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"WHEN DOES IT WORK ?" : AN EXPLORATORY ANALYSIS OF TRANSFER LEARNING FOR BCI

Transfer Learning is a critical topic of research in the BCI field. Its goal is to reuse data gathered in a previous session (source session) in order to reduce, or completely bypass, calibration in a new session (target session). Although many methods have been proposed to tackle this problem, little is known about what characteristics of the datasets should be taken into account in order to ensure good performance. In this paper, we perform an exploratory analysis to study the influence of some simple descriptors of the source and target datasets over the classification scores obtained with Transfer Learning. We observe that the discriminability of the data points in the target session plays an important role in determining how well the Transfer Learning will work, as opposed to that of the source session, which has no statistically significant role in most cases.

INTRODUCTION

Reducing calibration time has been an important challenge in Brain-Computer Interface (BCI) research since a long time [START_REF] Lotte | A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update[END_REF]. Several Transfer Learning (TL) approaches have been proposed in the literature and most are based on the idea of reusing data from a previous recording session of a subject (the source session) to classify the data of a new session from the same subject or a different one (the target session). However, reusing data directly from previous sessions in general yields poor results. This comes from the fact that the statistical distributions of data from different sessions (same subject or not) are rarely the same [START_REF] Lotte | A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update[END_REF]. A typical TL approach in BCI is to transform the data points from both the source and target datasets so that the discrepancy between their statistical distributions is reduced [START_REF] Rodrigues | Riemannian procrustes analysis: Transfer learning for brain-computer interfaces[END_REF][START_REF] Zanini | Transfer learning: A Riemannian geometry framework with applications to braincomputer interfaces[END_REF][START_REF] Gayraud | Optimal Transport Applied to Transfer Learning For P300 Detection[END_REF]. In this paper, we match the statistics of the source and target datasets via the recently proposed Riemannian Procrustes Analysis (RPA) [START_REF] Rodrigues | Riemannian procrustes analysis: Transfer learning for brain-computer interfaces[END_REF], a method that adapts the classical Procrustes analysis to a Riemannian geometry framework. It is well known that, although any pair of source-target subjects can go through a Transfer Learning procedure, some pairs of subjects yield better results in classification than others. Our main goal in this paper is to investigate some factors that might explain this variability and how one might try to predict beforehand (i.e., before doing any matching of the datasets or classifying the data points) the "compatibility" between the datasets. Our exploratory analysis relies on the estimation of linear models and the study of the statistical significance of the coefficients estimated for those models. We use as explanatory factors the intra-scores for the source and target subjects (which is the cross-validated classification score using the subject's dataset as training and testing dataset), and the MMD between the two datasets. We observe that the intra-score for the target subject plays an important role in determining how well the Transfer Learning will work, as opposed to the intra-scores of the source subjects, which plays no statistically significant role in most cases. We also observe that before doing any transformation on the data points of the source and target datasets, the MMD between their statistical distributions plays a statistically significant role over the performance of the Transfer Learning. However, once the RPA is applied, the MMD between the datasets becomes very small and no longer carries statistical information to describe the variability of the cross-subject scores. This confirms the relevance of the RPA method.

MATERIALS AND METHODS

This section begins with a formal definition of the Transfer Learning problem. Then, we give a brief introduction to concepts of Riemannian geometry and describe the RPA method. Finally, we present the statistical tools used in our exploratory analysis of Transfer Learning as well as the dataset chosen for our investigations.

Transfer Learning: We formulate the problem of Transfer Learning by first defining two datasets, the source (S) and the target (T ) dataset. They are comprised of couples

S = (C S i , y S i ) for i = 1, . . . , K S , T = (C T i , y T i ) for i = 1, . . . , K T , (1) 
with C S i and C T i ∈ R n×n being data points, and y S i and y T i ∈ {1, . . . , L} their corresponding class labels; K S and K T are the number of trials in the source and target sessions respectively. In this paper, the data points in S and T are not Euclidean feature vectors as is usually done, but symmetric positive definite (SPD) matrices, which are used to parametrize the statistics of EEG multivariate time series [START_REF] Congedo | Riemannian geometry for EEG-based braincomputer interfaces; a primer and a review[END_REF].

