same gene with
the 3′ splice site E2, and nE1Eai the number of spliced
reads that connect the 5′ splice site E1 with other 3′
splice sites of the same gene. We then computed the
ASSV frequency:

ASSV i¼ nEaE2iþnE1Eaið Þ= nE1E2iþnEaE2iþnE1Eaið Þ

For a given intron, this parameter was computed only
in tissues with sufficient read depth ((nE1E2i + nEaE2i +
nE1Eai) > 10 reads). We excluded 3075 introns corre-
sponding to minor splice forms (i.e. mean ASSV rate ≥
50%) and selected all introns for which the ASSV rate
had been quantified in at least ten tissues. For each of
the selected introns (n = 102,697), we computed the
average ASSV rate over all available samples (median =
22 samples).
Note that this definition of ASSV includes any spli-

cing event that connects a donor (or acceptor) of the
annotated intron, to an alternate acceptor (or respect-
ively donor) in the same gene. This definition encom-
passes many different types of AS events: not only
alternative 3′ or 5′ splice site usage (as shown in Fig. 1c
for paramecia), but also exon skipping, alternative ini-
tial/terminal exons or mutually exclusive exons [40]
(Additional file 1: Figure S12).

Definition of NMD-invisible alternative splicing events in
humans
In mammals, NMD is able to recognize and degrade
PTC-containing transcripts only if the PTC occurs more
than 50 nucleotides upstream of the last exon-exon
junction [6, 49]. Hence, alternative splicing events (IR or
ASSV) affecting last introns were classified as NMD-
invisible, whereas the other were classified as potentially
NMD-visible.

Analysis of polymorphism at splice sites of human introns
For each of the 170,015 introns located within coding
regions, we analyzed patterns of polymorphism in the
vicinity of its donor splice site (last 20 bp from the up-
stream exon and first 30 bp of the intron) and of its ac-
ceptor splice site (last 30 bp of the intron and first
20 bp from the downstream exon), using polymorph-
ism data from the 1000 Genomes Project (phase 3;
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130
502/) [50]. In total, our dataset includes 447,659 SNPs
(0.026 SNP per bp), among which 437,080 (97.6%) with
DAF information.

Additional files

Additional file 1: Includes Text S1–S4, Figures S1–S13, and Tables S1–
S3: Text S1. Definition of canonical splice forms. Text S2. Regulation of
splicing factors by AS-NMD in paramecia. Text S3. Signatures of selective
pressure against splicing errors. Text S4. Quantification of the proportion
of splicing errors: extended model. Text S5. Estimates of IR rate are
robust to possible contamination by genomic DNA. Figure S1. Impact of
NMD on observed IR rates: comparison of biological replicates. Figure S2.
Impact of NMD on observed PCI splicing rates: comparison of biological
replicates. Figure S3. Distribution of AS rate in WT cells. Figure S4. NMD-
sensitive introns in P. tetraurelia SRSF-like genes. Figure S5. Relationship
between AS rate expression level, for NMD-visible or NMD-invisible splicing
events. Figure S6. Splicing rate of PCIs according to their length. Figure S7.
Relationship between AS rate and expression level in human genes, for
NMD-visible or NMD-invisible AS events. Figure S8. Variation in SNP density
at splice sites and flanking third codon positions according to gene
expression level. Figure S9. The fraction of introns with consensus splice
signals does not vary with IR rate. Figure S10. Signatures of selective
pressure against cryptic splicing signals in P. tetraurelia. Figure S11. Somatic
knockouts of UPF1A and UPF1B genes. Figure S12. Common forms of AS
in humans. Figure S13. Read depth in intergenic regions according to the
expression level of flanking genes. Table S1. Summary of RNA-seq samples.
Table S2. Number of introns or cryptic introns showing evidence of AS in
RNA-seq samples from WT or NMD-deficient paramecia. Table S3. RNA-seq
libraries analyzed to quantify ASSV in human. (PDF 1759 kb)
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