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ABSTRACT: Transfer Learning is a critical topic of re-
search in the BCI field. Its goal is to reuse data gathered
in a previous session (source session) in order to reduce,
or completely bypass, calibration in a new session (target
session). Although many methods have been proposed to
tackle this problem, little is known about what character-
istics of the datasets should be taken into account in order
to ensure good performance. In this paper, we perform an
exploratory analysis to study the influence of some sim-
ple descriptors of the source and target datasets over the
classification scores obtained with Transfer Learning. We
observe that the discriminability of the data points in the
target session plays an important role in determining how
well the Transfer Learning will work, as opposed to that
of the source session, which has no statistically signifi-
cant role in most cases.

INTRODUCTION

Reducing calibration time has been an important chal-
lenge in Brain-Computer Interface (BCI) research since a
long time [1]. Several Transfer Learning (TL) approaches
have been proposed in the literature and most are based
on the idea of reusing data from a previous recording
session of a subject (the source session) to classify the
data of a new session from the same subject or a differ-
ent one (the target session). However, reusing data di-
rectly from previous sessions in general yields poor re-
sults. This comes from the fact that the statistical distri-
butions of data from different sessions (same subject or
not) are rarely the same [1].
A typical TL approach in BCI is to transform the data
points from both the source and target datasets so that
the discrepancy between their statistical distributions is
reduced [2–4]. In this paper, we match the statistics of
the source and target datasets via the recently proposed
Riemannian Procrustes Analysis (RPA) [2], a method that
adapts the classical Procrustes analysis to a Riemannian
geometry framework.
It is well known that, although any pair of source–target
subjects can go through a Transfer Learning procedure,
some pairs of subjects yield better results in classification
than others. Our main goal in this paper is to investigate
some factors that might explain this variability and how
one might try to predict beforehand (i.e., before doing any
matching of the datasets or classifying the data points) the

“compatibility" between the datasets.
Our exploratory analysis relies on the estimation of lin-
ear models and the study of the statistical significance of
the coefficients estimated for those models. We use as ex-
planatory factors the intra-scores for the source and target
subjects (which is the cross-validated classification score
using the subject’s dataset as training and testing dataset),
and the MMD between the two datasets. We observe that
the intra-score for the target subject plays an important
role in determining how well the Transfer Learning will
work, as opposed to the intra-scores of the source sub-
jects, which plays no statistically significant role in most
cases. We also observe that before doing any transforma-
tion on the data points of the source and target datasets,
the MMD between their statistical distributions plays a
statistically significant role over the performance of the
Transfer Learning. However, once the RPA is applied,
the MMD between the datasets becomes very small and
no longer carries statistical information to describe the
variability of the cross-subject scores. This confirms the
relevance of the RPA method.

MATERIALS AND METHODS

This section begins with a formal definition of the Trans-
fer Learning problem. Then, we give a brief introduc-
tion to concepts of Riemannian geometry and describe
the RPA method. Finally, we present the statistical tools
used in our exploratory analysis of Transfer Learning as
well as the dataset chosen for our investigations.

Transfer Learning: We formulate the problem of
Transfer Learning by first defining two datasets, the
source (S) and the target (T ) dataset. They are comprised
of couples

S =
{
(CSi , y

S
i ) for i = 1, . . . ,KS

}
,

T =
{
(CTi , y

T
i ) for i = 1, . . . ,KT

}
,

(1)

with CSi and CTi ∈ Rn×n being data points, and ySi and
yTi ∈ {1, . . . , L} their corresponding class labels; KS

and KT are the number of trials in the source and tar-
get sessions respectively. In this paper, the data points
in S and T are not Euclidean feature vectors as is usu-
ally done, but symmetric positive definite (SPD) matri-
ces, which are used to parametrize the statistics of EEG
multivariate time series [6].