Transfer Learning concerns the case when the statistical distributions µ S and µ T , describing the source and target datasets respectively, are different. In this context, one might want to train a classifier h using the information in S and apply it to data points in T (or vice-versa). A common approach is to define a transformation for the data points in the target dataset so that their new statistical distribution is the same as that of the source dataset. To do so, most algorithms define an optimization procedure that tries to minimize some notion of distance between the statistical distributions of S and T , such as the Maximum-Mean Discrepancy (MMD) [START_REF] Gretton | A kernel two-sample test[END_REF]. In [START_REF] Ben-David | A theory of learning from different domains[END_REF], a theoretical analysis of the Transfer Learning problem has shown that methods reducing the distance between statistical distributions are mathematically well justified, since they reduce the upper bounds of the classification error of h in T .

Riemannian geometry of SPD matrices: We denote by X k ∈ R n×T the recording of T samples on n electrodes of the k th trial of a zero-mean time series and y k the class associated to X k . The spatial covariance matrix C k associated to X k is an n × n matrix estimated as usual by

C k = 1 T -1 X k X T k . (2) 
Covariance matrices are symmetric positive definite (SPD) and form a manifold P(n). When associated to a metric, one can define fundamental geometric notions in P(n), such as geodesics (shortest curve joining two points), distance between two points (length of the geodesic connecting them), the center of mass of a set of points, etc. We endow P(n) with the affine-invariance Riemannian metric, which induces the distance [8]

δ 2 R (C i , C j ) = log(C -1/2 i C j C -1/2 i ) 2 F , (3) 
for C i , C j ∈ P(n). This distance is more natural for the P(n) manifold as compared to the Euclidean distance and has been instrumental in several BCI classification algorithms developed in recent years [START_REF] Congedo | Riemannian geometry for EEG-based braincomputer interfaces; a primer and a review[END_REF]. The geometric mean M according to distance (3) of a set of covariance matrices {C 1 , . . . , C K } is defined as [START_REF] Congedo | Riemannian geometry for EEG-based braincomputer interfaces; a primer and a review[END_REF] M = argmin

X∈P(n) K k=1 δ 2 R (X, C k ) , (4) 
where the cost function in (4) is the dispersion of the set of matrices around a matrix X. The above definitions suffice for the intents of this paper. The interested reader will find a thorough treatment of the subject in the monography of R. Bhatia [START_REF] Bhatia | Positive Definite Matrices[END_REF] and its applications to BCI in [START_REF] Congedo | Riemannian geometry for EEG-based braincomputer interfaces; a primer and a review[END_REF].

Riemannian Procrustes Analysis: In this paper, we use the RPA [START_REF] Rodrigues | Riemannian procrustes analysis: Transfer learning for brain-computer interfaces[END_REF] for transforming data points in T so that their new distribution is as close as possible to µ S . RPA works by considering the distributions of data points in S and T as shapes in a high-dimensional space. It performs rigid geometric operations over the ensemble of data points, such as translation, stretching and rotation, to make their shapes as similar as possible. The transformations are The transformations in RPA are analogous to those in Euclidean space but applied to data points in the SPD manifold P(n).

done respecting the intrinsic geometry of P(n), which is where the data points of S and T are defined. We represent the transformations in Procrustes analysis in Figure 1 and summarize the steps of the RPA as follows :

1. Estimate the geometric means of S and T , denoting them by M S and M T , respectively, and the dispersions around the mean of each dataset, denoted by d S and d T .

2. Re-center the data points in S and T by doing

C S(rct) i = M -1/2 S C S i M -1/2 S , (5) 
C T (rct) i = M -1/2 T C T i M -1/2 T , (6) 
and forming new datasets

S (rct) = {C S(rct) i } and T (rct) = {C T (rct) i } .
Note that the geometric mean of these two new datasets is the Identity matrix.

3. Stretch the dispersion around the mean of the data points in T (rct) so that it matches the dispersion around the mean of S (rct) by doing

C T (str) i = C S(rct) i s , (7) 
where we require s ∈ R to verify

s 2 = d/ d . (8) 
4. The last step consists in rotating the matrices from T (str) around the origin and matching the orientation of its point cloud with that of S (rct) . We have then

C T (rot) i = U T C T (str) i U , (9) 
where U is determined via an optimization procedure that minimizes the distance between the class means of each dataset after the rotation. Note that this step is a semi-supervised one, since it requires knowledge of at least a few labels of the target dataset for estimating its class means (see [START_REF] Rodrigues | Riemannian procrustes analysis: Transfer learning for brain-computer interfaces[END_REF] for more details).