Transfer Learning concerns the case when the statistical
distributions µS and µT , describing the source and target
datasets respectively, are different. In this context, one
might want to train a classifier h using the information in
S and apply it to data points in T (or vice-versa).
A common approach is to define a transformation for the
data points in the target dataset so that their new statisti-
cal distribution is the same as that of the source dataset.
To do so, most algorithms define an optimization proce-
dure that tries to minimize some notion of distance be-
tween the statistical distributions of S and T , such as
the Maximum-Mean Discrepancy (MMD) [5]. In [7], a
theoretical analysis of the Transfer Learning problem has
shown that methods reducing the distance between statis-
tical distributions are mathematically well justified, since
they reduce the upper bounds of the classification error of
h in T .

Riemannian geometry of SPD matrices: We denote by
Xk ∈ Rn×T the recording of T samples on n electrodes
of the kth trial of a zero-mean time series and yk the class
associated to Xk. The spatial covariance matrix Ck asso-
ciated to Xk is an n× n matrix estimated as usual by

Ck =
1

T − 1
XkX

T
k . (2)

Covariance matrices are symmetric positive definite
(SPD) and form a manifold P(n). When associated
to a metric, one can define fundamental geometric no-
tions in P(n), such as geodesics (shortest curve joining
two points), distance between two points (length of the
geodesic connecting them), the center of mass of a set of
points, etc. We endow P(n) with the affine-invariance
Riemannian metric, which induces the distance [8]

δ2R(Ci, Cj) = ‖ log(C−1/2i CjC
−1/2
i )‖2F , (3)

for Ci, Cj ∈ P(n). This distance is more natural for
the P(n) manifold as compared to the Euclidean distance
and has been instrumental in several BCI classification
algorithms developed in recent years [6]. The geometric
mean M according to distance (3) of a set of covariance
matrices {C1, . . . , CK} is defined as [6]

M = argmin
X∈P(n)

K∑
k=1

δ2R(X,Ck) , (4)

where the cost function in (4) is the dispersion of the set
of matrices around a matrixX . The above definitions suf-
fice for the intents of this paper. The interested reader will
find a thorough treatment of the subject in the monogra-
phy of R. Bhatia [8] and its applications to BCI in [6].

Riemannian Procrustes Analysis: In this paper, we use
the RPA [2] for transforming data points in T so that their
new distribution is as close as possible to µS . RPA works
by considering the distributions of data points in S and T
as shapes in a high-dimensional space. It performs rigid
geometric operations over the ensemble of data points,
such as translation, stretching and rotation, to make their
shapes as similar as possible. The transformations are
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Figure 1: Schematic representation in a 2D Euclidean space
of the rigid transformations involved in the classical Procrustes
Analysis. The black dot represents the origin of the space and
circles in blue and yellow are data points from two classes in a
source dataset. The triangles are data points of a target dataset.
The transformations in RPA are analogous to those in Euclidean
space but applied to data points in the SPD manifold P(n).

done respecting the intrinsic geometry of P(n), which is
where the data points of S and T are defined. We repre-
sent the transformations in Procrustes analysis in Figure 1
and summarize the steps of the RPA as follows :

1. Estimate the geometric means of S and T , denoting
them by MS and MT , respectively, and the disper-
sions around the mean of each dataset, denoted by
dS and dT .

2. Re-center the data points in S and T by doing

C
S(rct)
i =M

−1/2
S CSi M

−1/2
S , (5)

C
T (rct)
i =M

−1/2
T CTi M

−1/2
T , (6)

and forming new datasets

S(rct) = {CS(rct)
i } and T (rct) = {CT (rct)

i } .

Note that the geometric mean of these two new
datasets is the Identity matrix.

3. Stretch the dispersion around the mean of the data
points in T (rct) so that it matches the dispersion
around the mean of S (rct) by doing

C
T (str)
i =

(
C
S(rct)
i

)s
, (7)

where we require s ∈ R to verify

s2 = d/d̃ . (8)



4. The last step consists in rotating the matrices from
T (str) around the origin and matching the orientation
of its point cloud with that of S (rct). We have then

C
T (rot)
i = UT C

T (str)
i U , (9)

where U is determined via an optimization proce-
dure that minimizes the distance between the class
means of each dataset after the rotation. Note that
this step is a semi-supervised one, since it requires
knowledge of at least a few labels of the target
dataset for estimating its class means (see [2] for
more details).

Transfer Learning classification: In this paper, when-
ever we want to do a classification task with data points
that live in P(n), we use the Minimum-Distance to Mean
classifier (MDM) [6], which is a generalization of the
nearest-centroid classifier to the space of SPD matrices.
It works by first estimating the geometric mean of the
elements of each class in the training dataset (the class
means). Then, it assigns to each unlabeled data point the
class of the nearest class mean according to the δR dis-
tance. In the context of transfer learning, we will always
consider the source dataset S as the training dataset and
the target dataset T as the testing dataset. The classifica-
tion score is simply the average accuracy of the classifier.
In the following analysis, we will consider the results of
Transfer Learning classification on three different cases :

DCT : the source and target datasets are used
DireCTly as training and testing datasets, without
any transformation.

RCT : the source and target datasets are both
Re-CenTered and then used as training and testing
dataset.

RPA : the source and target datasets go through the
RPA procedure and are then used as training and
testing datasets.

For this analysis we will assume that all labels in the tar-
get dataset are available for the estimation of the class
means. In fact, our intent here is not to evaluate the per-
formance of the RPA method in a realistic situation when
only a few labels from the target dataset are available
(this has been done in [2]), but rather to understand under
which circunstances it works.

Seriation procedure: Given a dataset, all cross-subject
Transfer Learning performance is summarized in a matrix
S(m), where the S(m)

ij element contains the accuracy of
the classification with method m ∈ {DCT,RCT,RPA}
using subject i as target and subject j as source. We use a
tool from combinatorial data analysis named seriation [9]
to sort the lines and columns of S(m) in order to make
relevant patterns emerge. The rows and columns of S(m)

are sorted in decreasing order of their marginals. The
output of this procedure is a new representation where
the pairs of source-target subjects with the best accuracy
are located at the top-left region of the matrix, while the
worst pairs are at the bottom-right region.

Statistical analysis procedure: Our quantitative analy-
sis is based on the estimation of linear regression models
to describe the variability on the values of S(m)

ij as de-
fined in the previous subsection. We estimate a different
linear model L(m)

i for each target subject i and method
m. We do this because the cross-subject scores for two
different target subjects and the same source subject are
statistically dependent, which would undermine the esti-
mation of a full linear model mixing all scores. Moreover,
the results after the RPA method are related to those for
the RCT one, since the latter includes the former as a
processing step.
We define the linear model L(m)

i as :

S
(m)
ij = β

(m)
1,i Si + β

(m)
2,i Sj + β

(m)
3,i η

(m)
ij + ε

(m)
i , (10)

where

• Si (Sj) is the intra classification score of target
(source) subject i (j), obtained via cross-validation
with training and testing datasets coming from the
same subject. Note that since each model L(m)

i is
estimated for one fixed target subject i, Si is a con-
stant in (10) and acts as a scaling for the intercept;
thus, it is not considered as an independent variable
in the statistical analysis.

• Factor η(m)
ij is the MMD between datasets S and T

after the operations of method m, defined as [5]

MMD(S, T ) =
1

K2
S

KS∑
i,j

k(Ci, Cj)

+
1

K2
T

KT∑
i,j

k(C̃i, C̃j)

− 2

KSKT

KS ,KT∑
i,j=1

k(Ci, C̃j) ,(11)

where

k(P,Q) = exp

(
−δ

2
R(P,Q)

2σ2

)
, (12)

for P,Q ∈ P(n) and σ is taken as the median value
of all pairwise distances of elements in S and T .

• The variable ε(m)
i stands for all residual factors that

are not explained by the linear regression model.

Once the linear models are all estimated, we perform a
set of hypothesis tests for each target subject i. The goal
is to assess the statistical significance of the coefficients
of each model. The first kind of test is a F -test for the
omnibus null hypothesis :

H0 : β
(m)
2,i = β

(m)
3,i = 0 ,

H1 : β
(m)
k,i 6= 0 for at least one k in {2, 3} .