Transfer Learning classification: In this paper, whenever we want to do a classification task with data points that live in P(n), we use the Minimum-Distance to Mean classifier (MDM) [START_REF] Congedo | Riemannian geometry for EEG-based braincomputer interfaces; a primer and a review[END_REF], which is a generalization of the nearest-centroid classifier to the space of SPD matrices. It works by first estimating the geometric mean of the elements of each class in the training dataset (the class means). Then, it assigns to each unlabeled data point the class of the nearest class mean according to the δ R distance. In the context of transfer learning, we will always consider the source dataset S as the training dataset and the target dataset T as the testing dataset. The classification score is simply the average accuracy of the classifier. In the following analysis, we will consider the results of Transfer Learning classification on three different cases :

DCT : the source and target datasets are used DireCTly as training and testing datasets, without any transformation.

RCT : the source and target datasets are both Re-CenTered and then used as training and testing dataset.

RPA : the source and target datasets go through the RPA procedure and are then used as training and testing datasets.

For this analysis we will assume that all labels in the target dataset are available for the estimation of the class means. In fact, our intent here is not to evaluate the performance of the RPA method in a realistic situation when only a few labels from the target dataset are available (this has been done in [START_REF] Rodrigues | Riemannian procrustes analysis: Transfer learning for brain-computer interfaces[END_REF]), but rather to understand under which circunstances it works.

Seriation procedure: Given a dataset, all cross-subject Transfer Learning performance is summarized in a matrix S (m) , where the S (m) ij element contains the accuracy of the classification with method m ∈ {DCT, RCT, RPA} using subject i as target and subject j as source. We use a tool from combinatorial data analysis named seriation [START_REF] Liiv | Seriation and matrix reordering methods: An historical overview[END_REF] to sort the lines and columns of S (m) in order to make relevant patterns emerge. The rows and columns of S (m) are sorted in decreasing order of their marginals. The output of this procedure is a new representation where the pairs of source-target subjects with the best accuracy are located at the top-left region of the matrix, while the worst pairs are at the bottom-right region.

Statistical analysis procedure: Our quantitative analysis is based on the estimation of linear regression models to describe the variability on the values of S (m) ij as defined in the previous subsection. We estimate a different linear model L (m) i for each target subject i and method m. We do this because the cross-subject scores for two different target subjects and the same source subject are statistically dependent, which would undermine the estimation of a full linear model mixing all scores. Moreover, the results after the RPA method are related to those for the RCT one, since the latter includes the former as a processing step. We define the linear model L (m) i as :

S (m) ij = β (m) 1,i S i + β (m) 2,i S j + β (m) 3,i η (m) ij + (m) i , (10) where 
• S i (S j ) is the intra classification score of target (source) subject i (j), obtained via cross-validation with training and testing datasets coming from the same subject. Note that since each model L (m) i is estimated for one fixed target subject i, S i is a constant in [START_REF] Cho | EEG datasets for motor imagery brain-computer interface[END_REF] and acts as a scaling for the intercept; thus, it is not considered as an independent variable in the statistical analysis.

• Factor η (m) ij is the MMD between datasets S and T after the operations of method m, defined as [START_REF] Gretton | A kernel two-sample test[END_REF] MMD(S, T ) = 1

K 2 S K S i,j k(C i , C j ) + 1 K 2 T K T i,j k( C i , C j ) - 2 K S K T K S ,K T i,j=1 k(C i , C j ) , (11) 
where

k(P, Q) = exp - δ 2 R (P, Q) 2σ 2 , (12) 
for P, Q ∈ P(n) and σ is taken as the median value of all pairwise distances of elements in S and T .

• The variable (m) i

stands for all residual factors that are not explained by the linear regression model.

Once the linear models are all estimated, we perform a set of hypothesis tests for each target subject i. The goal is to assess the statistical significance of the coefficients of each model. The first kind of test is a F -test for the omnibus null hypothesis :

H 0 : β (m) 2,i = β (m) 3,i = 0 , H 1 : β (m)
k,i = 0 for at least one k in {2, 3} .