(13)

This is a standard test used for inspecting whether the
set of independent variables of a linear regression model,



Sj and δij in (10), is statistically significant for explain-
ing at least part of the variability of the dependent vari-
able, S(m)

ij in (10). When the null hypothesis is rejected,
we say that there is enough statistical evidence for con-
sidering that the slope of at least one of the independent
variables is different than zero. In this case, we perform
t-tests for checking which explanatory variable in L(m)

i

is statistically significant. We have :

H0 : β
(m)
`,i = 0 ,

H1 : β
(m)
`,i 6= 0 ,

(14)

for ` ∈ {2, 3}. When the null hypothesis of (14) is re-
jected for β(m)

`,i , we say that there is statistical evidence
for considering it different than zero and so the indepen-
dent variable related to it contributes for explaining the
dependent variable S(m)

ij .
The statistical procedure explained above yields two sets
of p-values for each method m ∈ {DCT,RCT,RPA}.
The first set contains the p-values for each F -test on each
target subject i, whereas the second set gathers the p-
values of the t-tests. The results presented in the next
section are based on the analysis of these sets of p-values
and how they are distributed along different source sub-
jects for each method.

Dataset: We carried out our analysis on a publicly
available dataset [10] which we will refer as Cho2017
from now on. The dataset contains recordings of sub-
jects performing BCI trials following a MI paradigm with
64 EEG electrodes (sampling frequency 512 Hz) from
52 subjects, each one performing 200 trials (100 of each
class). We filtered the EEG signals in the 8-30 Hz band
and each trial was considered as a segment from 0.5 to 2.5
seconds after the trial onset. We estimated the spatial co-
variance matrices using (2). Not all subjects in Cho2017
have data which can be well discriminated, so we kept
only those whose the intra-score in terms of AUC (Area
Under the ROC-curve) is above chance level; this keeps
40 subjects out of the 52 in total.

RESULTS AND DISCUSSION

In this section, we present the results of our analysis of
Transfer Learning via RPA on the Cho2017 dataset. We
begin with a qualitative analysis of the output of the seri-
ation procedure applied to the cross-subject scores. Then,
we study the correlation of each factor defined in (10)
with the cross-subject scores. Finally, we analyse the re-
sults of the statistical hypothesis tests for each one of the
linear models Li and discuss the patterns observed for the
whole dataset (from now on, we will indicate the super-
script specifying which method m only when necessary).

Cross-subject classification accuracy: Figure 2 shows
the output of the seriation procedure on the cross-subject
Transfer Learning scores for the Cho2017 dataset on
three classification methods: DCT, RCT, and RPA. We
observe that with RCT and RPA there are more pairs of
subjects with high values of cross-subject classification

than with DCT. In particular, we note that for RCT and
RPA there are many target subjects for which the classi-
fication accuracy is high for almost all possible source
subjects. To investigate the possible explanations for
this behavior, we perform a Spearman correlation test
between the average cross-subject score for each target
(given by the average value along the rows of matrix S)
and the intra-subject accuracy of the corresponding tar-
get subject. For the RPA method, we obtain a corre-
lation of 0.58 (p < 10−3), whereas for RCT it is 0.44
(p < 10−2) and DCT is 0.45 (p < 10−2). We interpret
these results as : subjects that are “good” for classifying
their own data can better receive information from other
source subjects. We also provide a quantitative analy-
sis of the results. Figure 3 portrays the histograms of
all cross-subject Transfer Learning scores Sij (rows and
columns confounded) for each method and their means
are displayed in Table 1. These results show that the
transformations over the source and target datasets do
improve the cross-subject classification scores on the av-
erage.

Table 1: Average values of the cross-subject Transfer Learn-
ing scores and the MMD distance between source and target
datasets for each method.

Method (δij)avg (Sij)avg

DCT 0.63 0.53

RCT 0.01 0.58

RPA 0.01 0.76

Changes in MMD after each RPA step: We evaluate
how the MMD between each pair of source–target sub-
jects changes after the re-centering step and the full RPA
procedure. Table 1 gives the average values of the MMD
distances for each method and shows that there is a clear
decrease after each transformation. This result is not sur-
prising, since each step of the RPA procedure was con-
ceived exactly to make the distributions of S and T closer
in some sense and the MMD allows for a quantitative as-
sessement of it.