(13) This is a standard test used for inspecting whether the set of independent variables of a linear regression model, S j and δ ij in [START_REF] Cho | EEG datasets for motor imagery brain-computer interface[END_REF], is statistically significant for explaining at least part of the variability of the dependent variable, S (m) ij in [START_REF] Cho | EEG datasets for motor imagery brain-computer interface[END_REF]. When the null hypothesis is rejected, we say that there is enough statistical evidence for considering that the slope of at least one of the independent variables is different than zero. In this case, we perform t-tests for checking which explanatory variable in L (m) i is statistically significant. We have :

H 0 : β (m) ,i = 0 , H 1 : β (m) ,i = 0 , (14) 
for ∈ {2, 3}. When the null hypothesis of ( 14) is rejected for β (m) ,i , we say that there is statistical evidence for considering it different than zero and so the independent variable related to it contributes for explaining the dependent variable S (m) ij . The statistical procedure explained above yields two sets of p-values for each method m ∈ {DCT, RCT, RPA}. The first set contains the p-values for each F -test on each target subject i, whereas the second set gathers the pvalues of the t-tests. The results presented in the next section are based on the analysis of these sets of p-values and how they are distributed along different source subjects for each method.

Dataset: We carried out our analysis on a publicly available dataset [START_REF] Cho | EEG datasets for motor imagery brain-computer interface[END_REF] which we will refer as Cho2017 from now on. The dataset contains recordings of subjects performing BCI trials following a MI paradigm with 64 EEG electrodes (sampling frequency 512 Hz) from 52 subjects, each one performing 200 trials (100 of each class). We filtered the EEG signals in the 8-30 Hz band and each trial was considered as a segment from 0.5 to 2.5 seconds after the trial onset. We estimated the spatial covariance matrices using [START_REF] Rodrigues | Riemannian procrustes analysis: Transfer learning for brain-computer interfaces[END_REF]. Not all subjects in Cho2017 have data which can be well discriminated, so we kept only those whose the intra-score in terms of AUC (Area Under the ROC-curve) is above chance level; this keeps 40 subjects out of the 52 in total.

RESULTS AND DISCUSSION

In this section, we present the results of our analysis of Transfer Learning via RPA on the Cho2017 dataset. We begin with a qualitative analysis of the output of the seriation procedure applied to the cross-subject scores. Then, we study the correlation of each factor defined in [START_REF] Cho | EEG datasets for motor imagery brain-computer interface[END_REF] with the cross-subject scores. Finally, we analyse the results of the statistical hypothesis tests for each one of the linear models L i and discuss the patterns observed for the whole dataset (from now on, we will indicate the superscript specifying which method m only when necessary).

Cross-subject classification accuracy: Figure 2 shows the output of the seriation procedure on the cross-subject Transfer Learning scores for the Cho2017 dataset on three classification methods: DCT, RCT, and RPA. We observe that with RCT and RPA there are more pairs of subjects with high values of cross-subject classification than with DCT. In particular, we note that for RCT and RPA there are many target subjects for which the classification accuracy is high for almost all possible source subjects. To investigate the possible explanations for this behavior, we perform a Spearman correlation test between the average cross-subject score for each target (given by the average value along the rows of matrix S) and the intra-subject accuracy of the corresponding target subject. For the RPA method, we obtain a correlation of 0.58 (p < 10 -3 ), whereas for RCT it is 0.44 (p < 10 -2 ) and DCT is 0.45 (p < 10 -2 ). We interpret these results as : subjects that are "good" for classifying their own data can better receive information from other source subjects. We also provide a quantitative analysis of the results. Figure 3 portrays the histograms of all cross-subject Transfer Learning scores S ij (rows and columns confounded) for each method and their means are displayed in Table 1. These results show that the transformations over the source and target datasets do improve the cross-subject classification scores on the average. Changes in MMD after each RPA step: We evaluate how the MMD between each pair of source-target subjects changes after the re-centering step and the full RPA procedure. Table 1 gives the average values of the MMD distances for each method and shows that there is a clear decrease after each transformation. This result is not surprising, since each step of the RPA procedure was conceived exactly to make the distributions of S and T closer in some sense and the MMD allows for a quantitative assessement of it.

Study of the linear models L i : After exploring the grand averages of the cross-subject Transfer Learning scores and how they relate to a few explanatory factors, we analyse the linear models L i defined in [START_REF] Cho | EEG datasets for motor imagery brain-computer interface[END_REF] and estimated on each target subject i for the three methods of interest : DCT, RCT, and RPA. We first plot the p-values of the F -test for each model sorted in ascending order. Under the omnibus null hypothesis for target subjects, the p-values follow an uniform distribution and, thus, when sorted they will lie on a straight line. The leftmost plot in Figure 4 shows that for almost all subjects the variability of the cross-subject performance is well explained by the linear model estimated for the DCT method and, in a lesser extent, for the RCT method. It is worth remembering that the statistical significance of the coefficient for the intercept, and, therefore, the influence of the intra-score S i on describing the Each circle represents the p-value of a given test on a given target subject and the x-axis has been rearranged so that all the p-values are in increasing order. The leftmost plot represents the results of the F -test of the full linear model Li, whereas the center plot illustrates the p-values for the t-test of the coefficient β2,i in Li (related to the intra-score of the source subject), and the rightmost plot displays the p-values for the t-test on the coefficient β3,i in Li (related to the MMD between the source and target datasets). values of S ij , is not assessed via the F -test. This is why we have calculated the Spearman correlation between the row-averaged S ij and the S i in the previous sub-section. The distribution of the p-values in the center plot of Figure 4 shows that β 2,i has no statistical significance in the linear model L i for any of the target subjects in the DCT and RPA methods. However, for RCT it does seem to play a role for some target subjects. What we can conclude from these observations is that RPA is able to make the cross-subject Transfer Learning score independent of the choice of source subject (at least in terms of its intra score). As a consequence, it makes it easier to find "good" source subjects for each target subject, as it was already observed during our qualitative analysis of Figure 2. Finally, the rightmost plot in Figure 4 shows that the MMD between source and target datasets plays a role in describing the cross-subject Transfer Learning scores only for the DCT method. This result is conforting, since it brings evidence to the fact that the operations in the RPA procedure are capable of factoring out most of the differences between the statistical distributions of S and T . As a consequence, we may say that any further improvement that one might want to do on the Transfer Learning procedure should take into account other aspects of the mismatch between datasets besides the MMD between them.

CONCLUSION

In this paper, we have investigated the influence of different factors on the variability of cross-subject Transfer Learning scores. Our goal has been to assess whether some basic explanatory variables, such as the intra-score of the source and target subjects, play any role for determining the scores obtained in the cross-subject classification. A simple, and yet important, application of this study is being able to predict beforehand (i.e., before doing all transformations and then classifying the trials) which source subject would be the most appropriate for doing classification on a given target subject. We have observed that the discriminability of the trials of the target subjects (i.e. its intra-score) plays a fundamental role in determining how the cross-subject Transfer Learning will perform. On the other hand, the influence of the intra-scores for the source subjects have proven to be rather limited. We have also observed that the influence of the MMD between S and T is not statistically significant after using RPA to match the two datasets. What we can conclude from this is that the RPA procedure is capable of factoring out most of the influence of the discrepancy between statistical distributions of the source and target datasets. It is our opinion that investigating the factors determining the sucess of Transfer Learning is instrumental for devising new and more powerful strategies for doing it. The present study is a little step in this direction. Future works shall include the search for richer models for describing the cross-subject Transfer Learning scores. Some approaches would be to consider non-linear relations between the explanatory variables as well as adding new factors related to other features of the source and target subjects.
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 1 Figure 1: Schematic representation in a 2D Euclidean space of the rigid transformations involved in the classical Procrustes Analysis. The black dot represents the origin of the space and circles in blue and yellow are data points from two classes in a source dataset. The triangles are data points of a target dataset.The transformations in RPA are analogous to those in Euclidean space but applied to data points in the SPD manifold P(n).

Figure 2 :

 2 Figure 2: Accuracies of the cross-subject classification for three different Transfer Learning procedures on the Cho2017 database. The rows and columns of each subplot were reordered using the seriation procedure explained in the text. The colormap varies from white (accuracy 0.5) to black (accuracy 1.0).
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 3 Figure 3: Normalized histograms of the cross-subject Transfer Learning scores for the three methods described in the text. The vertical dashed line indicates chance level.

Figure 4 :

 4 Figure4: p-values of different statistical tests over the linear models Li (each one associated to a target subject i). Each circle represents the p-value of a given test on a given target subject and the x-axis has been rearranged so that all the p-values are in increasing order. The leftmost plot represents the results of the F -test of the full linear model Li, whereas the center plot illustrates the p-values for the t-test of the coefficient β2,i in Li (related to the intra-score of the source subject), and the rightmost plot displays the p-values for the t-test on the coefficient β3,i in Li (related to the MMD between the source and target datasets).

Table 1 :

 1 Average values of the cross-subject Transfer Learning scores and the MMD distance between source and target datasets for each method.

	Method (δij) avg (Sij) avg
	DCT	0.63	0.53
	RCT	0.01	0.58
	RPA	0.01	0.76