Study of the linear models Li: After exploring the
grand averages of the cross-subject Transfer Learning
scores and how they relate to a few explanatory factors,
we analyse the linear models Li defined in (10) and es-
timated on each target subject i for the three methods of
interest : DCT, RCT, and RPA.
We first plot the p-values of the F -test for each model
sorted in ascending order. Under the omnibus null hy-
pothesis for target subjects, the p-values follow an uni-
form distribution and, thus, when sorted they will lie on
a straight line. The leftmost plot in Figure 4 shows that
for almost all subjects the variability of the cross-subject
performance is well explained by the linear model esti-
mated for the DCT method and, in a lesser extent, for the
RCT method. It is worth remembering that the statistical
significance of the coefficient for the intercept, and, there-
fore, the influence of the intra-score Si on describing the
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Figure 2: Accuracies of the cross-subject classification for three different Transfer Learning procedures on the Cho2017 database. The
rows and columns of each subplot were reordered using the seriation procedure explained in the text. The colormap varies from white
(accuracy 0.5) to black (accuracy 1.0).
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Figure 3: Normalized histograms of the cross-subject Transfer Learning scores for the three methods described in the text. The vertical
dashed line indicates chance level.
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Figure 4: p-values of different statistical tests over the linear models Li (each one associated to a target subject i). Each circle represents
the p-value of a given test on a given target subject and the x-axis has been rearranged so that all the p-values are in increasing order.
The leftmost plot represents the results of the F -test of the full linear model Li, whereas the center plot illustrates the p-values for the
t-test of the coefficient β2,i in Li (related to the intra-score of the source subject), and the rightmost plot displays the p-values for the
t-test on the coefficient β3,i in Li (related to the MMD between the source and target datasets).



values of Sij , is not assessed via the F -test. This is why
we have calculated the Spearman correlation between the
row-averaged Sij and the Si in the previous sub-section.
The distribution of the p-values in the center plot of
Figure 4 shows that β2,i has no statistical significance
in the linear model Li for any of the target subjects in
the DCT and RPA methods. However, for RCT it does
seem to play a role for some target subjects. What we
can conclude from these observations is that RPA is able
to make the cross-subject Transfer Learning score inde-
pendent of the choice of source subject (at least in terms
of its intra score). As a consequence, it makes it easier
to find “good” source subjects for each target subject, as
it was already observed during our qualitative analysis of
Figure 2.
Finally, the rightmost plot in Figure 4 shows that the
MMD between source and target datasets plays a role
in describing the cross-subject Transfer Learning scores
only for the DCT method. This result is conforting, since
it brings evidence to the fact that the operations in the
RPA procedure are capable of factoring out most of the
differences between the statistical distributions of S and
T . As a consequence, we may say that any further im-
provement that one might want to do on the Transfer
Learning procedure should take into account other as-
pects of the mismatch between datasets besides the MMD
between them.

CONCLUSION

In this paper, we have investigated the influence of dif-
ferent factors on the variability of cross-subject Transfer
Learning scores. Our goal has been to assess whether
some basic explanatory variables, such as the intra-score
of the source and target subjects, play any role for de-
termining the scores obtained in the cross-subject clas-
sification. A simple, and yet important, application of
this study is being able to predict beforehand (i.e., before
doing all transformations and then classifying the trials)
which source subject would be the most appropriate for
doing classification on a given target subject.
We have observed that the discriminability of the trials
of the target subjects (i.e. its intra-score) plays a funda-
mental role in determining how the cross-subject Transfer
Learning will perform. On the other hand, the influence
of the intra-scores for the source subjects have proven to
be rather limited. We have also observed that the influ-
ence of the MMD between S and T is not statistically sig-
nificant after using RPA to match the two datasets. What
we can conclude from this is that the RPA procedure is
capable of factoring out most of the influence of the dis-
crepancy between statistical distributions of the source
and target datasets.
It is our opinion that investigating the factors determining
the sucess of Transfer Learning is instrumental for devis-
ing new and more powerful strategies for doing it. The
present study is a little step in this direction. Future works
shall include the search for richer models for describing

the cross-subject Transfer Learning scores. Some ap-
proaches would be to consider non-linear relations be-
tween the explanatory variables as well as adding new
factors related to other features of the source and target
subjects.
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